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Abstract

The physics of a gravitational field can be explored by studying the geodesic motion
of test particles and light. Although the majority of gravitational effects can be dis-
cussed using approximations and numerics, a systematic study of all effects can only
be achieved by using analytical methods. In particular, exact analytic treatments
can finally answer the question whether the cosmological expansion, modeled here
by a cosmological constant, has an observable influence on effects as the Pioneer
anomaly or the creation of gravitational waves.

This thesis is devoted to the study of the geodesic motion in space-times with
a nonvanishing cosmological constant using analytical methods. In each space-time
considered here, the discussion of geodesics takes place on two different levels: The
first is the classification of orbits in terms of the black hole and test particle or
light parameters. This includes an overview of the complete set of possible orbits
as well as a discussion of special orbits. The results of this analysis are used to
compare the geodesic motion in different space-times and, in particular, to study
the influence of the cosmological constant on a geodesic. On the second level, the
analytical solutions of geodesic equations in terms of elliptic or hyperelliptic functions
are derived and used to determine analytical expressions for observables. In addition,
series expansions for a small cosmological constant are deduced.

All space-times considered in this thesis are special cases of the general class
of Plebański-Demiański space-times, which includes the static and spherically sym-
metric Schwarzschild solution as the most simple case. The complete discussion
of geodesics in this space-time provide the basic reference for comparisons with
more complex space-times. After discussing the slightly more complicated Reissner-
Nordström space-time, the generalization of both these space-times to the case of a
nonvanishing cosmological constant is carried out. In a short excursus it is shown
that the methods presented so far can also be applied to higher-dimensional space-
times.

Subsequently, the discussion will be further generalized to the stationary and ax-
ially symmetric Kerr and Kerr-(anti-)-de Sitter space-times. For both space-times,
general statements concerning the geometrical interpretation of the additional con-
stant of motion, the Carter constant, are formulated. As in general the geodesic
motion in axially symmetric space-times can not be restricted to a plane, the clas-
sification of orbits is extended to include the latitudinal direction. Finally, the an-
alytical solution methods developed in this thesis are applied to the general class
of Plebański-Demiański space-times itself for the case of a vanishing acceleration of
the gravitating object. While so far the geodesic equation has only be analytically
solved in Kerr-Newman space-times together with all its special cases, it is hereby
shown that this can be extended to all integrable geodesic equations in black hole
electrovac space-times without acceleration.

This thesis also enables future work on the mathematical methods presented here
as well as on analytical treatments of a range of physical problems. Possible further
developments and applications are suggested at the end of the thesis.



List of publications

E. Hackmann and C. Lämmerzahl. Complete analytic solution of the geodesic equa-
tion in Schwarzschild-(anti) de Sitter space-times. Phys. Rev. Lett., 100: 171101-1,
2008.

E. Hackmann and C. Lämmerzahl. Geodesic equation in Schwarzschild-(anti-)de
Sitter space–times: Analytical solutions and applications. Phys. Rev., D 78: 024035,
2008.

E. Hackmann and C. Lämmerzahl. Geodesic equation and theta-divisor. In Re-

cent Developments in Gravitation and Cosmology, volume 977 of AIP Conference

Proceedings, pages 116-133, USA 2008.

E. Hackmann and C. Lämmerzahl. Hyperelliptic functions and geodesic equations.
In Proceedings in Applied Mathematics and Mechanics, volume 8, issue 1, pages
10723-10724, Wiley-VCH, Weinheim, 2008.

E. Hackmann, V. Kagramanova, J. Kunz and C. Lämmerzahl. Analytic solutions
of the geodesic equations in higher dimensional static spherically symmetric space–
times. Phys. Rev., D 78: 124018, 2008.

E. Hackmann, V. Kagramanova, J. Kunz, and C. Lämmerzahl. Analytic solutions of
the geodesic equation in axially symmetric space–times. Europhys. Lett., 88: 30008,
2009.

E. Hackmann, V. Kagramanova, J. Kunz, and C. Lämmerzahl. Analytical solution of
the geodesic equation in Kerr-(anti) de Sitter space-time. Phys. Rev., D 81, 044020,
2010.

E. Hackmann, C. Lämmerzahl and A. Macias. Complete classification of geodesic
motion in fast Kerr and Kerr-(anti-)de Sitter space-times. In New trends in statis-

tical physics: Festschrift in honour of Leopoldo Garcia-Colin’s 80 birthday. World
Scientific, Singapore, 2010, to appear.

E. Hackmann, B. Hartmann, C. Lämmerzahl and P.Sirimachan. The complete set
of solutions of the geodesic equations in the space-time of a Schwarzschild black hole
pierced by a cosmic string. Phys. Rev., D 81, 064016, 2010.



Acknowledgment

First of all I would like to thank my supervisor Prof. Dr. Claus Lämmerzahl for pro-
viding me with this interesting topic, his good advice, and for always having time to
help despite his considerable workload. Without our numerous interesting, detailed,
and helpful discussions and his physical as well as formal explanatory information
this thesis would not exist. Also I am grateful to Prof. Dr. Peter H. Richter for his
interest in my research, his comprehensive introduction to hyperelliptic functions,
and for directing my attention to some most useful papers.

A thanks goes also to Dennis Lorek, Dr. Holger Dullin, Prof. Dr. Wolfgang
Fischer, Prof. Dr. Hansjörg Dittus, Prof. Dr. Jutta Kunz, and in particular to
Dr. Valeria Kagramanova for fruitful discussions and the good cooperation.

Further I am much obliged to Prof. Dr. Hans Rath for the opportunity to work
at the Center of Applied Space Technology and Microgravity and to my colleagues
of the fundamental physics group for their support and the good time.

Likewise I want to express my gratitude to my office colleagues Andreas Resch for
answering my computer questions and Thorben Könemann for the hardware support.

The financial support of the German Research Foundation DFG is gratefully
acknowledged.

Finally I am deeply grateful to my family for their constant support over all these
years and to Daniel for everything.



Contents

1 Introduction 1

2 Mathematical preliminaries 7

2.1 Weierstrass functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The Weierstrass ℘ function . . . . . . . . . . . . . . . . . . . . 9

2.1.2 The Weierstrass ζ and σ functions . . . . . . . . . . . . . . . . 12

2.2 Differentials on Riemann surfaces . . . . . . . . . . . . . . . . . . . . 14

2.3 Theta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Geodesics in spherically symmetric space-times 24

3.1 General types of geodesics . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Schwarzschild and Reissner-Nordström space-times . . . . . . . . . . 29

3.2.1 Geodesics in Schwarzschild space-times . . . . . . . . . . . . . 30

3.2.2 Geodesics in Reissner-Nordström space-times . . . . . . . . . . 37

i



Contents

3.3 Schwarzschild- and Reissner-Nordström-
(anti-)de Sitter space-times . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Geodesics in Schwarzschild-(anti-)de Sitter space-times . . . . 45

3.3.2 Geodesics in Reissner-Nordström-(anti-)de Sitter
space-times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Higher-dimensional space-times . . . . . . . . . . . . . . . . . . . . . 72

4 Geodesics in axially symmetric space-times 76

4.1 General types of orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Kerr space-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Types of orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Analytical solutions of the geodesic equations . . . . . . . . . 96

4.3 Kerr-de Sitter space-time . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Types of orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 Analytical solution of geodesic equations . . . . . . . . . . . . 119

4.3.3 Analytic expressions for observables . . . . . . . . . . . . . . . 129
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CHAPTER 1

Introduction

The motions of stars and planets were observed by mankind for thousands of years,
sparked their interest, and excited their inquisitiveness. Although early highly de-
veloped cultures already had a certain knowledge about the motion of stars, the
modern scientific approach is mainly based on the works of Johannes Kepler (1571-
1630), Isaac Newton (1643-1727), and Albert Einstein (1879-1955).

In 1609, Kepler postulated in his work Astronomica Nova the existence of a force
radiated by the Sun, which decreases with distance and which causes the planets
to move faster if closer to the Sun. Based on this assumption and the analysis of
the orbital data of Mars, he found that the planets move on elliptical rather than
circular orbits and developed the first and second law of planetary motion later named
after him. Kepler published his third law in 1618, which formulated the connection
between the length of the semi-major axis of a planet and its orbital period. That
enabled him to correctly compute the orbital velocity of a planet. With these three
laws, Kepler became one of the founders of modern astronomy.

However, it was not before 1687, when Newton’s Philosophiae Naturalis Principia

Mathematica was published, that the force acting over a distance postulated by
Kepler was interpreted as Gravitation (the word was introduced by Newton) caused
by the mass of the planet. Newton unified the laws of Kepler as effects of the
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1. Introduction

gravitational force, which he found to be proportional to the inverse square of the
distance to the central object as formulated in his law of gravitation. His work also
distinguishes no longer between the laws of motion on the earth and in space, which
was a basic scientific insight.

Using Newton’s gravitational law the motion of planets could not only be pre-
dicted, but fundamentally explained. This included not only the gravitational force
of the Sun, but also the much weaker influence of the planets on each other. These
disturbances of the perfect elliptic planetary orbits were most evident in the motion
of the periapsis of the innermost planet Mercury, an effect known as perihelion ad-
vance. In 1859, the mathematician Le Verrier was able to compute the perihelion
advance of Mercury using Newton’s law with a result of approximately 530 arcsec-
onds per century, which was considerably lower than the observed value. This was
the first hint that Newton’s theory of gravitation was not able to fully explain the
motion of planets although at that time some unknown solar system objects rather
than an incomplete theory were suspected.

Only with the introduction of General Relativity by Albert Einstein this discrep-
ancy could be consistently explained. Einstein’s theory defined gravitation no longer
as a force acting over a distance but a geometrical curvature of space and time, which
is described by Einstein’s field equations and which causes the motion of particles
and light in space-time. In 1915, the gap between the observed and Le Verrier’s
predicted value of the perihelion shift of Mercury could be explained as relativistic
effect [1] using slightly wrong field equations with an approximated solution for a
static and isotropic space-time describing the gravitational field of the Sun. A year
later, Einstein found the correct field equations and Karl Schwarzschild was able to
formulate an exact static and isotropic solution of these field equations [2], which was
named after him. With these achievements, the unexplained additional perihelion
advance of Mercury could finally be confirmed to be a relativistic effect. Together
with the observation of the deflection of light by Dyson, Eddington, and Davidson
in 1919 [3] this resulted in the final breakthrough of General Relativity.

For a thorough understanding of the physical properties of solutions of Einstein’s
field equations it is essential to study the orbits of test particles and light rays in
these space-times. On the one hand, this is important from an observational point
of view, since only matter and light are observed and, thus, can give insight into
the physics of a given gravitational field. On the other hand, this study is also
important from a fundamental point of view, since the motion of matter and light
can be used to classify a given space-time, to decode its structure and to highlight
its characteristics. Indeed, it can be shown that the space-time geometry can be
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constructed from the concepts of light propagation and freely falling test particles
[4, 5]. After the discovery of the static and spherically symmetric vacuum solution of
Einstein’s field equations by Schwarzschild the motion of particles and light described
by the geodesic equation were studied in this space-time. In 1931 Hagihara presented
the analytical solution of the geodesic equation in Schwarzschild space-time using
the theory of elliptic functions [6]. He also extensively discussed the complete set
of timelike as well as null geodesics. The same methods can be used to solve the
geodesic equation in Reissner-Nordström space-time [7, 8], an exact solution of the
gravitational field equations derived in 1918 including an electrical charge of the
gravitating object.

However, already in 1918 Lense and Thirring found that the rotation of gravitating
objects in General Relativity has an additional effect on the geodesics not known
in Newton’s theory [9], which has to be taken into account for the many rotating
astronomical objects. The exact solution of a stationary and axially symmetric space-
time describing such a rotation was presented by Roy Patrick Kerr in 1963 [10].
Around 1970, the structure of this more complicated space-time was investigated in
many aspects by Carter [11, 12], who was also able to demonstrate the separability of
the Hamilton-Jacobi equations, which led to a fourth constant of motion, the Carter
constant, and ensured the integrability of the geodesic equation. In the sixties and
seventies a number of publications dealt with the motion of particles and light in
Kerr space-time, for example de Felice [13] who extensively treated equatorial orbits.
Their results have been collected, reviewed, and extended by Chandrasekhar in 1983
[14]. A complete elaboration of all types of geodesics in Kerr space-time including
their analytical expressions has only be carried through recently by Slezáková [15].

In 1917, soon after the formulation of General Relativity, Einstein considered
the consequences of his theory not only for objects in the solar system, but for the
universe as a whole. He found that his field equations do not allow the universe
to be static but that it has to expand or collapse [16], which contradicted widely
spread and, in particular, his own beliefs. As an ad-hoc hypothese, he introduced a
small cosmological constant in the field equations, which should enable a static uni-
verse without changing anything on solar system scales. However, in 1927 Lemâıtre
inferred from the known distances to some galaxies, published by Hubble shortly
before, and the redshift of their spectral lines that the universe is expanding, and
gave a value of the Hubble parameter near the one found by Hubble himself in 1929.
Therefore, the cosmological constant as introduced by Einstein lost its significance
but was nevertheless discussed in some models of the universe.

Even though the idea of a non-zero cosmological constant was commonly rejected
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1. Introduction

after 1929, it attracted again wide interest in 1998 with the observation of distant,
high redshifted supernovae. The data indicates that the universe is not only expand-
ing but does so at an accelerated rate [17, 18]. To explain the expansion behavior of
the universe and related observations, like the fluctuations in the cosmic microwave
background or structure formation, dark energy was introduced [19, 20], which can
be modeled (among other possibilities as quintessence [21, 22]) as a very small pos-
itive cosmological constant representing a constant energy density homogeneously
distributed in space-time. As a consequence, it is necessary in principle to describe
all observations related to gravity within a framework including the cosmological
constant. However, it has been shown within an approximation scheme based on the
frame given by the Schwarzschild-de Sitter space-time that the cosmological constant
plays no role in all the solar system observations or in strong field effects [23, 24]. Also
within the rotating version of this solution, the Kerr-de Sitter solution, no observable
effects arise [25].

Nevertheless, there have been some discussions on whether the Pioneer anomaly,
the unexplained acceleration of the Pioneer 10 and 11 spacecraft toward the inner
solar system of aPioneer = (8.47± 1.33)× 10−10 m/s2 [26] which is of the order of cH
where H is the Hubble constant, may be related to the cosmological expansion and,
thus, to the cosmological constant. The same order of acceleration is present also in
the galactic rotation curves which astonishingly can be modeled successfully using
a modified Newtonian dynamics involving an acceleration parameter aMOND which
again is of the order of 10−10 m/s2. This mysterious coincidence of characteristic
accelerations appearing at different scales and the fact that all these phenomena
appear in a weak gravity or weak acceleration regime raise the question whether
the linear approximation schemes used in [23, 24, 25] really hold. Therefore, it is
desireable to obtain analytical solutions of the equations of motion for a definite
answer of these questions.

There have been also some discussions if the cosmological constant has a mea-
sureable effect on the physics of binary systems, which play an important role in
testing General Relativity. Although such an effect would be very small, it could
influence the creation of gravitational waves [27, 28]. In particular, the observation
of gravitational waves originating from extreme mass ratio inspirals (EMRIs) is a
main goal of the Laser Interferometer Space Antenna (LISA). The calculation of
such gravitational waves benefits from analytical solutions of geodesic equations not
only by improved accuracy, which is, in principle, arbitrary high, but also by the
prospect of developing fast semi-analytically computing methods [29]. Also, analyt-
ical solutions offer a systematic approach to determine the last stable spherical and
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circular orbits, which are starting points for inspirals and, thus, important for the
calculation of gravitational wave templates.

Analytical solutions are especially useful for the analysis of the properties of a
space-time not only from an academic point of view. In fact, they offer a frame for
tests of the accuracy and reliability of numerical integrations due to their, in prin-
ciple, unlimited accuracy. In addition, they can be used to systematically calculate
all observables in the given space-time with the very high accuracy needed for the
understanding of some observations.

In this thesis, the analytical solutions of the geodesic equations in Schwarzschild,
Reissner-Nordström, and Kerr space-time will be generalized to the case of a nonva-
nishing cosmological constant. The geodesics in these space-times with and without
cosmological constant will be classified and compared. Furthermore, the analytic
expressions for observables will be given in each space-time.

The thesis starts with a chapter about the mathematical tools which will be
needed to derive the analytic expressions for the mentioned space-times. The theory
of elliptic functions used by Hagihara [6] for the analytical solution of the geodesic
equation in Schwarzschild space-time will be presented as far as necessary. After-
wards, the theory of hyperelliptic functions, which contains the elliptic functions as a
special case and which will be used in the following to analytically solve the geodesic
equations in space-times with nonvanishing cosmological constant, will be outlined.
This includes the concept of Riemann surfaces, the definition of theta functions, and
the solution of Jacobi’s inversion problem.

Subsequently, geodesics in spherically symmetric space-times, namely the Schwarz-
schild and Reissner-Nordström space-times as well as their generalizations with a
nonvanishing cosmological constant will be discussed in the third chapter. The ana-
lytical solutions of the geodesic equations in Schwarzschild and Reissner-Nordström
space-time will be rederived and the set of all geodesics is classified according to the
energy and angular momentum of the test particle or light ray. However, the focus
of this chapter lies on geodesics in the corresponding space-times with nonvanishing
cosmological constant Λ. The analytical solution of the geodesic equations will be
elaborated and the resulting geodesics will be compared to the case of a vanishing
cosmological constant. Analytic expressions for the perihelion shift and its series
expansion with respect to Λ will be given. The analytical solution of the geodesic
equation in Schwarzschild-de Sitter space-time is also applied to the question whether
the cosmological constant might be the origin of the anomalous acceleration of the
Pioneer spacecraft. It is also noted that the methods presented in this chapter can
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1. Introduction

be applied to higher-dimensional spherically symmetric space-times.

In chapter 4 the methods used in the foregoing chapters are generalized and ap-
plied to the case of axially symmetric space-times, namely to Kerr and Kerr-de Sitter
space-time. In both space-times, the equations of motion are derived depending on
the proper time and decoupled following an idea of Mino [30]. Then possible types
of test particle orbits are classified and discussed focussing on the influence of the
cosmological constant. For a nonvanishing cosmological constant we derive the an-
alytic expressions for some observables of particle and light trajectories. For bound
orbits, the periastron advance and the Lense-Thirring effect are given in terms of
the fundamental orbital frequencies. Finally, the solution method demonstrated for
Kerr-de Sitter space-time is shown to be applicable to the general class of Plebański-
Demiański space-times without acceleration, which contains all space-times with sep-
arable Hamilton-Jacobi equation.
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CHAPTER 2

Mathematical preliminaries

In this chapter we will review and explain the mathematical tools needed for an
analytical solution of the geodesic equations in the spherically and axially symmetric
black hole space-times considered in this thesis. Although the geodesic equation is
in general a set of partial differential equations, the symmetries in the space-times
considered here allow in most cases a reduction to ordinary differential equations of
the form

(

yi dy

dx

)2

= P (y) , (2.0.1)

where P is a polynomial of degree 6 or lower and i = 0 or i = 1. For the case that P is
of degree 1 or 2 the solution of such an equation can be given in terms of elementary
functions [31] whereas for higher degrees in general elliptic or hyperelliptic functions
are needed. A differential equation (2.0.1) is said to be elliptic or of elliptic type if
P is of degree 3 or 4 with only simple zeros and hyperelliptic or of hyperelliptic type
if P is of degree 5 or higher with only simple zeros. The theory of these functions
was developed already in the 19th century mainly by Jacobi [32], Abel [33], Riemann
[34, 35], and Weierstrass [36]. An extended review of their achievements was given
in a seminal book by Baker [37] exposing the whole theory in a compact way. In
1931 Hagihara used elliptic functions to analytically solve the geodesic equation in
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2. Mathematical preliminaries

Schwarzschild space-time, but afterwards the interest faded out and although the
theory of elliptic functions is still a standard part of function theory, the knowledge
on hyperelliptic functions is a very special subject. Only in the past years it attracted
again attention in the theory of solitons, see [38, 39] and references within. Recently,
the theory of elliptic and hyperelliptic functions was again used to analytically solve
geodesic equations [40, 41, 42].

In the following we will present the elliptic and hyperelliptic functions used in the
other parts of this thesis to solve geodesic equations. In particular, we will deduce all
mathematical tools needed to analytically solve the geodesic equations resulting in
differential equations of type (2.0.1) where P is of degree 5 or 6, namely the geodesic
equations in Schwarzschild-de Sitter, Kerr-de Sitter, general Plebański-Demiański
without acceleration, and higher-dimensional static and spherically symmetric space-
times.

First, the Weierstrass functions are reviewed. All differential equations of elliptic
type in this thesis are solved in terms of these functions. The analogous expressions
in terms of Jacobi elliptic functions are completely omitted here but can at least
partly be found in [15, 42]. After introducing the notion of Riemann surfaces, theta
functions are reviewed which form the basis of the Kleinian sigma functions used to
solve all geodesic equations of hyperelliptic type. In this context also the solution of
Jacobi’s inversion problem, which is considered in the last section, is of importance.

2.1 Weierstrass functions

The general term Weierstrass functions is used to denote a special elliptic function
constructed in the most simple way possible together with two associated non-elliptic
functions. Thus, before defining any of these the concept of elliptic functions them-
selves has to be explained. Shortly said, they are the analogon of the trigonometric
functions with two instead of one period.

Definition 2.1. 1. A function f : C → C is meromorphic in D ⊂ C if f is

holomorphic in D\Sf , where Sf ⊂ D is a discrete set, and has no essential

singularities in Sf .

2. Let f be meromorphic in C and c a constant. If f(z + c) = f(z) for all z ∈ C

then c is a period of f and f is called periodic.
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2.1. Weierstrass functions

3. A meromorphic function f is elliptic (or doubly periodic) if its set of all periods

is given by {2mω + 2nω′ |m,n ∈ Z} with the periods 2ω, 2ω′, where ω
ω′ /∈ R.

The System of all elliptic functions with periods 2ω, 2ω′ is denoted by K(2ω, 2ω′).
The constants ω and ω′ are also called half periods.

In the following chapters we will need some basic facts about elliptic functions.
The proofs are omitted here as they can be found in many books on the subject, for
example [43, 44, 45].

Theorem 2.2. Let f be an elliptic function. Then:

1. If f has no poles then f is a constant.

2. f possesses a finite number of poles in each period parallelogram {z0 + 2t1ω +
2t2ω

′ | 0 ≤ t1, t2 < 1}, where z0 ∈ C and ω, ω′ are the half periods.

3. For a non-constant f the sum of all residuals in the period parallelogram is

zero.

The period parallelogram {2t1ω + 2t2ω
′ | 0 ≤ t1, t2 < 1} is called fundamental.

An example of such a fundamental period parallelogram can be found in Fig. 3.14.
The set of all elliptic functions with half periods (ω, ω′) is a field with respect to
the addition and multiplication of functions, which also contains all derivatives of
its elements. In particular, if f is an elliptic function with half periods (ω, ω′) then
R(f), where R is a rational function, is also an elliptic function with the same half
periods (ω, ω′).

2.1.1 The Weierstrass ℘ function

From Thm. 2.2 it follows that the most simple non-constant elliptic function has two
simple poles with residuals 1 and -1 or a double pole with residual 0. The Weierstrass
elliptic ℘ function introduced in [36] realizes the latter possibility.

Definition 2.3. The Weierstrass ℘-function is defined by

℘(z) :=
1

z2
+

∑

n,m∈Z,(n,m) 6=0

(

1

(z − znm)2
− 1

z2
nm

)

, (2.1.1)

where znm = 2nω + 2mω′ with the two half periods ω and ω′.
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2. Mathematical preliminaries

The Weierstrass elliptic ℘ function has some useful properties which are also
frequently needed for solving geodesic equations.

1. Counted with multiplicity, ℘ takes every value in the period parallelogram
exactly two times.

2. It is ℘(u) = ℘(v) for u, v ∈ C if and only if u − v or u + v is a period of ℘.

3. Thus, ℘(v) has multiplicity 2 iff 2v is a period of ℘. Thus, in the fundamental
period parallelogram the points of multiplicity 2 are v = 0, v = ω, v = ω′, and
v = ω + ω′.

4. The zeros of ℘′ are given by e3 := ℘(ω), e2 := ℘(ω + ω′), and e1 := ℘(ω′).

An important feature of ℘ is that it solves an easy differential equation.

Theorem 2.4. The Weierstrass elliptic ℘ function solves the differential equation

(℘′(u))2 = 4(℘(u))3 − g2℘(u) − g3 , (2.1.2)

where the invariants g2, g3 are given by

g2 = 60
∑

m,n∈Z,(m,n) 6=0

1

z4
mn

, g3 = 140
∑

m,n∈Z,(m,n) 6=0

1

z6
mn

.

Sometimes the invariants g2, g3 are explicitly mentioned in the argument of the
℘ function, i.e. ℘(z) ≡ ℘(z; g2, g3), if it is not clear to which periods or invariants
the ℘ function corresponds. Note that by the theorems of Vieta the invariants g2, g3

are connected to the zeros e1, e2, e3 of ℘′ (which are the zeros of the polynomial
4y3 − g2y − g3) by

e1 + e2 + e3 = 0

−4(e1e2 + e2e3 + e3e1) = g2

4e1e2e3 = g3

(2.1.3)

The connection between the zeros of ℘′ and the periods 2ω, 2ω′ of ℘ (and ℘′) is even
more pronounced. The periods 2ω, 2ω′ can be calculated by

ω =

∫ ∞

e3

dz
√

4z3 − g2z − g3

, ω′ =

∫ e1

−∞

dz
√

4z3 − g2z − g3

. (2.1.4)

10



2.1. Weierstrass functions

In this thesis, the Weierstrass ℘ function is most often used to solve the initial
value problem

(

dy

dx

)2

= 4y3 − g2y − g3 , y(x0) = y0 (2.1.5)

in the following way: On the one hand the differential equation (2.1.2) implies that

x =

∫ x

0

dz =

∫ ℘(x)

℘(0)

d℘(z)

℘′(z)
=

∫ ℘(x)

∞

dy
√

4y3 − g2y − g3

, (2.1.6)

where the sign of the square root has to be chosen to be identical with the sign of
℘′. On the other hand a separation of variables in (2.1.5) yields

x − x0 =

∫ y

y0

dz
√

4z3 − g2z − g3

⇔ x − xin =

∫ y

∞

dz
√

4z3 − g2z − g3

, (2.1.7)

where xin = x0 +
∫ ∞

y0

dz√
4z3−g2z−g3

depends only on initial values. Therefore, (2.1.5)

can be solved by
y = ℘(x − xin) . (2.1.8)

Even a more general problem

(

dz

dx

)2

= P (z) =
4

∑

i=0

aiz
i , z(x0) = z0 , (2.1.9)

where P is a polynomial of degree 3 or 4 with only simple zeros, can be solved in
this way by applying up to two substitutions. If P is of degree 4 the substitution
z = ξ−1 + zP , where zP is a zero of P , transforms the problem to

(

dξ

dx

)2

= P3(ξ) =
3

∑

i=0

biξ
i , ξ(x0) = ξ0 (2.1.10)

with a polynomial P3 of degree 3. Subsequently, or if P is a polynomial of degree 3
in the first place, a substitution ξ = 1

b3

(

4y − b2
3

)

(or z = 1
a3

(

4y − a2

3

)

, respectively)
casts the problem in the form (2.1.5) with

g2 =
1

16

(

4

3
b2
2 − 4b1b3

)

,

g3 =
1

16

(

1

3
b1b2b3 −

2

27
b3
2 − b0b

2
3

)

,

(2.1.11)

11



2. Mathematical preliminaries

(or with bi replaced by ai, respectively), which can then be solved by (2.1.8). Dif-
ferential equations of the type (2.1.9) are called elliptic differential equations of first
kind.

2.1.2 The Weierstrass ζ and σ functions

The geodesic equation considered in this thesis are sometimes even more general
than the problems (2.0.1) or (2.1.5). For these kinds of equations the Weierstrass ζ
and σ functions are helpful. The ζ function is defined by

d

dz
ζ(z) = −℘(z) , lim

z→0

(

ζ(z) − 1

z

)

= 0

which implies through

ζ(z) − 1

z
= −

∫ z

0

℘(z′) − 1

z′2
dz′ (2.1.12)

(the integration path runs along an arbitrary continuous and piecewise differentiable
curve from 0 to z in the fundamental period parallelogram) the equation

ζ(z) =
1

z
+

∑

m,n∈Z,(m,n) 6=0

(

1

z − zmn

+
1

zmn

+
z

z2
mn

)

. (2.1.13)

From this expression it is already obvious that ζ is a meromorphic function with
simple poles znm. In addition, ζ is an odd function, i.e. ζ(−z) = −ζ(z). The
condition d

dz
ζ(z) = −℘(z) gives

− d

du
(ζ(u + 2ω) − ζ(u)) = ℘(u + 2ω) − ℘(u) = 0 .

Therefore, ζ(u + 2ω) − ζ(u) =: 2η is constant. Analogously a constant 2η′ = ζ(u +
2ω′) − ζ(u) can be defined. These constant are also known as the periods of second
kind. There is a simple relation between the half periods ω, ω′ and the periods of
second kind, the Legendre relation

1

2
πi = ω′η − ωη′ . (2.1.14)

Finally, the Weierstrass σ function is defined by

d

dz
log σ(z) =

σ′(z)

σ(z)
= ζ(z) , lim

z→0

σ(z)

z
= 1 (2.1.15)

12



2.1. Weierstrass functions

and, thus,

σ(z) = z exp
(

∫ z

0

ζ(z′) − 1

z′
dz′

)

= z
∏

m,n∈Z,(m.n) 6=0

(

1 − z

zmn

)

exp

(

z

zmn

+
z2

2z2
mn

)

.

From this equation it is obvious that σ is an odd function. Note that we will some-
times denote the Weierstrass sigma function with σ(W) to avoid confusions with the
Kleinian sigma function, which will be introduced in Sec. 2.4. Let us analyse now
how σ changes if a period 2ω, 2ω′ of ℘ is added to its argument. We integrate the
expression

σ′(z + 2ω)

σ(z + 2ω)
− σ′(z)

σ(z)
= ζ(z + 2ω) − ζ(z) = 2η

and obtain

log
σ(z + 2ω)

σ(z)
= 2ηz + c or σ(z + 2ω) = σ(z) exp(2ηz + c) .

The constant of integration c can be determined by setting z = −ω which gives

σ(ω) = −σ(ω)e−2ηω+c ⇒ c = πi + 2ηω + 2πik, k ∈ Z .

It follows that the σ function fulfills the relation

σ(z + 2ω) = −σ(z)e2η(z+ω) . (2.1.16)

In this thesis, the Weierstrass ζ and σ functions are used to solve elliptic integrals
of the type

∫ y2

y1

f(y) dy
√

4y3 − g2y − g3

, (2.1.17)

where f is a rational function. With a substitution y = ℘(v) this integral can be
transformed to

∫ v2

v1

f(℘(v)) ℘′(v)dv
√

4℘(v)3 − g2℘(v) − g3

=

∫ v2

v1

f(℘(v))dv , (2.1.18)

where the sign of the square root has to be chosen according to the sign of ℘′. The
function F (v) := f(℘(v)) is elliptic with the half periods ω, ω′ of ℘ and can be
expressed in terms of the Weierstrass ζ function and its derivatives as the following
theorem, which can be found, e.g., in [43], shows.

13



2. Mathematical preliminaries

Theorem 2.5. Let F be an arbitrary elliptic function with poles pi of multiplicity

mi in the fundamental period parallelogram, i.e. the meromorphic part of F near pi

is given by
mi
∑

n=1

(−1)n−1 (n − 1)!An−1
i

(z − pi)n
(2.1.19)

for some constants An−1
i . Then F can be written as

F (z) = c +
∑

pi

(

mi−1
∑

n=0

An
i

dn

dzn
ζ(z − pi)

)

(2.1.20)

= c +
∑

pi

(

A0
i ζ(z − pi) − A1

i ℘(z − pi) −
mi−2
∑

j=1

Aj+1
i ℘(j)(z − pi)

)

,

where the first sum runs over all poles pi and c is a constant.

With this theorem, the elliptic integral (2.1.17) can be integrated to

∫ y2

y1

f(y)dy
√

4y3 − g2y − g3

=

c(v2 − v1) +
∑

pi

[

A0
i (log σ(v2 − pi) − log σ(v1 − pi)) + A1

i (ζ(v2 − pi) − ζ(v1 − pi))

−
mi−3
∑

j=0

Aj+2
i (℘(j)(v2 − pi) − ℘(j)(v1 − pi))

]

, (2.1.21)

where pi are the poles of multiplicity mi of F (v) := f(℘(v)) and ℘(vi) = yi.

The definitions and basic properties presented in this section are already suffi-
cient to solve all geodesic equations of elliptic type in this thesis. In the remaining
sections of this chapter the mathematical foundations for solving geodesic equations
of hyperelliptic type are described.

2.2 Differentials on Riemann surfaces

Let X be the compact Riemann surface of the algebraic function x 7→
√

Pn(x) for a
polynomial Pn of degree n. It can be represented as the algebraic curve

X := {z = (x, y) ∈ C
2 | y2 = Pn(x)} (2.2.1)

14



2.2. Differentials on Riemann surfaces

[46] or as the analytic continuation of
√

Pn. The last one can be realized as a two-
sheeted covering of the Riemann sphere which can be constructed in the following
way: let ei, i = 1, . . . , n, be the zeros of Pn and, in the case that n is odd, en+1 = ∞.
These are the so-called branch points. Now take two copies of the Riemann sphere,
one for each of the two possible values of

√
Pn, and cut them between every two

branch points (ei, ei+1) in such a way that the cuts do not touch each other. These
are the so-called branch cuts, see Fig. 2.1. Of course, the two copies have to be
identified at the branch points where the two values of

√
Pn are identical. They are

then glued together along the branch cuts in such a way that
√

Pn together with all
its analytic continuations is uniquely defined on the whole surface. On this surface
x 7→

√

Pn(x) is now a single-valued function. This construction can be visualized as
a ”pretzel”, see Fig. 2.1. For a strict mathematical description of the construction
of a compact Riemann surface, see [47], for example.

Compact Riemann surfaces are characterized by their genus g. This can be defined
as the dimension of the space of holomorphic differentials on the Riemann surface or,
topologically seen, as the number of ‘holes’ of the Riemann surface. If Pn has only
simple zeros the genus of the Riemann surface X of

√
Pn is equal to g =

[

n−1
2

]

, where
[x] denotes the largest integer less than or equal to x [48]. Thus, if n = 5 or n = 6 as
it is the case for the geodesic equations of hyperelliptic type considered in this thesis
the genus of the Riemann surface is g = 2. Every compact Riemann surface of genus
g can be equipped with a homology basis {ai, bi | i = 1, . . . , g} ∈ H1(X, Z) of closed
paths as shown in Fig. 2.1.

In order to construct periodic functions we first have to define a canonical ba-
sis of the space of holomorphic differentials {dzi | i = 1, . . . , g} and of associated
meromorphic differentials {dri | i = 1, . . . , g} on the Riemann surface by

dzi :=
xi−1dx
√

Pn(x)
, (2.2.2)

dri :=

2g+1−i
∑

k=i

(k + 1 − i)bk+1+i
xkdx

4
√

Pn(x)
, (2.2.3)

with bj being the coefficients of the polynomial Pn(x) =
∑n

j=1 bjx
j [48]. We also

introduce the period matrices (2ω, 2ω′) and (2η, 2η′) related to the homology basis

2ωij :=

∮

aj

dzi , 2ω′
ij :=

∮

bj

dzi ,

2ηij := −
∮

aj

dri , 2η′
ij := −

∮

bj

dri .

(2.2.4)
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2. Mathematical preliminaries

Figure 2.1: Riemann surface of genus g = 2 with real branch points e1, . . . , e6. Upper
figure: Two copies of the complex plane with closed paths giving a homology basis
{ai, bi | i = 1, . . . , g}. The branch cuts (thick solid lines) are chosen from e2i−1 to
e2i, i = 1, . . . , g + 1. Lower figure: The ”pretzel” with the topologically equivalent
homology basis.

The differentials in (2.2.2) and (2.2.3) have been chosen such that the components
of the related period matrices fulfill the Legendre relation

(

ω ω′

η η′

)(

0 −1g

1g 0

)(

ω ω′

η η′

)t

= −1

2
πi

(

0 −1g

1g 0

)

, (2.2.5)

where 1g is the g × g unit matrix, [48]. Note that Eq. (2.1.14) for the periods of
elliptic functions is the special case of g = 1 in (2.2.5).

Also, we introduce the normalized holomorphic differentials

dv := (2ω)−1dz , dz = (dz1, dz2, . . . , dzg)
t . (2.2.6)
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2.2. Differentials on Riemann surfaces

The period matrix related to these differentials is given by (1g, τ), where τ is defined
by

τ := ω−1ω′ . (2.2.7)

It can be shown [49] that this normalized matrix τ always is a Riemann matrix, that
is, τ is symmetric and its imaginary part is positive definite.

In this thesis, the holomorphic differentials introduced above are most often used
as a convenient way to formulate geodesic equations of the type

(

yi dy

dx

)2

= Pn(y) , y(x0) = y0 , (2.2.8)

where i = 0 or i = 1 and n = 5. Indeed, an integration of (2.2.8) yields

x − x0 =

∫ y

y0

yidy
√

Pn(y)
=

∫ y

y0

dzi (2.2.9)

with the definition (2.2.2) of dzi.

However, not all geodesic equations of hyperelliptic type can be formulated like
(2.2.8). For the solution of such equations, in addition the canonical differential of
third kind is needed, which has two simple poles poles x1, x2 with vanishing total
residual. The most simple construction of a differential of third kind is

dP (x1, x2) =

(

y + y1

x − x1

− y + y2

x − x2

)

dx

2
√

Pn(x)
, (2.2.10)

which has simple poles in the points (x1, y1) and (x2, y2) of the Riemann surface
represented by the algebraic curve {(x, y) ∈ C

2 | y2 = Pn(x)} with residuals +1 and
−1, respectively (cp. [48, 50]).

The definition (2.2.10) can now be used to reformulate hyperelliptic integrals of
the form

∫ y2

y1

dy

(y − t)
√

Pn(y)
. (2.2.11)

From Eq. (2.2.10) it can be inferred that

dP (t+, t−) =

(

y +
√

Pn(t)

x − t
− y −

√

Pn(t)

x − t

)

dx

2
√

Pn(x)
=

√

Pn(t)
dx

(x − t)
√

Pn(x)
,

(2.2.12)
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2. Mathematical preliminaries

where t+ := (t, +
√

Pn(t)) and t− := (t,−
√

Pn(t)) and, thus,

∫ y2

y1

dy

(y − t)
√

Pn(y)
=

1
√

Pn(t)

∫ y2

y1

dP (t+, t−) . (2.2.13)

2.3 Theta functions

A compact Riemann surface of genus g has 2g independent closed paths, the ho-
mology basis {ai, bi | i = 1, . . . , g}, each corresponding to a period of the functions
related to these surfaces. In order to construct 2g-periodic functions, we need the
theta function ϑ : C

g → C,

ϑ(z; τ) :=
∑

m∈Zg

eiπmt(τm+2z) . (2.3.1)

The series on the right-hand side converges absolutely and uniformly on compact
sets in Cg and, thus, defines a holomorphic function in Cg. This is obvious from the
estimate Re(mt(iτ)mt) ≤ −cmtm for a constant c > 0, what follows from the fact
that Re(iτ) is negative definite. The theta function is periodic with respect to the
columns of 1g and quasiperiodic with respect to the columns of τ , i.e., for any n ∈ Z

g

the relations

ϑ(z + 1gn; τ) = ϑ(z; τ) , (2.3.2)

ϑ(z + τn; τ) = e−iπnt(τn+2z)ϑ(z; τ) (2.3.3)

hold. In the following chapters, the theta functions with characteristics g, h ∈ 1
2
Zg

will also be needed1, which are defined by

ϑ[g, h](z; τ) :=
∑

m∈Zg

eiπ(m+g)t(τ(m+g)+2z+2h)

= eiπgt(τg+2z+2h)ϑ(z + τg + h; τ) . (2.3.4)

Later it will be important that for every g, h the set Θτg+h := {z ∈ C
g | ϑ[g, h](z; τ) =

0}, called a theta divisor, is a (g − 1)-dimensional subset of the Jacobian Jac(X) of
the Riemann surface X with Riemann matrix τ , see [49].

1The symbol 1
2
Z

g denotes the set of all g-dimensional vectors with integer or half integer entries
. . . ,− 3

2
,−1,− 1

2
, 0, 1

2
, 1, 3

2
, . . .
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Some functions closely related to the theta function will be needed in Sec. 2.4 to
formulate the solution of Jacobi’s inversion problem. First, consider the Riemann
theta function

ϑe(x; τ) := ϑ

(
∫ x

x0

dv − e; τ

)

, (2.3.5)

with some arbitrary but fixed e ∈ C
g. The Riemann vanishing theorem, see e.g. [49],

states that the Riemann theta function is either identically to zero or has exactly g
zeros x1, . . . , xg for which

g
∑

i=1

∫ xi

x0

dv = e + Kx0 (2.3.6)

holds (modulo periods). Here Kx0 ∈ Cg is the vector of Riemann constants with
respect to the base point x0 given by

Kx0,j =
1 + τjj

2
−

∑

l 6=j

∮

al

(
∫ x

x0

dvj

)

dvl(x) (2.3.7)

(where τjj is the jth diagonal element). If the base point x0 is equal to ∞, this vector
can be determined by

K∞ =

g
∑

i=1

∫ e2i

∞
dv , (2.3.8)

where e2i is the starting point of one of the branch cuts not containing ∞ for each i,
see [48]. Hence, K∞ can be expressed as a linear combination of half periods in this
case. For problems of hyperelliptic nature it is usually assumed that the Riemann
theta function ϑe does not vanish identically. However, here we are interested in the
opposite case: in Sec. 2.4 Jacobi’s inversion problem will be restricted to the set of
zeros of ϑ(· + Kx0 ; τ), i.e. to the theta divisor ΘKx0

. This application of the theta
divisor was first used in [51] for the case of a double pendulum.

2.4 Solution methods

Let us consider now the Abel map

Ax0 : X → Jac(X) , x 7→
∫ x

x0

dz (2.4.1)

from the Riemann surface X to the Jacobian Jac(X) = C
g/Γ of X, where Γ = {2ωv+

2ω′v′ | v, v′ ∈ Z
g} is the lattice of periods of the differential dz = (dz1, . . . , dzg)

t. The
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image Ax0(X) of X by this continuous function is of complex dimension one and,
thus, an inverse map A−1

x0
is not defined for all points of Jac(X). However, the

g-dimensional Abel map

Ax0 : SgX → Jac(X) , (x1, . . . , xg)
t 7→

g
∑

i=1

∫ xi

x0

dz (2.4.2)

from the gth symmetric product SgX of X (the set of unordered ‘vectors’ (x1, . . . , xg)
t

where xi ∈ X) to the Jacobian is one-to-one almost everywhere. Jacobi’s inversion
problem is now to determine x ∈ Sg(X) for given y ∈ Jac(X) from the equation

y = Ax0(x) . (2.4.3)

In the case of g = 2, which appears in all geodesic equations of hyperelliptic type in
this thesis, this reads using the definition (2.2.2) of dz = (dz1, dz2)

y1 =

∫ x1

x0

dx
√

Pn(x)
+

∫ x2

x0

dx
√

Pn(x)
,

y2 =

∫ x1

x0

xdx
√

Pn(x)
+

∫ x2

x0

xdx
√

Pn(x)
,

(2.4.4)

where n = 5 or n = 6 is the degree of the polynomial Pn. We will see later, that the
geodesic equations of hyperelliptic type in this thesis can be solved as a limiting case
of Jacobi’s inversion problem.

The solution of (2.4.3) can be formulated in terms of the derivatives of the Kleinian
sigma function σ : C

g → C defined by

σ(z) = Ce−
1
2
ztηω−1zϑ[g, h]

(

(2ω)−1z; τ
)

, (2.4.5)

where the constant C can be given explicitly, see [48], but does not matter here.
To avoid confusions with the Weierstrass sigma function introduced in Sec. 2.1, we
will denote the Kleinian sigma function by σ(K) and the Weierstrass sigma function
by σ(W) if necessary. Furthermore, we will write σ(z; τ), σ(z; g, h), σ(z; x), where
x = τg + h, or some combination of this if the definition of σ is not clear. Note that
z is a zero of the Kleinian sigma function if and only if (2ω)−1z is a zero of the theta
function θ[g, h]. The second logarithmic derivatives of the Kleinian sigma function
are called the generalized Weierstrass functions

℘ij(z) = − ∂

∂zi

∂

∂zj

log σ(z) =
σi(z)σj(z) − σ(z)σij(z)

σ2(z)
, (2.4.6)
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where σi(z) denotes the derivative of the Kleinian sigma function with respect to the
i−th component of z.

The solution of Jacobi’s inversion problem (2.4.3) can be given in terms of gener-
alized Weierstrass functions. Let X be the Riemann surface of

√
Pn. By a rational

transformation it can be achieved that Pn(x) =
∑2g+1

j=0 bjx
j, where g is the genus of

X, i.e. g =
[

n−1
2

]

. Then the components of the solution x = (x1, . . . , xg)
t ∈ Sg(X)

of Jacobi’s inversion problem (2.4.3) are given by the g solutions of [48]

b2g+1

4
xg −

g
∑

i=1

℘gi(y)xi−1 = 0 , (2.4.7)

where y ∈ Jac(X) is the left hand side of (2.4.3). In the case of g = 2, we can rewrite
this result with the help of the theorems of Vieta in the form

x1 + x2 =
4

b5

℘22(y) ,

x1 x2 = − 4

b5

℘12(y) .
(2.4.8)

This is the starting point for finding analytical solutions of geodesic equations in
space-times with a nonvanishing cosmological constant. The idea is to consider the
geodesic equation s − s0 =

∫ x

x0
dz2 as a part of Jacobi’s inversion problem

y1 =

∫ x

x0

dz1 +

∫ x2

x0

dz1 ,

s − s0 = y2 =

∫ x

x0

dz2 +

∫ x2

x0

dz2 ,

(2.4.9)

but reducing these equations by a limiting process x2 → x0. It can then be shown
that

∫ x1

x0
dz is an element of the one-dimensional theta divisor ΘKx0

, which allows to

express
∫ x1

x0
dz1 as a function of

∫ x1

x0
dz2 and vice versa. Together with Eqs. (2.4.8)

and (2.4.6) the analytical solution of the geodesic equation can then be expressed in
terms of the derivatives of the Kleinian sigma function. The details of this solution
method are explained in Sec. 3.3.1.2. Some mathematical background can be found
in [52].

However, also the more complicated equations of motion of type (2.2.11) have to
be solved. In Eq. (2.2.13) it was shown that this type of equation can be reformulated
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2. Mathematical preliminaries

in terms of the canonical differential of third kind dP (x1, x2). A particular useful
feature of dP (x1, x2) is that it can be expressed in terms of Kleinian sigma functions.

This can be shown in two steps. First, the differential of first kind dP (x1, x2) can
be rewritten in terms of the holomorphic and meromorphic differentials as well as
the fundamental 2-differential defined by

dω̂(x1, x2) =
2y1y2 + F (x1, x2)

4(x1 − x2)2

dx1

y1

dx2

y2

, (2.4.10)

for y2
j = Pn(xj) =

∑2g+2
i=0 λix

i
j and

F (x1, x2) = 2λ2g+2x
g+1
1 xg+1

2 +

g
∑

i=0

xi
1x

i
2(2λ2i + λ2i+1(x1 + x2)) , (2.4.11)

see [50, 48]. The connection

∫ u

u0

dP (z, c) =

∫ u

u0

∫ z

c

dω̂(u, z1) −
(

∫ u

u0

dz

)t (∫ z

c

dr

)

=
1

2

2
∑

i=1

∫ u

u0

∫ zi

ci

dω̂(x, zi) −
(

∫ u

u0

dz

)t (∫ z

c

dr

)
(2.4.12)

can be proved by differentiation by u and z, but see also [50]. In turn, the funda-
mental 2-differential dω̂ can be related to the quotient of θ functions

x 7→
θ
(

∫ x

x0
dv − (

∑2
i=1

∫ zi

x0
dv − Kx0)

)

θ
(

∫ x

x0
dv − (

∑2
i=1

∫ ci

x0
dv − Kx0)

) . (2.4.13)

which has simple zeros in zi and simple poles in ci by Riemann’s vanishing theorem,
see (2.3.6) or [50]. The same zeros and poles can be found for the function

x 7→ exp

[
∫ x

x0

∫ z

c

(dω̂(x, z) + 2dz(x)η(2ω)−1dz(z))

]

, (2.4.14)

what implies that they are equal up to a constant. Then the quotient of theta
functions (2.4.13) can be rewritten in terms of the Kleinian sigma function. The
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2.4. Solution methods

final result is [50, 48]

∫ x

∞

(

g
∑

i=1

∫ zi

ci

dω̂(x, zi)

)

= log







σ
(

∫ x

∞ dz − ∑g
i=1

∫ zi

ai
dz

)

σ
(

∫ x

∞ dz − ∑g
i=1

∫ ci

ai
dz

)







− log







σ
(

−∑g
i=1

∫ zi

ai
dz

)

σ
(

−∑g
i=1

∫ ci

ai
dz

)







. (2.4.15)

The Eqs. (2.4.12) and (2.4.15) can be used to express geodesic equations of type
(2.2.11) in terms of integrals of first and second kind as well as by logarithms of the
Kleinian sigma function. This can be seen as an analogon to the solution method
for elliptic integrals of type (2.1.17) presented in Sec. 2.1.2.
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CHAPTER 3

Geodesics in spherically symmetric space-times

In this chapter we will study geodesic motion in static and spherically symmetric
vacuum solutions of the Einstein field equation

Rµν −
1

2
Rgµν + Λgµν = κTµν (3.0.1)

with and without cosmological constant Λ given by a metric

ds2 =
∆

r2
dt2 − r2

∆
dr2 − r2(dθ2 + sin2 θdϕ2) , (3.0.2)

where ∆ = r2 − 2Mr − 1
3
Λr4 + Q2 depends on the radial coordinate r only. (Here

and in the following sections units are used where the speed of light in vacuum c
and the gravitational constant G are equal to 1.) This space-time is characterized
by the mass M , the cosmological constant Λ, and the electric charge Q of the black
hole. All space-times with metrics of type (3.0.2) have a singularity located at r = 0,
which could be a naked singularity for some choices of Λ and Q. This case is widely
neglected except for a few remarks concerning null geodesics in space-times with
Λ = 0, Q 6= 0, but see also [53].

24



The geodesic motion in such a space-time is described by the geodesic equation

0 =
d2xµ

ds2
+ { µ

ρσ }
dxρ

ds

dxσ

ds
, (3.0.3)

where

{ µ
ρσ } =

1

2
gµν (∂ρgσν + ∂σgρν − ∂νgρσ) (3.0.4)

is the Christoffel symbol. Although this chapter focuses on geodesic motion in static
and spherically symmetric space-times with a nonvanishing cosmological constant,
geodesics in space-times with zero cosmological constant are studied to permit a
direct comparison between these two cases. For a more detailed discussion of geodesic
motion in space-times with a vanishing cosmological constant see for example [6, 14,
15].

Before analytically solving Eq. (3.0.3) a method for classifying the different ge-
ometric types of geodesics in the various subclasses of (3.0.2) will be presented in
Sec. 3.1. Also, some global properties of geodesics for all subclasses of (3.0.2) are
considered.

The geodesic equation for the most simple static and spherically symmetric space-
time, the Schwarzschild space-time, given by (3.0.2) with ∆ = ∆S := r2 − 2Mr [2],

ds2 =

(

1 − 2M

r

)

dt2 −
(

1 − 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2) , (3.0.5)

will be discussed in Sec. 3.2. In 1931, Hagihara was the first who solved the geodesic
equations in these space-time analytically [6]. The method he used for this solution
is based on the theory of elliptic functions presented in the Chap. 2. In this thesis
the geodesic equations in Schwarzschild space-time will be solved analogously to his
method. The metric (3.0.5) can be generalized to include black holes which possess an
electric charge Q. The geodesic equations in these Reissner-Nordström space-times
given by (3.0.2) with ∆ = ∆RN := r2 − 2Mr + Q2 [7, 8],

ds2 =

(

1 − 2M

r
+

Q

r2

)

dt2 −
(

1 − 2M

r
+

Q

r2

)−1

dr2 − r2(dθ2 + sin2 θdϕ2) , (3.0.6)

possess the same mathematical structure as geodesics in Schwarzschild space-time
and, thus, can be solved analogously. Furthermore, properties and types of geodesics
special for Schwarzschild and Reissner-Nordström space-times will be discussed in
this section. All possible orbits in Schwarzschild and Reissner-Nordström space-time
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3. Geodesics in spherically symmetric space-times

are classified in terms of the energy and the angular momentum of the test particle
or light ray and, in the case of Q 6= 0, dependent on the electric charge of the black
hole.

The structure of geodesic equations in spherically symmetric black hole space-
times with a nonvanishing cosmological constant Λ is much more complicated and,
thus, they cannot be solved with the method used in [6]. Indeed, Sec. 3.3 focuses on
the analytical solution of the geodesic equations in Kottler space-times (also known
as Schwarzschild-(anti-)de Sitter space-times) given by (3.0.2) with ∆ = ∆SdS :=
r2 − 2Mr − 1

3
Λr4 [54, 55],

ds2 =

(

1 − 2M

r
− 1

3
Λr2

)

dt2 −
(

1 − 2M

r
− 1

3
Λr2

)−1

dr2

− r2(dθ2 + sin2 θdϕ2) , (3.0.7)

in terms of the more general theory of hyperelliptic functions outlined in Chap. 2.
The resulting new solution is then used to derive an analytical expression of the
periastron advance of bound orbits together with a post-Schwarzschild expansion
for small Λ, and to address the interesting question whether the Pioneer Anomaly
[26] is connected to a cosmological force. Furthermore, the analytical solution of the
geodesic equation in Reissner-Nordström-de Sitter space-times given by (3.0.2) with
∆ = ∆RNdS := r2 − 2Mr − 1

3
Λr4 + Q2 [12],

ds2 =

(

1 − 2M

r
− 1

3
Λr2 +

Q2

r2

)

dt2 −
(

1 − 2M

r
− 1

3
Λr2 +

Q2

r2

)−1

dr2

− r2(dθ2 + sin2 θdϕ2) , (3.0.8)

is presented. For each of these space-times possible orbit types are classified in terms
of energy and angular momentum and dependent on the parameters of the black
hole. This classification is compared to the case of a vanishing cosmological constant
and its influence on the orbit types whithin the different classes of geodesic motion
is discussed.

Finally, it will be demonstrated that the methods developed and applied in this
chapter can also be used to discuss geodesics in higher-dimensional spherically sym-
metric and static space-times. As an example, geodesics in six-dimensional Schwarz-
schild space-time [56] are classified and the analytical solutions of the geodesic equa-
tions are presented. Even more general higher-dimensional space-times are treated
in [53].
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3.1. General types of geodesics

3.1 General types of geodesics

For the geodesic equation (3.0.3) in the general space-time described by (3.0.2) three
constants of motions can be identified. A fourth constant is not necessary as (3.0.3)
can be restricted to the equatorial plane because of the spherical symmetry. The
first constant of motion is given by the normalization condition gµν

dxµ

ds
dxν

ds
= ǫ where

for massive particles ǫ = 1 and for light ǫ = 0. Furthermore, the existence of the
Killing vectors ∂

∂ϕ
and ∂

∂t
following from the fact that the metric (3.0.2) is static and

spherically symmetric induces the conserved energy and angular momentum

E = gtt
dt

ds
=

∆

r2

dt

ds
,

L = r2dϕ

ds
,

(3.1.1)

which reduce the geodesic equation to one ordinary differential equation

(

dr

ds

)2

= E2 − ∆

r2

(

ǫ +
L2

r2

)

. (3.1.2)

Note that in this thesis all test particles are assumed to be without an electric
or magnetic charge and, thus, to describe a geodesic in the considered space-time.
However, this case may be treated analogously as the equations of motions are not
significantly changed, see [14, 57].

Together with energy and angular momentum conservation we obtain the corre-
sponding equations for r as functions of ϕ and t

(

dr

dϕ

)2

=
r4

L2

(

E2 − ∆

r2

(

ǫ +
L2

r2

))

=: R(r) , (3.1.3)

(

dr

dt

)2

=
1

E2

∆2

r4

(

E2 − ∆

r2

(

ǫ +
L2

r2

))

. (3.1.4)

Eqs. (3.1.2)-(3.1.4) give a complete description of the dynamics of the geodesic mo-
tion. Eq. (3.1.2) suggests the introduction of an effective potential

(

dr

ds

)2

= E2 − Veff , with Veff =
∆

r2

(

ǫ +
L2

r2

)

. (3.1.5)

The shape of an orbit depends on the energy E and the angular momentum L of
the test particle or light ray under consideration as well as the cosmological constant
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3. Geodesics in spherically symmetric space-times

Λ and the electric charge Q (the mass can be absorbed through a rescaling of the
radial coordinate). These quantities are all contained in the polynomial R(r) defined
in Eq. (3.1.3). Since r should be real and positive the physically acceptable regions
are given by those r for which E2 ≥ Veff owing to the square on the left hand side
of (3.1.2). Hence, the number of positive real zeros of R uniquely characterizes the
form of the resulting orbits.

The following different types of orbits can be identified in space-times described
by the metric (3.0.2), see also Fig. 3.1.

(i) Flyby orbits: r starts from ∞, then approaches a periapsis r = rp and goes
back to ∞.

(ii) Bound orbits: r oscillates between to boundary values rp ≤ r ≤ ra with 0 <
rp < ra < ∞.

(iii) Terminating bound orbits: r starts in (0, ra] for 0 < ra < ∞ and falls into the
singularity at r = 0.

(iv) Terminating escape orbits: r comes from ∞ and falls into the singularity at
r = 0.

All other types of orbits are exceptional and treated separately. They are connected
with the appearance of multiple zeros in R or with parameter values which reduce
the degree of R. In both cases the structure of the differential equation (3.1.3) is
considerably simplified. These orbits are radial geodesics with L = 0 (i.e. dr

dϕ
= 0),

circular orbits with constant r, orbits asymptotically approaching circular orbits,
and in the case of Λ = 0 parabolic orbits with E2 = 1.

The four regular types of geodesic motion correspond to different arrangements
of the real and positive zeros of R defining the borders of R(r) ≥ 0 or, equivalently,
E2 ≥ Veff . If R(r) has no real and positive zeros at all a terminating escape orbit is
possible if R(r) > 0 for all r > 0, but else no geodesic motion is allowed. If R(r) has
at least one real and positive zero then a flyby orbit is possible if limr→∞ R(r) = ∞,
and a terminating bound orbit if R(r) > 0 for 0 < r < r1 where r1 is the smallest
positive zero. If R(r) has at least two real zeros r1 < r2 with R(r) > 0 for r1 < r < r2

a bound orbit is permitted. In Fig. 3.1 different arrangements of real zeros of R and
the resulting types of orbits are shown. If R is such that multiple types of orbits are
possible the actual orbit depends on the initial position of the test particle or light
ray.
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3.2. Schwarzschild and Reissner-Nordström space-times

(a) flyby orbit (b) bound orbit (c) terminating
bound orbit

(d) terminating
escape orbit

Figure 3.1: Possible arrangements of real positive zeros of R(r) in spherical symmetric
space-times. The allowed regions of geodesic motion are shaded in gray. The zeros
correspond to Veff = E2. Combinations of (a) - (c) are possible, e.g. simultaneously
a bound and a terminating bound orbit.

For a fixed parameter combination either a terminating escape orbit or any of
the other orbit types is allowed. In Schwarzschild and Schwarzschild-de Sitter space-
times all 4 types of orbits can be realized for certain parameter combinations. How-
ever, in Reissner-Nordström and Reissner-Nordström-de Sitter space-times no ter-
minating orbits are possible. The reason is the electric charge, which leads to grav-
itational repulsion near the singularity at r = 0. Accordingly, we have either flyby
or bound orbits. The only exception to this rule are the radial null geodesics, where
r = ±Es + constant and, thus, a co-moving observer will arrive at the singularity at
a finite time. (However, a distant observer will never witness a fall through the event
horizon as there the coordinate time t increases to infinity, cf. [14].) A particular
feature is that the Reissner-Nordström(-de Sitter) space-times are the only one con-
sidered in this chapeter which allow 2 different bound orbits. In Reissner-Nordström
space-times both bound orbits are characterized by the same period which is a con-
sequence of the fact that the solution, owing to the order of the polynomial, is given
in terms of the same Weierstrass ℘ function.

3.2 Schwarzschild and Reissner-Nordström space-

times

This section deals with the geodesic equation (3.0.3)

0 =
d2xµ

ds2
+ { µ

ρσ }
dxρ

ds

dxσ

ds
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3. Geodesics in spherically symmetric space-times

in Schwarzschild and Reissner-Nordström space-times given by the metrics (3.0.5)
and (3.0.6), respectively, and characterized by the mass M and, in the case of
Reissner-Nordström space-time, by the electric charge Q of the black hole. With
the normalization condition gµν

dxµ

ds
dxν

ds
= ǫ where for massive particles ǫ = 1 and for

light ǫ = 0, with conserved energy and angular momentum (3.1.1), and the restriction
to the equatorial plane the geodesic equation reduces to (3.1.2)-(3.1.4)

(

dr

dϕ

)2

= R(r) =
r4

L2

(

E2 − ∆

r2

(

ǫ +
L2

r2

))

, (3.1.3)

(

dr

ds

)2

= E2 − ∆

r2

(

ǫ +
L2

r2

)

, (3.1.2)

(

dr

dt

)2

=
1

E2

∆2

r4

(

E2 − ∆

r2

(

ǫ +
L2

r2

))

. (3.1.4)

Here R(r) is a polynomial of degree 3 for Schwarzschild space-time and of degree
4 for Reissner-Norström space-times. Therefore, in both cases Eq. (3.1.3) can be
solved in terms of elliptic functions. In the following we will treat Eq. (3.1.3) for
Schwarzschild and Reissner-Nordström space-times separately.

3.2.1 Geodesics in Schwarzschild space-times

3.2.1.1 Types of orbits

As explained in Sec. 3.1, all possible types of orbits in Schwarzschild space-time can
be determined from the right hand side of Eq. (3.1.3)

(

dr

dϕ

)2

= R(r) =
r4

L2

(

E2 − ∆S

r2

(

ǫ +
L2

r2

))

, (3.1.3)

where ∆S = r2 − 2Mr. For the analysis of the dependence of the possible types
of orbits on the parameters of the space-time and the test particle or light ray it is
convenient to use dimensionless quantities. Thus, we introduce

r̄ :=
r

M
, L :=

M2

L2
, (3.2.1)

and rewrite Eq. (3.1.3) as
(

dr̄

dϕ

)2

= (E2 − ǫ)Lr̄4 + 2ǫLr̄3 − r̄2 + 2r̄ =: RS(r̄) . (3.2.2)
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3.2. Schwarzschild and Reissner-Nordström space-times

In the following we will analyse possible types of orbits dependent on the param-
eters of the test particle or light ray ǫ, E2, and L. The major point in this analysis is
that (3.2.2) implies RS(r̄) ≥ 0 as a necessary condition for the existence of a geodesic.
Thus, the zeros of RS are extremal values of r̄(ϕ) and determine (together with the
sign of RS between two zeros) the type of geodesic. The polynomial RS is in general
of degree 4 and, therefore, has 4 (complex) zeros of which the positive real zeros
are of interest for the type of orbit. As r̄ = 0 is a zero of RS for all values of the
parameters, this zero is neglected in the following and

R∗
S(r̄) := (E2 − ǫ)Lr̄3 + 2ǫLr̄2 − r̄ + 2 (3.2.3)

is considered instead of RS.

All types of orbit in Schwarzschild space-time were extensively discussed by Hag-
ihara [6]. Nevertheless, let us examine the different possible orbits so that they can
be directly compared with orbits in the other space-times considered in this chapter.

Dependent on the number of positive real zeros and the sign of (E2 − ǫ) the
following types of orbits are possible

(a) (E2 − ǫ) > 0, i.e. limr̄→∞ R∗
S(r̄) = ∞

(i) 0 positive real zeros: terminating escape orbit,

(ii) 1 positive real zero: flyby orbit,

(iii) 2 positive real zeros: flyby and terminating bound orbit,

(iv) 3 positive real zeros: flyby and bound orbit.

(b) (E2 − ǫ) < 0, i.e. limr̄→∞ R∗
S(r̄) = −∞

(i) 0 positive real zeros: no geodesic motion possible,

(ii) 1 positive real zero: terminating bound orbit,

(iii) 2 positive real zeros: bound orbit,

(iv) 3 positive real zeros: bound and terminating bound orbit.

If more than one orbit type is possible the actual orbit depends on the initial position
of the test particle or light ray.

For a given set of parameters ǫ, E2, and L the polynomial R∗
S has a certain number

of positive real zeros. If E2 and L are varied this number can change only if two
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3. Geodesics in spherically symmetric space-times

(a) ǫ = 1 (b) ǫ = 0

Figure 3.2: Regions of different types of geodesic motion in Schwarzschild space-time
for test particles (ǫ = 1) and light (ǫ = 0). For effective potentials see Fig. 3.3.

zeros of R∗
S merge to one. (A positive zero can not become negative because R∗

S is a
continuous function of E2 or L and R∗

S(0) = 2). This merger happens at r̄ = x iff

R∗
S = (r̄ − x)2(a1r̄ + a0) (3.2.4)

for some real constants a0, a1. By a comparison of coefficients we can solve the
resulting 4 equations for E2 and L dependent on ǫ. For ǫ = 1 this yields

E2(x) =
(x − 2)2

x(x − 3)
, L(x) =

x − 3

x2
, (3.2.5)

where x is the position of the double zero, and for ǫ = 0

L =
1

27E2
. (3.2.6)

(Note that this procedure is equivalent to solving D = 0 for E and L, where D is
the discriminant of R∗

S.)

In Fig. 3.2 the results of this analysis are shown for both test particles (ǫ = 1) and
light (ǫ = 0). Here we can identify 4 regions of different types of geodesic motion:
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3.2. Schwarzschild and Reissner-Nordström space-times

(a) Region (I) (b) Region (II) (c) Region (III) (d) Region (IV)

Figure 3.3: Effective potentials for different regions of geodesic motion in Schwarz-
schild space-time. The red lines denote the squared energy parameter E2.

(I) R∗
S(r̄) has 2 positive real zeros r1 < r2 with RS(r̄) > 0 for 0 ≤ r̄ ≤ r1 and

r2 ≤ r̄. Possible orbit types: flyby and terminating bound orbits.

(II) R∗
S(r̄) has 0 positive real zeros and RS(r̄) ≥ 0 for 0 ≤ r̄. Possible orbit types:

terminating escape orbits.

(III) R∗
S(r̄) has 1 positive real zero r1 with RS(r̄) ≥ 0 for positive r. Possible orbit

types: terminating bound orbits.

(IV) R∗
S(r̄) has 3 positive real zeros r1 < r2 < r3 with RS(r̄) ≥ 0 for 0 ≤ r̄ ≤ r1 and

r2 ≤ r̄ ≤ r3. Possible orbit types: bound and terminating bound orbits.

For light rays only regions (I) and (II) appear. In the case of test particles ǫ = 1 the
straight line E2 = 1 divides the plot in two parts. For E2 < 1 the polynomial R∗

S

tends to −∞ for r → ∞, i.e. we may not have any escape orbits in these regions.
However, for E2 > 1 it is limr→∞ R∗

S(r) = ∞ and, thus, there is always an orbit which
reaches infinity. For every region, examples of effective potentials are displayed in
Fig. 3.3, of timelike geodesics in Fig. 3.4, and of null geodesics in Fig. 3.5. Each
of the orbits was plotted using the analytical solution of r(ϕ) derived in the next
subsection. A summary of possible orbit types can be found in Tab. 3.1

For light as well as test particles exceptional orbits appear at the boundaries
of the regions (I) to (IV) corresponding to multiple zeros of R∗

S or to E2 = 1. In
the case of multiple zeros the boundary is described by E2 and L given by (3.2.5)
or (3.2.6), respectively, and the corresponding test particle or light ray moves on a
circular orbit, which may be stable or unstable. For test particles, the substitution
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3. Geodesics in spherically symmetric space-times

(a) Region (I): E2 = 1.1, L = 0.025 (b) Region(II):
E2 = 2, L = 1

9

(c) Region(III):
E2 = 0.5, L = 1

9

(d) Region (IV): E2 = 0.93, L = 0.072

Figure 3.4: Timelike geodesic in Schwarzschild space-time for every region of orbit
types. The plot is in units of M and dashed lines mark the horizon.

of Eq. (3.2.5) in d2

dr̄2 R
∗
S(r̄) yields

d2

dx2
R∗

S(x) = −2(x − 6)

x2
, (3.2.7)

i.e. the double zero x of R∗
S is a minimum if x < 6 whereas it is a maximum if x > 6.

The parameters E2 and L given by a double zero x which is a minimum correspond
to unstable circular orbits, where an asymptotical approach is possible for r̄ < x and
r̄ > x. Parameters E2 and L given by a double zero which is a maximum correspond
to stable circular orbits, where an asymptotic approach is not possible. The triple
zero x = 6 (or r = 6M) is a saddle point and corresponds to the corner at E2 = 8

9

and L = 1
12

in the boundary of region (IV). This is the innermost stable circular
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3.2. Schwarzschild and Reissner-Nordström space-times

(a) Region (I): E2 = 0.5, L = 0.025 (b) Region(II):
E2 = 2, L = 1

9

Figure 3.5: Null geodesics in Schwarzschild space-time for every region of orbit types.
The plot is in units of M and dashed lines mark the horizon.

orbit. For light rays double zeros can only be located at x = 3 (or r = 3M), which is
always a minimum and, thus, corresponds to an unstable circular orbit. In the case
of parabolic orbits with E2 = ǫ = 1 the degree of R∗

S is reduced to 2 and R∗
S has 2

real and positive zeros if L < 1
16

, a double zero at x = 4 if L = 1
16

, and no real zeros
at all if L > 1

16
. Thus, for L < 1

16
a flyby and a terminating bound orbit is possible,

for L = 1
16

there is an unstable circular orbit at r = 4M , and for L > 1
16

only a
terminating escape orbit is allowed.

region pos. zeros range of r̄ types of orbits

I 2 flyby, terminating bound

II 0 terminating escape

III 1 terminating bound

IV 3 bound, terminating bound

Table 3.1: Orbit types in Schwarzschild space-time. The second column gives the
number of positive zeros of the polynomial R∗

S(r̄). In the third column, the thick
lines represent the range of orbits and turning points are shown by thick dots. The
small vertical line denotes r̄ = 0.
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3. Geodesics in spherically symmetric space-times

3.2.1.2 Analytical solution of geodesic equations

Now the analytical solution of the geodesic equation (3.1.3) is presented. As can be
seen from Eq. (3.2.2),

(

dr̄

dϕ

)2

= RS(r̄) = (E2 − ǫ)Lr̄4 + 2ǫLr̄3 − r̄2 + 2r̄ , (3.2.2)

the right hand side of this equation is in general a polynomial of degree 4 and,
therefore, the differential equation is of elliptic type if RS has only simple zeros but
can be solved in terms of elementary functions if RS has multiple zeros. In the latter
case the analytical solution can be found for example in [14, 31]. In the following it
is assumed that RS has only simple zeros.

As usual, we introduce a new variable u = M/r (which is also the standard
substitution for problems of type (2.1.9)) and obtain from Eq. (3.2.2)

(

du

dϕ

)2

= 2u3 − u2 + 2ǫLu + L(E2 − ǫ) (3.2.8)

with the dimensionless parameter L := M2

L2 introduced in Eq. (3.2.1).

With the standard substitution u = 2y + 1
6

Eq. (3.2.8) can be transformed to the
Weierstrass form (2.1.5)

(

dy

dϕ

)2

= 4y3 − g2y − g3 , (3.2.9)

where

g2 =
1

12
− ǫL ,

g3 =
1

216
− 1

12
ǫL − 1

4
L(E2 − ǫ) .

(3.2.10)

Then the analytical solution of Eq. (3.1.3) for Schwarzschild space-time is given by

r(ϕ) =
M

2y(ϕ) + 1
6

=
M

2℘(ϕ − ϕin) + 1
6

, (3.2.11)

where

ϕin = ϕ0 +

∫ ∞

y0

dz
√

4z3 − g2z − g3

, y0 =
1

2

(

M

r0

− 1

6

)

, (3.2.12)

depends only on the initial values ϕ0 and r0. In Figs. 3.4 and 3.5 this solution was
used to create the examples of timelike and null geodesics for each region of different
types of orbits identified in the foregoing subsection.
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3.2. Schwarzschild and Reissner-Nordström space-times

3.2.2 Geodesics in Reissner-Nordström space-times

3.2.2.1 Types of orbits

In this subsection possible types of geodesics in Reissner-Nordström space-time are
considered. They can be determined from the right hand side of Eq. (3.1.3),

(

dr

dϕ

)2

= R(r) =
r4

L2

(

E2 − ∆RN

r2

(

ǫ +
L2

r2

))

, (3.1.3)

where ∆RN = r2−2Mr+Q2, as explained in Sec. 3.1. (Remember that test particles
are assumed to be neutral.) Just like in Schwarzschild space-time, it is convenient
to use dimensionless quantities

r̄ :=
r

M
, L :=

M2

L2
, Q̄ =

Q

M
. (3.2.13)

for the analysis. In terms of these quantities Eq. (3.1.3) for Reissner-Nordström
space-time reads

(

dr̄

dϕ

)2

= (E2 − ǫ)Lr̄4 + 2ǫLr̄3 − (ǫLQ̄2 + 1)r̄2 + 2r̄ − Q̄2 =: RRN(r̄) . (3.2.14)

In Reissner-Nordström space-time there are two horizons located at the two zeros
r± of ∆RN, r± = M ±

√

M2 − Q2. These horizons are real if Q2 ≤ M2 (with r+ = r−
for Q2 = M2) or, equivalently, Q̄2 ≤ 1. For other choices of Q̄2 no screen prevents
an observer to see the naked singularity at r = 0. In the following we will assume
that Q̄2 ≤ 1 if not stated otherwise.

As already explained in Sec. 3.1, the real and positive zeros of RRN are turning
points of the geodesic motion and, thus, determine the type of orbit. The number
of real and positive zeros of RRN changes for varying parameters E2, L, and Q̄ if
two zeros merge to one, i.e. at the parameters for which RRN has double zeros.
(Again, a positive real zero may not become negative with the same argument as in
Sec. 3.2.1.1.) A double zero x of RRN fulfills the equation

RRN = (r̄ − x)2(a1r̄ + a0) , (3.2.15)

which can be solved by a comparison of coefficients for E2 and L dependent on the
parameters ǫ and Q̄2 of the black hole. For ǫ = 1 this yields

E2(x) =
(x(x − 2) + Q̄2)2

x2(x2 − 3x + 2Q̄2)
, L(x) =

x2 − 3x + 2Q̄2

x2(x − Q̄2)
, (3.2.16)
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3. Geodesics in spherically symmetric space-times

(a) Q̄2 = 0.25, ǫ = 1 (b) Q̄2 = 0.9, ǫ = 1

(c) Q̄2 = 0.25, ǫ = 0 (d) Q̄2 = 0.9, ǫ = 0 (e) Q̄2 = 1.01, ǫ = 0

Figure 3.6: Regions of different types of geodesic motion in Reissner-Nordström
space-time for different values of Q̄2 and ǫ. For null geodesics (ǫ = 0) an example
for a naked singularity with 1 < Q̄2 < 9

8
(see (e)) is included. If Q̄2 ≥ 9

8
, region (I)

vanishes and only region (II) is possible. For effective potentials see Fig. 3.7.

where x is the position of the double zero, and for ǫ = 0

L =
2(1 +

√

9 − 8Q̄2)

E2(3 +
√

9 − 8Q̄2)3
. (3.2.17)

From Eq. (3.2.17) it is obvious that L is imaginary for Q̄2 > 9
8

and, therefore, that

double zeros are not possible for Q̄2 > 9
8

(or Q2 > 9M2

8
) and ǫ = 0.

In Fig. 3.6 regions of different types of geodesic motion in Reissner-Nordström
space-time are shown for varying Q̄2 and ǫ. Four different regions can be identified:

(I) RRN(r̄) has 3 positive real zeros r1 < r2 < r3 with RRN(r̄) ≥ 0 for r1 ≤ r̄ ≤ r2
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3.2. Schwarzschild and Reissner-Nordström space-times

(a) Region (I) (b) Region (II) (c) Region (III) (d) Region (IV)

Figure 3.7: Effective potentials for different regions of geodesic motion in Reissner-
Nordström space-time. The red lines denote the squared energy parameter E2.

and r3 ≤ r̄. Possible orbit types: flyby and bound orbits.

(II) RRN(r̄) has 1 positive real zero r1 with RRN(r̄) ≥ 0 for r1 ≤ r̄. Possible orbit
types: flyby orbits.

(III) RRN(r̄) has 2 positive real zeros r1, r2 with RRN(r̄) ≥ 0 for r1 ≤ r̄ ≤ r2.
Possible orbit types: bound orbits.

(IV) RRN(r̄) has 4 positive real zeros r1 < r2 < r3 < r4 with RRN(r̄) ≥ 0 for
r1 ≤ r̄ ≤ r2 and r3 ≤ r̄ ≤ r4. Possible orbit types: two different bound orbits.

As in Schwarzschild space-time for light rays in black hole space-times with Q̄2 ≤ 1
only regions (I) and (II) are possible. Furthermore, for a naked singularity with
1 < Q̄2 < 9

8
an additional part of region (II) appears below region (I). As Q̄2 grows,

this part gets larger and, finally, at Q̄2 = 9
8

region (I) vanishes completely and only
region (II), i.e. flyby orbits, remains. For all regions of geodesic motion examples of
effective potentials can be found in Fig. 3.7. A summary of possible orbit types can
be found in tab. 3.2.

Compared to the situation in Schwarzschild space-time, in each region there ap-
pears an additional real and positive zero r1 (say) preventing test particles and light
from falling into the singularity. This can be interpreted as a gravitational repul-
sion originating from the electric charge Q̄2 of the black hole. The additional zero
r1 lies always inside the Cauchy horizon at r̄C = 1 −

√

1 − Q̄2, what can be seen

from the effective potential Veff = ∆
r2

(

ǫ + L2

r2

)

defined in (3.1.5): because of Veff = 0

at rC and Veff = ∞ at r = 0, Veff takes all positive values between r = 0 and
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3. Geodesics in spherically symmetric space-times

(a) Region (I): E2 = 1.1, L = 0.025 (b) Region(II):
E2 = 2, L = 1

9

(c) Region(III):
E2 = 0.5, L = 1

9

(d) Region (IV): E2 = 0.93, L = 0.072

Figure 3.8: Timelike geodesics in Reissner-Nordström space-time with Q̄2 = 1
4

for
every region of orbit types. The plots are in units of M and dashed lines mark the
horizons. All bound orbits with the exception of the bound orbit on the left in (d)
cross the inner Cauchy horizon just barely and, thus, are many-world bound orbits.
Also, the flyby orbit in (b) is a two-world orbit.

r = rC and, in particular, Veff = E2 for some r ∈ (0, rC). Thus, a flyby or bound
orbit with the additional smallest positive real zero r1 < r̄C as periapsis crosses
the Cauchy horizon, is reflected by the charge induced potential barrier and again
crosses the Cauchy horizon in the opposite direction, thereby entering a new copy
of the Reissner-Nordström spacetime. This can be inferred from the Carter-Penrose
diagram of the Reissner-Nordström space-time shown, e.g., in [58] or [14]. Such a
flyby orbit may be called a two-world escape orbit, see Fig. 3.8(b) for an example. For
bound orbits, by proceeding further along its r-periodic motion, the particle or light
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3.2. Schwarzschild and Reissner-Nordström space-times

region pos. zeros range of r̄ types of orbits

I 3 flyby, bound

II 1 flyby

III 2 bound

IV 4 2x bound

Table 3.2: Orbit types in Reissner-Nordström space-time. The second column gives
the number of positive zeros of the polynomial RRN. In the third column, the thick
lines represent the range of orbits and turning points are shown by thick dots. The
small vertical line denotes r = 0.

ray again and again enters new copies of the Reissner-Nordström space-time within
its analytic continuation. This may be called a many-world bound orbit, which can
be seen, e.g., in Fig. 3.8(c).

Also, for increasing electric charge the regions (I) and (IV) gets larger. Thus, a
pair (E2,L) which would be located in region (II) in the Schwarzschild case may be
located in region (I) for nonvanishing Q̄2. Likewise, a pair (E2,L) which would be
located in region (III) in a Schwarzschild space-time may be located in region (IV) in
the Reissner-Nordström case. In region (IV) two different bound orbits are possible,
one of which is a many-world orbit. Both of these orbits have the same periodicity as
implied by the form of r(ϕ) (see next subsection) given in terms of elliptic function,
which may have one real period only.

In Figs. 3.8 and 3.9 sample geodesics are shown for each of the regions (I) to (IV),
for both test particles and light.

Exceptional orbits appear for parameters (E2,L) which are located at the bound-
aries of regions (I) to (IV). These pairs of parameters correspond to E2 = 1 or to
multiple zeros of RRN. In the latter case E2 and L are given by Eq. (3.2.16) for test
particles and by Eq.(3.2.17) for light. For ǫ = 0 a multiple zero of RRN(r̄) can only

exist if Q̄2 ≤ 9
8

and is then always located at r̄ = 3
2

+ 1
2

√

9 − 8Q̄2, which is a saddle
point for a naked singularity and Q̄2 = 9

8
, and else a minimum corresponding to un-

stable circular orbits. In particular, for light in black hole space-times with Q̄2 ≤ 1
stable circular orbits do not exist. For test particles a substitution of Eq. (3.2.16)
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3. Geodesics in spherically symmetric space-times

(a) Region (I): E2 = 0.5, L = 0.025 (b) Region(II):
E2 = 2, L = 1

9

Figure 3.9: Null geodesics in Reissner-Nordström space-time with Q̄2 = 1
4

for every
region of orbit types. The plots are in units of M and the dashed lines mark the
horizon. The bound orbit in (a) is a many-world orbit and the flyby orbit in (b) a
two-world orbit.

into d2

dr̄2 RRN(r̄) yields

d2

dx2
RRN(x) = −2

x3 − 6x2 + 9Q̄2x − 4Q̄4

x2(x − Q̄2)
. (3.2.18)

This expressions has one or three real zero by Descartes’ rule of signs of which only
one zero, r̄tr say, corresponds to finite values of E2 and L greater than or equal to
zero. As in Schwarzschild space-time, the double zero x is a minimum if x < r̄tr

and, thus, corresponds to unstable circular orbits. If x > r̄tr this is a maximum and
corresponds to a stable circular orbit. At r̄tr the polynomial RRN has a triple zero,
which is a saddle point. This is the innermost stable circular orbit. For E2 = ǫ = 1
the degree of RRN decreases to 3 and RRN has a double zero x corresponding to a
circular orbit if

L(x) =
x − 1

x(3x + x(
√

x − 2))
, Q̄2(x) = (2 ±

√
x)x , (3.2.19)

which reduces to the Schwarzschild case for x = 4. If E2 = ǫ = 1 and RRN has only
simple zeros the possible orbit types can be inferred in the same way as for E2 6= 1.
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3.2. Schwarzschild and Reissner-Nordström space-times

3.2.2.2 Analytical solution of geodesic equations

As in Schwarzschild space-time the differential equation (3.2.14),

(

dr̄

dϕ

)2

= RRN(r̄) = (E2 − ǫ)Lr̄4 + 2ǫLr̄3 − (ǫLQ̄2 + 1)r̄2 + 2r̄ − Q̄2 , (3.2.14)

is of elliptic type if RRN has only simple zeros but can be solved in terms of elementary
functions if RRN has multiple zeros. In the latter case the analytical solution of
Eq. (3.2.14) can be found in [14, 31], for example. In the following, it is assumed
that RRN has only simple zeros.

With the new variable u = M/r Eq. (3.1.3) reads for Reissner-Nordström space-
times

(

du

dϕ

)2

= −Q̄2u4 + 2u3 − (1 + ǫQ̄2L)u2 + 2ǫLu + L(E2 − ǫ) (3.2.20)

with the dimensionless parameters introduced in Eq. (3.2.13)

L :=
M2

L2
, Q̄ =

Q

M
.

However, for the conversion of Eq. (3.2.14) to the Weierstrass form (2.1.5) the stan-
dard substitution r = 1

ξ
+ rRN for a zero rRN of RRN(r) is more convenient because

it transforms the right hand side of (3.2.14) to a polynomial of degree 3,

(

dξ

dϕ

)2

=
3

∑

j=0

aj ξj , aj =
1

(4 − j)!

d(4−j)RRN

dr̄4−j
(rRN) . (3.2.21)

Finally, an additional substitution ξ = 1
a3

(

4y − a2

3

)

casts (3.2.21) in the Weierstrass
form

(

dy

dϕ

)2

= 4y3 − g2y − g3 , (3.2.22)

where g2, g3 are given by (2.1.11)

g2 =
1

16

(

4

3
a2

2 − 4a1a3

)

,

g3 =
1

16

(

1

3
a1a2a3 −

2

27
a3

2 − a0a
2
3

)

.
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3. Geodesics in spherically symmetric space-times

The analytical solution of Eq. (3.1.3) for Reissner-Nordström space-time is then given
by

r(ϕ) =
1

ξ(ϕ)
+ rRN =

a3

4℘(ϕ − ϕin) − a2

3

+ rRN , (3.2.23)

where

ϕin = ϕ0 +

∫ ∞

y0

dz
√

4z3 − g2z − g3

, y0 =
1

4

(

a3

r0 − rRN

+
a2

3

)

, (3.2.24)

depends only on the initial values ϕ0 and r0. In Figs. 3.8 and 3.9 this solution was
used to create the examples of timelike and null geodesics for each region of different
types of orbits identified in the foregoing subsection.

3.3 Schwarzschild- and Reissner-Nordström-

(anti-)de Sitter space-times

In this section the results of Sec. 3.2 are generalized to the case of a nonvanishing
cosmological constant, i.e. the geodesic equation (3.0.3)

0 =
d2xµ

ds2
+ { µ

ρσ }
dxρ

ds

dxσ

ds

in Schwarzschild-de Sitter and Reissner-Nordström-de Sitter space-times given by
(3.0.7) and (3.0.8) is considered. These space-times are characterized by the mass
M , the cosmological constant Λ, and in the case of Reissner-Nordström-de Sitter by
the electric charge Q of the black hole. Background informations on de Sitter space-
times and the cosmological constant can be found in [59] and [60], respectively.
Analogously the the case of a vanishing cosmological constant the geodesic equation
can be reduced to the ordinary differential equations (3.1.2)-(3.1.4)

(

dr

dϕ

)2

= R(r) =
r4

L2

(

E2 − ∆

r2

(

ǫ +
L2

r2

))

, (3.1.3)

(

dr

ds

)2

= E2 − ∆

r2

(

ǫ +
L2

r2

)

, (3.1.2)

(

dr

dt

)2

=
1

E2

∆2

r4

(

E2 − ∆

r2

(

ǫ +
L2

r2

))

. (3.1.4)

In the following these equation are treated for the two classes of space-times sepa-
rately along the lines of [61, 62, 63, 64].

44



3.3. S- and RN-(anti-)dS space-times

3.3.1 Geodesics in Schwarzschild-(anti-)de Sitter space-times

3.3.1.1 Types of orbits

Analogously to the case of a vanishing cosmological constant possible types of orbits
in Schwarzschild-de Sitter space-time are encoded in the right hand side of Eq. (3.1.3)

(

dr

dϕ

)2

= R(r) =
r4

L2

(

E2 − ∆SdS

r2

(

ǫ +
L2

r2

))

, (3.1.3)

where ∆SdS = r2 − 2Mr − 1
3
Λr4. With the dimensionless quantities

r̄ :=
r

M
, L :=

M2

L2
, Λ̄ =

1

3
ΛM2 , (3.3.1)

Eq. (3.1.3) can be written as

(

dr̄

dϕ

)2

= ǫΛ̄Lr̄6 + ((E2 − ǫ)L + Λ̄)r̄4 + 2ǫLr̄3 − r̄2 + 2r̄ =: RSdS(r̄) . (3.3.2)

A special feature of space-times with a nonvanishing and small positive cos-
mological constant is, compared to Schwarzschild space-times, the additional cos-
mological horizon located at the largest of the two positive real zeros of ∆SdS =
M2(−Λ̄r̄4 + r̄2 − 2r̄). More precisely, this cosmological horizon appears for Λ̄ < 1

27

(or Λ < 1
9M2 ) and induces a potential barrier at which the geodesic motion may be

reflected. For Λ̄ = 1
27

there is only one horizon at r = 3M , but for larger values
of Λ̄ the singularity is naked. If the cosmological constant is negative, there is one
horizon as in Schwarzschild space-time.

Eq. (3.3.2) implies that RSdS ≥ 0 is a necessary condition for the existence of a
geodesic and, thus, that the real and positive zeros of RSdS are extremal values of
the geodesic motion. As r̄ = 0 is a zero of RSdS for all values of the parameters, it is
neglected in the following analysis and

R∗
SdS(r̄) = ǫΛ̄Lr̄5 + ((E2 − ǫ)L + Λ̄)r̄3 + 2ǫLr̄2 − r̄ + 2 (3.3.3)

is considered instead.

It can be shown that R∗
SdS has no more than four real and positive zeros by

decomposing the polynomial R∗
SdS into its (in general complex) zeros R∗

SdS(r̄) =
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3. Geodesics in spherically symmetric space-times

(r̄−r̄1)(r̄−r̄2)(r̄−r̄3)(r̄−r̄4)(r̄−r̄5). Multiplication and comparison of the coefficients
of r̄4 yields

−
5

∑

i=1

r̄i = 0 , (3.3.4)

what contradicts the assumption that all zeros are real and positive. Therefore, in
any case there are at most four real positive zeros.

The behavior of R∗
SdS at r̄ = ∞ depends on the sign of Λ̄ if ǫ = 1 and on the

sign of E2L + Λ̄ if ǫ = 0. Let e1 < . . . < en denote the positive and real zeros of
R∗

SdS. If limr̄→∞ R∗
SdS(r̄) = ∞ then it follows that the physically acceptable regions

are given by [0, e1], [e2, e3], . . . , [en,∞] if n is even and by [e1, e2], . . . , [en,∞] if n is
odd. However, if limr̄→∞ R∗

SdS(r̄) = −∞ the physically acceptable regions are given
by [e1, e2], . . . , [en−1, en] if n is even and by [0, e1], [e2, e3], . . . , [en−1, en] if n is odd.

If for a given set of parameters Λ̄, ǫ, E2, and L the polynomial R∗
SdS has n positive

and real zeros then for varying E2 and L this number can only change if two zeros
merge to one. (A positive zero can not become negative as R∗

SdS(0) = 2 and R∗
SdS is

continuous in E2 and L.) A merger of two zeros happens at r̄ = x if and only if

R∗
SdS(r̄) = (r̄ − x)2(a3r̄

3 + a2r̄
2 + a1r̄ + a0) (3.3.5)

for some real constants ai. By a comparison of coefficients we can solve the resulting
6 equations for E2 and L dependent on ǫ and Λ̄. For ǫ = 1 this yields

E2(x) =
(Λ̄x3 − (x − 2))2

x(x − 3)
, L(x) =

x − 3

x2(1 − Λ̄x3)
, (3.3.6)

where x is the position of the double zero, and for ǫ = 0

L =
1

27E2
− Λ̄

E2
. (3.3.7)

In Fig. 3.10 the results of this analysis are shown for both test particles (ǫ = 1)
and light (ǫ = 0) for a small positive cosmological constant Λ > 0. Three different
regions of geodesic motion can be identified

(I) R∗
SdS(r̄) has 2 positive real zeros r1 < r2 with RSdS(r̄) ≥ 0 for 0 ≤ r̄ ≤ r1 and

r2 ≤ r̄. Possible orbit types: flyby and terminating bound orbits.

(II) R∗
SdS(r̄) has 0 positive real zeros and RSdS(r̄) ≥ 0 for positive r̄. Possible orbit

types: terminating escape orbits.
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3.3. S- and RN-(anti-)dS space-times

(a) Λ̄ = 10−46, ǫ = 1 (b) Λ̄ = 10−5, ǫ = 1

(c) Λ̄ = 10−46, ǫ = 0 (d) Λ̄ = 10−5, ǫ = 0

Figure 3.10: Regions of different types of geodesic motion in Schwarzschild-de Sitter
space-time for varying Λ̄ and ǫ. For effective potentials see Fig. 3.11.

(IV) R∗
SdS(r̄) has 4 positive real zeros ri < ri+1 with RSdS(r̄) ≥ 0 for 0 ≤ r̄ ≤ r1,

r2 ≤ r̄ ≤ r3, and r4 ≤ r̄. Possible orbit types: flyby, bound, and terminating
bound orbits.

For light rays only regions (I) and (II) appear. Sample effective potentials for each
of the regions (I),(II), and (IV) are shown in Fig. 3.11.

Now let us compare the geodesic motion of test particles (ǫ = 1) with the case
Λ̄ = 0. From Figs. 3.2 and 3.10 it is obvious that at the left of E2 = 1 the regions
significantly changed. Region (I) absorbed the whole parameter space which was
located in region (III) for Λ̄ = 0. This means that left of E2 < 1 there is now (at
least) one more positive real zero for each pair (E2,L). In particular, this implies
that a particle which for Λ̄ = 0 was located in region (III) may now reach infinity.
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3. Geodesics in spherically symmetric space-times

(a) Region (I) (b) Region (II) (c) Region (IV)

Figure 3.11: Effective potentials for the different regions of geodesic motion in
Schwarzschild-de Sitter space-time. The red lines denote the squared energy pa-
rameter E2.

region pos. zeros range of r̄ types of orbits

I 2 flyby, terminating bound

II 0 terminating escape

IV 4 flyby, bound, terminating bound

Table 3.3: Orbit types in Schwarzschild-de Sitter space-time for a small cosmological
constant. The second column gives the number of positive zeros of the polynomial
R∗

SdS(r̄). In the third column, the thick lines represent the range of orbits and turning
points are shown by thick dots. The small vertical line denotes r̄ = 0.

For E2 < 1 there are also flyby orbits which, coming from infinity, are reflected at the
potential barrier induced by the small positive cosmological constant, see Fig. 3.12.
A test particle with E2 = 1 − δ for a very small δ > 0, which belonged to region
(IV) or (III) for Λ̄ = 0, now switched to region (I) or (II) depending on its L value,
see Fig. 3.13. In general, all regions for Λ̄ > 0 are a little bit shifted compared to
Λ̄ = 0. Thus, every pair (E2,L) which was located near a boundary for Λ̄ = 0 may
switch to another region. For every region, examples of timelike geodesics can be
found in Fig. 3.12. Each of these plots was created using the analytical solution of
r(ϕ) derived in the next subsection. A summary of possible orbit types can be found
in Tab. 3.3.

For a large positive cosmological constant the region (IV) will disappear, that is,
no bound orbits exist. This is clear from the following: The boundary of region (IV)
is defined by two corners, which correspond to the triple zeros of R∗

SdS. This means
that the region will vanish if triple zeros are not possible. With an analysis similar
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3.3. S- and RN-(anti-)dS space-times

(a) Region (I): E2 = 0.5, L = 1
9
, Λ̄ = 1

3
10−5 (b) Region (II): E2 = 2, L =

1
9
, Λ̄ = 1

3
10−5

(c) Region (IV): E2 = 0.93, L = 0.072, Λ̄ = 1
3
10−5

Figure 3.12: Timelike geodesics in Schwarzschild-de Sitter space-time for the different
regions of orbit types. The plots are in units of M and dashed lines mark horizons.
The flyby orbits in (a) and (c) are reflected at the potential barrier induced by the
positive cosmological constant

to (3.3.5) it can be shown that triple zeros appear at

L =
4x − 15

3x2
, E2 =

16(x3 − 9x2 + 27x − 27)

x(4x − 15)2
, Λ̄ =

x − 6

x3(4x − 15)
, (3.3.8)

where x is the position of the triple zero. It can be shown that L ≥ 0, E2 ≥ 0, and
Λ̄ ≥ 0 in (3.3.8) are simultaneously fulfilled if and only if x ≥ 6. The maximum value
for Λ̄ from (3.3.8) and x ≥ 6 is given by x = 15

2
what corresponds to Λ̄ = 4

16875
≈

0.00024. This means that for larger Λ̄ triple zeros are not possible (or correspond to
negative L or E2) and, thus, that region (IV) vanishes for such large Λ̄.
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3. Geodesics in spherically symmetric space-times

The types of orbits for null geodesics, i.e. for light rays, are not essentially in-
fluenced by a nonvanishing cosmological constant. It will be shown in the next
subsection that null geodesics depend on one parameter only, which is given by
plight := LE2+Λ̄, in both Schwarzschild and Schwarzschild-de Sitter space-time. This
means that two light rays, one moving in Schwarzschild and one in Schwarzschild-de
Sitter space-time, with identical plight can not be distinguished. This becomes even
more obvious if plight is expressed in terms of the point r̄p of closest approach to the
gravitational center. This is given by dr

dϕ
= 0 and, therefore,

plightr̄
4
p − r̄2

p + 2r̄p = 0 ⇔ plight =
1

r̄2
p

− 2

r̄3
p

. (3.3.9)

In terms of this parameter the geodesic equation (3.3.2) for ǫ = 0 reads
(

dr̄

dϕ

)2

=

(

1

r̄2
p

− 2

r̄3
p

)

r̄4 − r̄2 + 2r̄ . (3.3.10)

However, if LE2 is fixed and a cosmological constant is ‘switched on’ a null geodesic
is heavily changed if 1

27
− Λ̄ ≤ LE2 ≤ 1

27
as can be read of (3.3.7).

In a recent paper [65] Rindler and Ishak discussed the light deflection in a Schwarzschild-
de Sitter space-time. Though the equation of motion is the same as in Schwarzschild
space-time for identical periapsis r̄p, they showed that the measuring process for an-
gles reintroduces the effect of the cosmological constant. According to their scheme,
the exact angle between the radial direction and the spatial direction of the light ray
is now given by

tan ψ =

√

1 − 2M
r(ϕ)

− 1
3
Λr2(ϕ)

∣

∣

∣

∣

√

r2(ϕ)
r2
p

(

1 − 2M
rp

)

−
(

1 − 2M
r(ϕ)

)

∣

∣

∣

∣

, (3.3.11)

where rp = Mr̄p and r(ϕ) is the solution of (3.3.2) for ǫ = 0 derived in the next
section, see (3.3.15). This now is valid for all light rays, not only for those rays
showing a small deflection as discussed in [65].

Let us also discuss exceptional orbits for a small positive Λ, which appear at
parameter values of E2 and L which are located on the boundaries of the regions
(I), (II), and (IV). These parameter values are given by Eq. (3.3.6) for particles and
Eq. (3.3.7) for light. For particles a substitution of (3.3.6) into d2

dr̄2 R
∗
SdS(r̄) yields

d2

dx2
R∗

SdS(x) = −2(x − 6 − Λ̄x3(4x − 15))

x2(1 − Λ̄x3)
. (3.3.12)
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3.3. S- and RN-(anti-)dS space-times

(a) ǫ = 1, E2 = 0.99, L = 0.025. Left: Λ̄ = 0, region(IV)
right: Λ̄ = 1

3
× 10−5, region(I)

(b) ǫ = 1, E2 = 0.96, L = 1
9
. Left: Λ̄ = 0, region (III)

right: Λ̄ = 1
3
× 10−5, region (II)

(c) ǫ = 0, LE2 = 1
27

− 1
6
10−5. Left: Λ̄ = 0, region (I)

right: Λ̄ = 1
3
× 10−5, region (II)

Figure 3.13: Comparison between orbits in Schwarzschild and Schwarzschild-de Sitter
space-time. In (b) and (c) the maximal r in Schwarzschild space-time are rmax ≈
45.25 and rmax ≈ 2.99 indicated by the blue dotted lines
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3. Geodesics in spherically symmetric space-times

This expression has a maximum of two positive zeros (which are triple zeros of R∗
SdS)

by Descartes’ rule of signs, say r̄1 ≤ r̄2. Together with Eq. (3.3.8) and the following
discussion it can be inferred that 6 ≤ r̄1 ≤ 15

2
≤ r̄2, where r̄1 = 6 is the Schwarzschild

case Λ̄ = 0, cf. Eq. (3.2.7). For small Λ̄ the triple zero r̄1 corresponds to the corner
in the boundary of region (IV) at E2(r̄1) ≈ 8

9
and L(r̄1) ≈ 1

12
. This is the innermost

stable circular orbit in Schwarzschild-de Sitter space-time. The larger triple zero
r̄2 corresponds to the other corner in the boundary of region (IV), see Fig. 3.10.
A double zero x < r̄1 or r̄2 < x is a minimum and corresponds to an unstable
circular orbit whereas a double zero r̄1 < x < r̄2 is a maximum and corresponds to a
stable circular orbit. Thus, r̄2 can be called the outermost stable circular orbit. For
light rays double zeros can only be located at x = 3 (or r = 3M) as in Schwarzschild
space-time. This is always a minimum and, thus, corresponds to an unstable circular
orbit.

3.3.1.2 Analytical solution of geodesic equations

The structure of Eq. (3.1.3) in Schwarzschild-(anti-)de Sitter space-time,

(

dr

dϕ

)2

= R(r) =
r4

L2

(

E2 − ∆SdS

r2

(

ǫ +
L2

r2

))

, (3.1.3)

where ∆SdS = r2 − 2Mr − 1
3
Λr4 is very different for null (ǫ = 0) and timelike

(ǫ = 1) geodesics. In the case of ǫ = 0 Eq. (3.1.3) can be solved analogously to
Schwarzschild space-time, but for timelike geodesics the solution of Eq. (3.1.3) can
be found as a limiting case of the solution of Jacobi’s inversion problem in the case
of genus g = 2. Thus, this problem and the corresponding mathematical foundation
are first specialized to the case of g = 2 before the limiting process is performed.

As in Schwarzschild space-time a new variable u = M/r is introduced, which
yields

(

du

dϕ

)2

= 2u3 − u2 + 2ǫLu +
(

L(E2 − ǫ) + Λ̄
)

+ ǫLΛ̄
1

u2
(3.3.13)

with the dimensionless parameters introduced in (3.3.1)

L =
M2

L2
, Λ̄ =

1

3
ΛM2 .
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3.3. S- and RN-(anti-)dS space-times

Null geodesics For ǫ = 0 Eq. 3.3.13 is of elliptic type and can be solved in the
same way as the geodesic equation in Schwarzschild space-time. With the standard
substitution u = 2y + 1

6
Eq. (3.3.13) can be transformed to the Weierstrass form

(2.1.5) with

g2 =
1

12
,

g3 =
1

216
− 1

4

(

LE2 + Λ̄
)

.
(3.3.14)

Here it becomes obvious that the solution of (3.3.13) depends only on one parameter
plight = LE2 + Λ̄ as in Schwarzschild space-time, where this parameter is defined by
plight = LE2. The analytical solution of (3.3.13) for ǫ = 0 is then given by

r(ϕ) =
M

2℘(ϕ − ϕin) + 1
6

, (3.3.15)

where

ϕin = ϕ0 +

∫ ∞

y0

dz
√

4y3 − g2 − g3

, y0 =
1

2

(

M

r0

− 1

6

)

(3.3.16)

depends only on the initial values ϕ0 and r0.

Timelike geodesics For ǫ = 1 Eq. (3.3.13) should be rewritten as

(

u
du

dϕ

)2

= 2u5 − u4 + 2Lu3 +
(

L(E2 − 1) + Λ̄
)

u2 + LΛ̄ =: PSdS(u) . (3.3.17)

A separation of variables in (3.3.17) yields

ϕ − ϕ0 =

∫ u

u0

udu
√

PSdS(u)
, (3.3.18)

where u0 = u(ϕ0). In solving integral (3.3.18) there are two major issues which have
to be addressed. First, the integrand is not well defined in the complex plane because
of the two branches of the square root. Second, the solution u(ϕ) should not depend
on the integration path. If γ denotes some closed integration path and

∮

γ

udu
√

PSdS(u)
= ω (3.3.19)
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3. Geodesics in spherically symmetric space-times

this means that

ϕ − ϕ0 − ω =

∫ u

u0

udu
√

PSdS(u)
(3.3.20)

should be valid, too. Hence, the solution u(ϕ) of our problem has to fulfill

u(ϕ) = u(ϕ − ω) (3.3.21)

for every ω 6= 0 obtained from an integration (3.3.19). These two issues can be solved
if we consider Eq. (3.3.18) to be defined on the Riemann surface X := {(x, y) ∈
C

2 | y2 = PSdS(x)} of genus g = 2. There are 4 independent closed paths on X and
2 independent holomorphic differentials (cf. Eqs. (2.2.2) and (2.2.3))

dz1 :=
dx

√

PSdS(x)
, dz2 :=

xdx
√

PSdS(x)
, (3.3.22)

where L = M2

L2 is defined in (3.3.1).

Jacobi’s inversion problem We want to identify now Eq. (3.3.18) as a part of
Jacobi’s inversion problem (2.4.4). To start with, we rewrite the inversion problem
in the form

φ1 =

∫ u1

∞

dx
√

PSdS(x)
+

∫ u2

∞

dx
√

PSdS(x)
,

φ2 =

∫ u1

∞

xdx
√

PSdS(x)
+

∫ u2

∞

xdx
√

PSdS(x)
,

(3.3.23)

where

~φ = ~ϕ − 2

∫ ∞

u0

d~z . (3.3.24)

Note that the right-hand side of (3.3.23) is exactly ~A∞(~u), the image of the Abel

map defined in Eq. (2.4.2), i.e. (3.3.23) can in short be written as ~φ = ~A∞(~u). We
use the obvious identity (compare [51])

u1 = lim
u2→∞

u1u2

u1 + u2

(3.3.25)
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3.3. S- and RN-(anti-)dS space-times

and insert the solution of Jacobi’s inversion problem (2.4.8). Then

u1 = − lim
u2→∞

℘12(~φ)

℘22(~φ)

= lim
u2→∞

σ(~φ)σ12(~φ) − σ1(~φ)σ2(~φ)

σ2
2(

~φ) − σσ22(~φ)

=
σ(~φ∞)σ12(~φ∞) − σ1(~φ∞)σ2(~φ∞)

σ2
2(

~φ∞) − σ(~φ∞)σ22(~φ∞)
, (3.3.26)

where
~φ∞ = lim

u2→∞
~φ = lim

u2→∞
~A∞(~u) = ~A∞ (~u∞) (3.3.27)

with ~u∞ = ( u1∞ ). Note that the definition of the Kleinian sigma function (2.4.5) and,
hence, of the generalized Weierstrass functions (2.4.6) includes the vector of Riemann

constant ~Kx0 with x0 = ∞ in our case, which is given by

~K∞ = τ
(

1
2
1
2

)

+
(

0
1
2

)

(3.3.28)

(see Eq. (2.3.8) or [49]).

Restriction to the theta divisor The limiting process u2 → ∞ in (3.3.25)
also transfers Jacobi’s inversion problem to the theta divisor Θ ~K∞

, which is defined as

the set of zeros of ϑ(·+ ~Kx0) (cf. (2.3.1)) and what simplifies Eq. (3.3.26) considerably.
From

(2ω)−1~φ∞ = (2ω)−1 ~A∞(~u∞) =

∫ u1

∞
d~v (3.3.29)

and the theorem

ϑ
[(

1/2
1/2

)

,
(

0
1/2

)

]

(~z; τ) = 0 ⇔ ∃x : ~z =

∫ x

∞
d~v (3.3.30)

proven by Mumford [49], where d~v = (2ω)−1d~z is the vector of normalized holomor-
phic differentials (cf. (2.2.6)), it follows that

0 = ϑ
[(

1/2
1/2

)

,
(

0
1/2

)

]

((2ω)−1~φ∞; τ) . (3.3.31)

Via Eq. (2.3.4) this is equivalent to

0 = ϑ
(

(2ω)−1~φ∞ + τ
(

1/2
1/2

)

+
(

0
1/2

)

; τ
)

, (3.3.32)
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3. Geodesics in spherically symmetric space-times

which in turn implies
σ(~φ∞) = 0 (3.3.33)

using the definition (2.4.5) of the Kleinian sigma function. With this result we obtain
from (3.3.26) the equation

u1 = −σ1(~φ∞)

σ2(~φ∞)
. (3.3.34)

From Theorem (3.3.30) it can not only be inferred that (2ω)−1~φ∞ is an element of

the theta divisor Θ ~K∞
, i.e. the set of zeros of ϑ

[(

1/2
1/2

)

,
(

0
1/2

)

]

, but also that, in the

case g = 2, Θ ~K∞
is a manifold of complex dimension one. Note that the restriction

to the theta divisor is only possible because ∞ is a branch point what is essential
for the validity of theorem (3.3.30).

Since Θ ~K∞
is a one-dimensional submanifold of C2, there is a one-to-one functional

relation between the first and the second component of (2ω)−1~φ∞. By the definition

of ~φ∞ in (3.3.27) and by Eqs. (3.3.24) and (2.4.4) it can be inferred that

~φ∞ = lim
u2→∞

~φ = lim
u2→∞

~ϕ − 2

∫ ∞

u0

d~z =

∫ u1

u0

d~z −
∫ ∞

u0

d~z . (3.3.35)

The physical coordinate ϕ is given by (3.3.18),

ϕ =

∫ u1

u0

zdz
√

PSdS(z)
+ ϕ0 =

∫ u1

u0

dz2 + ϕ0 . (3.3.36)

We insert this in (3.3.35) and obtain

~φ∞ =

(
∫ u1

u0
dz1 −

∫ ∞
u0

dz1

ϕ − ϕ0 −
∫ ∞

u0
dz2

)

=

(
∫ u1

u0
dz1 −

∫ ∞
u0

dz1

ϕ − ϕin

)

, (3.3.37)

where ϕin = ϕ0 +
∫ ∞

u0
dz2 depends only on the initial values u0 and ϕ0. Because

(2ω)−1φ∞ is an element of the one-dimensional theta divisor Θ ~K∞
there exists a

function f ~K∞
such that (2ω)−1~φ∞ = (2ω)−1

(

f ~K∞
(ϕ−ϕin)

ϕ−ϕin

)

. Therefore, we finally

obtain

r(ϕ) =
M

u(ϕ)
= −M

σ2(~φ∞)

σ1(~φ∞)
= −M

σ2

σ1

((

f ~K∞
(ϕ − ϕin)

ϕ − ϕin

))

,

where σ(~φ∞) = 0 .

(3.3.38)
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This is the analytic solution of the equation of motion of a test particle in a Schwarz-
schild-(anti-)de Sitter space-time. This solution is valid in all regions of this space-
time as well as for both signs of the cosmological constant, and can be computed
with, in principle, arbitrary accuracy. The explicit computation of the solution is
described in Appendix B.

3.3.1.3 Periastron advance of bound timelike orbits

In the case that RSdS has at least three positive zeros, we may have a bound orbit for
some initial values. The periastron advance ∆peri for such a bound orbit is given by
the difference of the 2π-periodicity of the angle ϕ and the periodicity of the solution
r(ϕ) (which is the same as the periodicity of u(ϕ) = M

r(ϕ)
which corresponds to PSdS,

see (3.3.17)). Let us assume that the bound orbit corresponds to the interval [u1, u2],
where u1 and u2 are real and positive zeros of PSdS, and that the path ai of the
homology basis of the Riemann surface of PSdS, see Fig. 2.1, surrounds this real
interval. Then the periastron advance is given by

∆peri = 2π − 2ω2i = 2π −
∮

ai

udu
√

PSdS(u)
= 2π − 2

∫ u2

u1

udu
√

PSdS(u)
, (3.3.39)

where 2ω2i is an element of the (canonically chosen) 2×4 matrix of periods (2ω, 2ω′)
of the Riemann surface of y2 = PSdS, see Eq. (2.2.4). As Eq. (3.3.39) does not
directly show the influence of the cosmological constant on the periastron advance,
we now calculate the post-Schwarzschild limit of this expression in the case that the
considered bound orbit is also bound in Schwarzschild space-time.

For doing so we first expand u/
√

PSdS(u) to first order in Λ̄,

u
√

PSdS(u)
≈ 1

√

PS(u)
− 1

2

u2 + L
u2PS(u)

√

PS(u)
Λ̄ , (3.3.40)

where PS is the right hand side of Eq. (3.2.8), i.e. PS(u) = 2u3−u2+2Lu+L(E2−1),
which corresponds to the Schwarzschild case with Λ̄ = 0.

The next step is to integrate both terms involving PS within the Weierstrass for-
malism, see for example [43]. Employing the substitution u = 2y + 1

6
as in Sec. 3.2.1,

PS can be rewritten in the Weierstrass form

PS(y) = 4(4y3 − g2y − g3) =: 4PW (y) , (3.3.41)
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3. Geodesics in spherically symmetric space-times

Figure 3.14: The fundamental rectangle R. The blue line denotes the integration
path γ.

where the Weierstrass invariants g2, g3 are given by (3.2.10),

g2 =
1

12
− ǫL ,

g3 =
1

216
− 1

12
ǫL − 1

4
L(E2 − ǫ) .

We assume that the orbit under consideration is bound not only in Schwarzschild-de
Sitter but also in the corresponding Schwarzschild space-time. This means that the
three largest real zeros 0 < u1 < u2 < u3 of PSdS are positive and, thus, that the
zeros − 1

12
< y1 < y2 < y3 of PW are all real. The square root

√
PW is branched

over y1, y2 and y3 and, thus, the elliptic function ℘ based on
√

PW has a purely real
period 2ω and a purely imaginary period 2ω′. They are given by

2ω =

∮

A

dz
√

PW (z)
, 2ω′ =

∮

B

dz
√

PW (z)
(3.3.42)

where the path A runs around the branch cut from y1 to y2 counterclockwise and
the path B around y2 and y3 clockwise. The branch of the square root in (3.3.42) is
chosen such that

√
PW is negatively imaginary on (y2, y3). The branch points y1, y2, y3

can be expressed in terms of the periods: y1 = ℘(ρ1), y2 = ℘(ρ2) and y3 = ℘(ρ3) with
ρ1 = ω′, ρ2 = ω + ω′, and ρ3 = ω. The fundamental rectangle in the complex plane
spanned by the periods 2ω, 2ω′ of ℘ is denoted by R = {2xω + 2yω′ | 0 ≤ x, y < 1},
see Fig. 3.14.

For the canonical choice of the matrix of half-periods ω of
√

PSdS, the integration
path ai in Eq. (3.3.39) corresponding to [u1, u2] runs counterclockwise from u1 to u2
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and back with conversed sign of the square root. Let the path γ be the preimage
of ai by v 7→ ℘(v) = y in the fundamental rectangle R. For a positive cosmological
constant Λ, we have u1 < y1 < y2 < u2 and, thus, γ starts at some purely imaginary
γ(0) = v1 ∈ R with 0 < Im(v1) ≤ Im(ρ1) and goes straight to γ(1) = v1 + 2ω. Then,
for any rational function f , we obtain

∮

ai

f(z) dz
√

PW (z)
=

∫

γ

f(℘(v))dv . (3.3.43)

This is derived from the differential equation (2.1.2)

℘′(v) =
√

4℘(v)3 − g2℘(v) − g3 =
√

PW (℘(v)) ,

where the branch of the square root was chosen to be consistent with the sign of ℘′.

The integration of the first part on the right-hand side of (3.3.40) is straightfor-
ward and yields the Schwarzschild period

∮

ai

du
√

PS(u)
=

∮

ai

2dy
√

4PW (y)
=

∫ v1+2ω

v1

dv = 2ω . (3.3.44)

The integration of the second part on the right-hand side of (3.3.40) is more involved
and can be carried out along the lines of Thm. 2.5. First, we substitute y = ℘(v)
obtaining

∮

ai

u2 + L
u2PS(u)

√

PS(u)
du =

∮

A

(2y + 1
6
)2 + L

(2y + 1
6
)2 · 4PW (y)

√

4PW (y)
2dy

=
1

4

∫ v1+ω

v1

F1(v) + LF2(v) dv , (3.3.45)

where

F1(v) =
1

PW (℘(v))
=

1

(℘′(v))2
,

F2(v) =
1

(2℘(v) + 1
6
)2PW (℘(v))

=
1

(2℘(v) + 1
6
)2(℘′(v))2

.

Second, we have to determine the poles pi with multiplicity mi and the corresponding
constants Aj

i , j = 0, . . . ,mi−1, see Eq. (2.1.20), for F1 and F2. Finally, an integration
(2.1.21) can be carried through. The details of this procedure can be found in
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appendix A. As a result we obtain the first order approximation of the periastron
advance with respect to Λ̄:

∆peri = 2π −
∮

ai

udu
√

PSdS(u)

= 2π − 2ω − Λ̄

8

{

3
∑

j=1

−η1 − yjω

℘′′(ρj)2

(

1 +
L

(

2yj + 1
6

)2

)

+ L
[

ω − 12η1

24℘′(v0)4
+

3

2

℘′′(v0)

℘′(v0)5
(η1v0 + ωζ(v0))

]

}

+ O(Λ̄2) , (3.3.46)

where v0 is such that ℘(v0) = − 1
12

, yj are the zeros of PW (y), ℘(ρj) = yj, and η1 is
the real period of second kind.

The terms in this expression involving ρj and v0 can partly be replaced by terms
containing the Weierstrass invariants g2 and g3. From the differential equation (2.1.2)
we derive

℘′(v0) =
√

4℘(v0)3 − g2℘(v0) − g3 =

√

− 1

432
+

g2

12
− g3 . (3.3.47)

The first derivative of (2.1.2) yields 2℘′′ = 12℘2 − g2 and, thus, gives

℘′′(ρj) = 6y2
j −

1

2
g2 and ℘′′(v0) =

1

24
− 1

2
g2 , (3.3.48)

where the g2, g3, as well as the zeros of PW can be expressed in terms of E2 and L.

The result (3.3.46) gives the post-Schwarzschild periastron advance in a closed
algebraic form. The advantage of this result is that no further integration is needed.
Another advantage lies in the fact that only elliptic functions and related quantities
are used, which are well described and tabulated in mathematical books and which
are also well implemented in common commercial math programs. What is still left
to do is to express the result (3.3.46) in terms of, e.g., rmin and rmax or, equivalently,
in terms of the semimajor axis and the eccentricity. These quantities can be directly
observed and also have the advantage that an expansion in terms of M/rmin and
M/rmax can be performed giving in addition a post-Newtonian expression.

Let us apply these formulas to the perihelion advance of Mercury and compare
with the results of Kraniotis and Whitehouse, [40]. We take the values indicated in
Tab. 3.4 for the Schwarzschild-radius 2M , the angular momentum per unit mass LM ,
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3.3. S- and RN-(anti-)dS space-times

parameters zeros of PW

2M = 2953.25008 m −0.083333322758379
2M
L2

M

= 1.1849627128268641 × 10−24 m2/s2 −0.083333317283501√
EM = 0.029979245417779875×1010 m/s 0.166666640041880

periods results

ω = 3.1415929045225246 ra = 6.981708938652731× 1010m
ω′ = 20.4093916393851799i rp = 4.600126052898539× 1010m
τ = 6.4965106109084187i ∆S = 42.980165 arcsec cy−1

(a) Predicted perihelion shift ∆S and peri- and apoapsis rp, ra of Mercury in Schwarzschild
space-time.

values in Eq. (3.3.46) Correction due to Λ̄

η1 = −0.2617993700131308
℘′2(v0) = −1.6972622347915708 × 10−16 ∆SdS

corr = 5.82 × 10−17 arcsec cy−1

℘′′(v0) = 1.3312392184539657 × 10−8

ζ(v0) = 1.0121093196146584 i

(b) Predicted first order correction ∆SdS
corr due to the cosmological constant Λ = 10−51m−2.

Table 3.4: Predicted perihelion shift of Mercury in Schwarzschild and Schwarzschild-
de Sitter space-time

and the energy per unit mass EM given in [40]. These values lead to the zeros and
periods in Tab. 3.4, which all compare well to the results in [40]. Also the physical
data, i.e. the aphel ra, the perihel rp and the perihelion advance in Schwarzschild-
space-time ∆S, compare well to [40] and also to observations1. Here we used the
rotation period 87.97 days of Mercury and 100 SI-years per century to determine the
unit arcsec cy−1.

The first order post-Schwarzschild correction ∆SdS
corr to the perihelion advance

can now be calculated from formula (3.3.46). For a cosmological constant of Λ =
10−51m−2 we obtain for the parameters which appear in the expansion (3.3.46) and

1http://history.nasa.gov/SP-423/intro.htm
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3. Geodesics in spherically symmetric space-times

the correction ∆SdS
corr the values indicated in Tab. 3.4,

∆SdS
corr = 5.82 · 10−17 arcsec cy−1 . (3.3.49)

This result also compares well to [40] where the perihel advance of Mercury does
not change within the given accuracy when considered in Schwarzschild-de Sitter
space-time. The value of the correction is also far beyond the measurement accuracy
of 0.002 arcsec cy−1 for the perihelion advance of Mercury.

However, for an extreme case the influence of the cosmological constant on the
periastron advance may become measurable. The orbital data of quasar QJ287
reported in [66, 67] indicates that the correction to the periastron advance ∆SdS

corr

will be some orders of magnitude larger than the correction in the case of Mercury.
Indeed, when we calculate from this data the energy E and the angular momentum
parameter L,

E2 = 0.982166 , L = 0.092317 , (3.3.50)

we obtain
∆SdS

corr ≈ 10−13 arcsec cy−1 . (3.3.51)

3.3.1.4 On the Pioneer anomaly

The term Pioneer anomaly describes an anomalous constant acceleration of aPioneer =
(8.47±1.33)×10−10 m/s2 towards the inner solar system found in the orbital data of
the Pioneer 10 and 11 spacecraft, which were the first to enter the outer solar system.
In 2002, Anderson et al. checked a number of possible reasons for this anomalous
constant acceleration [26], but were not able to give a convincing explanation. Al-
though at least a part of the Pioneer anomaly is caused by thermal effects [68, 69],
this explanation is inconsistent with the constancy of the acceleration over time.
However, a connection of the Pioneer anomaly with the cosmological constant can
be suspected inspired by the numerical coincidence that aPioneer is of the same order
as cH, where c is the speed of light and H the Hubble constant. For a definite check
of the effect of a nonvanishing cosmological constant on the spacecraft, we apply the
obtained analytical solution in order to decide whether an observable influence on
the Pioneer satellites arises. From [70] we deduce the energy and angular momen-
tum of the Pioneers after their last flybys at Jupiter and Saturn, respectively, with
respect to the barycenter of the inner solar system, i.e. the Sun, Mercury, Venus and
Earth-Moon. This means that we used the value

2M =
2GM

c2
= 2. 953 266 762 363 45 km , (3.3.52)
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for the Schwarzschild radius, derived from GM = 1. 000 005 65 k2(AU3/day2) with
Gauss’ constant k = 0. 017 202 098 95 defining the astronomical unit AU. Here all
numbers are taken with 12 digits what corresponds to the today’s accuracy of solar
system ephemerides.

In the case of Pioneer 10, the velocity at infinity v∞ = 11.322 km s−1 taken from

[70] gives us the energy per unit mass EM = c2 +
1

2
v2
∞ and therefore the energy

parameter,

E2 =
E2

M

c4
= 1. 000 000 001 43 . (3.3.53)

The angular momentum per unit mass is given by LM = qv, where v is the velocity

at periapsis distance q defined by v =

√

2GM
(

1
q

+ 1
2a

)

and a is the semimajor axis.

From this we derive the parameter L,

4L =
(2M)2c2

L2
M

= 2. 855 572 373 82 × 10−9 . (3.3.54)

In the case of Pioneer 11 we obtain for the parameters E2 and L

E2 = 1. 000 000 001 22 ,

4L = 1. 340 740 574 59 × 10−9 .
(3.3.55)

With these coefficients, now we are able to determine the exact orbits of Pioneer 10
and 11 in the cases Λ = 0 and Λ = 10−45km−2. From these exact orbits we calculate
the differences in position (in m) for a given angle ϕ (in rad) and the difference in the
angle (in rad) for a given distance r (in m) of a test particle moving in a space-time
with and without the cosmological constant. The Pioneer anomaly appeared in a
heliocentric distance of about 20 to 70 AU. For r in this range, we compute now the
difference ϕΛ=0(r) − ϕΛ6=0(r) in azimuthal position with and without cosmological
constant for both spacecraft. Regarding Pioneer 10, the difference is in the scale of
10−19rad, which corresponds to an azimuthal difference in position of about 10−6m.
For Pioneer 11, the difference is in the scale of 10−18rad, which corresponds to an
azimuthal difference in position of about 10−5m.

The range of 20 to 70 AU corresponds to an angle between 0.4π and 0.6π if
ϕ0 = 0 corresponds to the periapsis. In this range, we compute the radial difference
rΛ=0(ϕ)− rΛ6=0(ϕ) also for both spacecraft. For Pioneer 10 we obtain a difference in
the scale of 10−5m, for Pioneer 11 in the scale of 10−4m.
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3. Geodesics in spherically symmetric space-times

Therefore, we can state that for the present value of the cosmological constant
the forms of the Pioneer 10 and 11 orbits practically do not change. Although
for a definite estimate of the differences of the Pioneer orbits in Schwarzschild and
Schwarzschild-de Sitter space-time also the time course of these orbits has to be
analyzed, the time variable is influenced by the cosmological constant in the same
way as the radial coordinate and no change in our statement will occur. Therefore,
the influence of the cosmological constant on the orbits cannot be held responsible
for the observed anomalous acceleration of the Pioneer spacecraft.

3.3.2 Geodesics in Reissner-Nordström-(anti-)de Sitter
space-times

3.3.2.1 Types of orbits

Now the most general space-time with the most complicated types of orbits in this
chapter is treated. Analogous to the foregoing sections, all types of orbits can be
determined from the right hand side of Eq. (3.1.3)

(

dr

dϕ

)2

= R(r) =
r4

L2

(

E2 − ∆RNdS

r2

(

ǫ +
L2

r2

))

, (3.1.3)

where ∆RNdS = r2−2Mr− 1
3
Λr4+Q2. It is convenient to introduce the dimensionless

quantities

r̄ :=
r

M
, L :=

M2

L2
, Q̄ =

Q

M
, Λ̄ =

1

3
ΛM2 , (3.3.56)

into Eq. (3.1.3) giving

(

dr̄

dϕ

)2

= ǫΛ̄Lr̄6 + ((E2 − ǫ)L + Λ̄)r̄4 + 2ǫLr̄3 − (1 + ǫQ̄2L)r̄2 + 2r̄ − Q̄2

=: RRNdS(r̄) . (3.3.57)

In Reissner-Nordström-(anti-)de Sitter space-time the horizons are located at the
positive real zeros of ∆RNdS. By Descartes’ rule of signs it can be inferred that
for Λ > 0 there are up to three horizons whereas for Λ < 0 there are up to two
horizons. One of the horizons for Λ > 0 is cosmological and appears in Schwarzschild-
de Sitter space-time, too. The other two, if present, are approximately located at
M ±

√

M2 − Q2, perturbed by the small cosmological constant Λ. In the following
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(a) Horizons for Λ > 0 (b) Horizons for Λ < 0

Figure 3.15: Number of horizons in Reissner-Nordström-(anti-)de Sitter space-times
dependent on Λ and Q2. In (a), there are three horizons in the region bounded by
the black line, (a cosmological, an event, and a Cauchy horizon) and one outside.
In (b), there are two horizons above the black line (an event and a Cauchy horizon)
and none below.

it is assumed that the cosmological constant Λ̄ and the electric charge Q̄2 are chosen
such that the space-time has no naked singularity. In Fig. 3.15 the number of horizons
dependent on Λ̄ and Q̄2 is shown.

Eq. (3.3.57) implies that RRNdS ≥ 0 is a necessary condition for the existence
of a geodesic. Therefore, the real and positive zeros of RRNdS determine the type
of motion. For varying parameters E2 and L, the number of positive real zeros of
RRNdS changes only if multiple zeros occur. This happens at r̄ = x iff

RRNdS(r̄) = (r̄ − x)2(a4r̄
4 + a3r̄

3 + a2r̄
2a1r̄ + a0) (3.3.58)

for some constant ai. The resulting 7 equations can be solved for E2 and L dependent
on ǫ and the parameters of the black hole Λ̄ and Q̄ by

E2(x) = 2
(x(x − 2) + Q̄2 − Λ̄x4)2

x2(x2 − 3x − 2Q̄2)
, L(x) =

x2 − 3x − 2Q̄2

(x − Q̄2 − Λ̄x4)x2
(3.3.59)

for ǫ = 1, where x is the position of the double zero, and by

L =
2(1 +

√

9 − 8Q̄2)

E2(3 +
√

9 − 8Q̄2)3
− Λ̄

E2
(3.3.60)

for ǫ = 0. As in Reissner-Nordström space-time it is obvious from Eq. (3.3.60) that
for Q̄2 > 9

8
and ǫ = 0 there are no double zeros.
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(a) Q̄2 = 1
4
, Λ̄ = 10−46 (b) Q̄2 = 1

4
, Λ̄ = 10−5

(c) Q̄2 = 0.9, Λ̄ = 10−46 (d) Q̄2 = 0.9, Λ̄ = 10−5

Figure 3.16: Regions of different types of timelike geodesics in Reissner-Nordström-de
Sitter space-time for ǫ = 1 and different values of Q̄2 and Λ̄.

In Figs. 3.16 and 3.17 regions of different types of geodesic motion are shown
for varying values of Q̄2, Λ̄ > 0 and ǫ. As in Schwarzschild-de Sitter space-time 3
different regions can be found:

(I) RRNdS(r̄) has 3 positive real zeros r1 < r2 < r3 with RRNdS(r̄) ≥ 0 for r1 ≤
r̄ ≤ r2 and r3 ≤ r̄. Possible orbit types: flyby and bound orbits.

(II) RRNdS(r̄) has 1 positive real zero r1 and RRNdS(r̄) ≥ 0 for r̄ ≥ r1. Possible
orbit types: flyby orbits.

(IV) RRNdS(r̄) has 5 positive real zeros ri < ri+1 with RRNdS(r̄) ≥ 0 for r1 ≤ r̄ ≤ r2,
r3 ≤ r̄ ≤ r4, and r5 ≤ r̄. Possible orbit types: flyby and two different bound
orbits.
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(a) Q̄2 = 1
4
, Λ̄ = 10−5 (b) Q̄2 = 0.9, Λ̄ = 10−5 (c) Q̄2 = 1.01, Λ̄ = 10−5

Figure 3.17: Regions of different types of null geodesics in Reissner-Nordström-de
Sitter space-time for ǫ = 0 and different values of Q̄2 and Λ̄. For a naked singularity
with 1 < Q̄2 < 9

8
a second region (II) appears which grows with Q̄2 until region (I)

vanishes at Q̄2 = 9
8
. For effective potentials see Fig. 3.18.

As in Reissner-Nordström space-time, for light (ǫ = 0) only regions (I) and (II)
appear. If additionally Q̄2 > 9

8
also region (I) vanishes and only region (II) is

possible. In Fig. 3.18 sample effective potentials are shown for each of the regions
above.

The geodesics in Reissner-Nordström-(anti-)de Sitter space-times compare to those
for Q2 = 0 in the same way as for a vanishing cosmological constant, i.e. in each
region appears an additional positive real zero, which prevents test particles and
light from falling into the singularity at r̄ = 0. Again, many-world bound orbits and
two-world escape orbits are possible. Compared to Reissner-Nordström space-time,

(a) Region (I) (b) Region (II) (c) Region (IV)

Figure 3.18: Effective potentials for different regions of geodesic motion in Reissner-
Nordström-de Sitter space-time. The red lines denote E2.
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region pos. zeros range of r̄ types of orbits

I 3 flyby, bound

II 1 flyby

IV 5 flyby, 2x bound

Table 3.5: Orbit types in Reissner-Nordström-de Sitter space-time. The second
column gives the number of positive zeros of the polynomial RRNdS. In the third
column, the thick lines represent the range of orbits and turning points are shown
by thick dots. The small vertical line denotes r = 0.

the nonvanishing cosmological constant causes the same effects as in Schwarzschild-
de Sitter space-time described in Sec. 3.3, in particular orbits may reach infinity
for E2 < 1 and some flyby orbits are reflected at the potential barrier induced by
Λ. However, the two different bound orbits in region (IV), one of which is a many-
world orbit, have different periods in contrast to Reissner-Nordström space-time. In
Fig. 3.19 an example for a timelike geodesic in each of the regions (I), (II), and (IV)
is shown. A schematic overview of posible orbits types in the diffferent regions can
be found in Tab. 3.5.

As for the other space-times considered in this thesis, exceptional orbits corre-
spond to multiple zeros of RRNdS and are located at the boundaries of regions (I),
(II), and (IV). The associated parameters E2 and L are given by (3.3.59) for test
particles and by (3.3.60) for light. A substitution of (3.3.59) into d2

dr̄2 RRNdS(r̄) yields

d2

dr̄2
RRNdS(x) = −2

x3 − 6x2 − Λ̄x5(4x − 15) − 12x4Λ̄Q̄2 + 9Q̄2x − 4Q̄4

x2(x − Q̄2 − Λ̄x4)
. (3.3.61)

For positive Λ̄ all real zeros of this expression are also positive by Descartes’ rule of
signs, but for small Λ̄ only 2 zeros r̄tr,1, r̄tr,2 are associated with finite values E2 ≥ 0
and L ≥ 0. The smaller of these two triple zeros r̄tr,1 is located near x = 6 for
small Λ̄ and Q̄2 and the corresponding pair (E2,L) is given by the upper corner in
the boundary of region (IV), whereas the other, lower corner is associated with the
larger triple zero r̄tr,2. The triple zero r̄tr,1 is a saddle point and the radial coordinate
of the innermost stable circular orbit. All double zeros x with 0 < x < r̄tr,1 or
x > r̄tr,2 are minima, i.e. radial coordinates of unstable circular orbits, but x with
r̄tr,1 < x < r̄tr,2 are stable circular orbits. Thus, as in Schwarzschild-de Sitter space-
time r̄tr,2 can be called the outermost stable circular orbit. For light the situation
is the same as in Reissner-Nordström space-time, see Sec. 3.2.2: a double zero can
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(a) Region (I): E2 = 1.1, L = 0.025

(b) Region(II):
E2 = 2, L = 1

9

(c) Region(III):
E2 = 0.5, L = 1

9

(d) Region (IV): E2 = 0.93, L = 0.072

Figure 3.19: Timelike geodesics in Reissner-Nordström-de Sitter space-time with
Q̄2 = 1

4
for every region of orbit types. The plots are in units of M and dashed lines

mark the horizons. All bound orbits with the exception of the bound orbit on the
left in (d) crosses the inner Cauchy horizon just barely and, thus, are many-world
bound orbits. Also, the flyby orbit in (b) is a two-world orbit.
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only exist if Q̄2 ≤ 9
8

and is then always located at r̄ = 3
2

+ 1
2

√

9 − 8Q̄2, which is a
saddle point for a naked singularity and Q̄2 = 9

8
, and else a minimum corresponding

to unstable circular orbits.

3.3.2.2 Analytical solution of geodesic equations

Like in Schwarzschild-(anti-)de Sitter space-time, the geodesic equation (3.1.3) for
the most general of space-times considered in this chapter, the Reissner-Nordström-
(anti-)de Sitter space-time,

(

dr

dϕ

)2

= RRNdS(r) =
r4

L2

(

E2 − ∆RNdS

r2

(

ǫ +
L2

r2

))

, (3.1.3)

where ∆RNdS = r2 − 2Mr − 1
3
Λr4 + Q2, is in general of hyperelliptic type. Con-

sequently, the analytical solution of this equation can be found in the same way
as the solution of the geodesic equation in Schwarzschild-(anti-)de Sitter space-time
presented in Sec. 3.3.

With the introduction of a new variable u = M
r

analogous to the foregoing sections
Eq. (3.3.57) is transformed to

(

du

dϕ

)2

= −Q̄2u4 + 2u3 − (1 + ǫQ̄2L)u2 + 2ǫLu

+ (L(E2 − ǫ) + Λ̄) + ǫΛ̄L 1

u2
(3.3.62)

with the dimensionless parameters introduced in (3.3.56)

L =
M2

L2
, Q̄ =

Q

M
, Λ̄ =

1

3
ΛM2 .

For ǫ = 1 Eq. (3.3.62) should be rewritten as

(

u
du

dϕ

)2

= PRNdS(u) (3.3.63)

where

PRNdS(u) := −Q̄2u6+2u5−(1+Q̄2L)u4+2Lu3+
(

L(E2 − 1) + Λ̄
)

u2+LΛ̄ . (3.3.64)
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However, analogous to the situation in Reissner-Nordström space-time in Sec. 3.2.2,
the substitution

r = ±1

ξ
+ rRNdS , (3.3.65)

where rRNdS is the zero of RRNdS(r), is more convenient as it reduces Eq. (3.3.57)
such that the resulting equation is of type (3.3.63) but with a polynomial of degree
5 if ǫ = 1 and of degree 3 if ǫ = 0 on the right hand side. For ǫ = 0 we can choose
the positive sign in (3.3.65) and the resulting equation reads

(

dξ

dϕ

)2

=
3

∑

j=0

bj ξj , bj =
1

(4 − j)!

d(4−j)R

dr4−j
(rRNdS) , (3.3.66)

but for ǫ = 1

(

ξ
dξ

dϕ

)2

=
5

∑

j=0

aj ξj , aj =
(−1)j

(6 − j)!

d(6−j)R

dr6−j
(rRNdS) . (3.3.67)

Here the sign of the substitution (3.3.65) should be chosen such that the leading
coefficient a5 is positive.

Null geodesics For ǫ = 0 Eq. (3.3.66) is of elliptic type and can be solved analo-
gously to the geodesic equation in Schwarzschild space-time,

r(ϕ) =
b3

4℘(ϕ − ϕin) − b2
3

+ rRNdS , (3.3.68)

where

ϕin = ϕ0 +

∫ ∞

y0

dz
√

4y3 − g2 − g3

, y0 =
1

4

( ±b3

r0 − rRNdS

+
b2

3

)

(3.3.69)

with the standard expressions (2.1.11) of g2 and g3

g2 =
1

16

(

4

3
b2
2 − 4b1b3

)

,

g3 =
1

16

(

1

3
b1b2b3 −

2

27
b3
2 − b0b

2
3

)

.
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Timelike geodesics For ǫ = 1 Eq. (3.3.67) is of hyperelliptic type as the geodesic
equation in Schwarzschild-de Sitter space-time (3.3.17) and can be solved analogously
to Sec. 3.3. The analytical solution is

r(ϕ) = ± 1

ξ(ϕ)
+ rRNdS = ∓σ2

σ1

((

f ~K∞
(ϕ − ϕin)

ϕ − ϕin

))

+ rRNdS ,

where σ

((

f ~K∞
(x)

x

)

; τ

)

= 0 ,

(3.3.70)

i.e. f ~K∞
is the function that describes the one-dimensional theta divisor Θ ~K∞

,
cf. (3.3.38). Note that the function f ~K∞

differs to the function used in (3.3.38)
in the sense that it corresponds to a different normalized period matrix τ .

3.4 Higher-dimensional space-times

In this section it will be shown that it is also possible to apply the method for solv-
ing geodesic equations in terms of hyperelliptic functions presented in Sec. 3.3 to
the geodesic equations in higher-dimensional static and spherically symmetric space-
times. As an example, the geodesic equations in up to 7-dimensional Schwarzschild
space-times are solved in the following. However, possible types of orbits are only
discussed for a 6-dimensional Schwarzschild space-time as we only want to show the
applicability of the method presented in Sec. 3.3. The solution of geodesic equations
in more general static and spherically symmetric higher-dimensional space-times to-
gether with a complete discussion of orbits can be found in [53].

The metric of a Schwarzschild space-time in d dimensions is given by [56]

ds2 =

(

1 −
(

2M

r

)d−3
)

dt2 −
(

1 −
(

2M

r

)d−3
)−1

dr2 − r2dΩ2
d−2 , (3.4.1)

where dΩ2
1 = dϕ2 and dΩ2

i+1 = dθi + sin2 θidΩ2
i for i ≥ 1. Because of the spherical

symmetry, we again restrict the considerations to the equatorial plane by setting
θi = π

2
for all i. With the normalization condition gµν

dxµ

ds
dxν

ds
= ǫ, the conserved

energy E, and the angular momentum L as well as the substitution r̄ = r
M

the
geodesic equation reduces to

(

dr̄

dϕ

)2

= L(E2 − ǫ)r̄4 − r̄2 + 2d−3ǫLr̄7−d + 2d−3r̄5−d = Rd(r̄) , (3.4.2)
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where the parameters L = M2

L2 and E2 have the same meaning as in the 4-dimensional
Schwarzschild case (3.2.1). For d = 4 this equation reduces of course to the Schwarz-
schild case [6]. For d = 5 a substitution r̄ = x2 reduces the differential equation
(3.4.2) to

(

dx

dϕ

)2

= L(E2 − ǫ)x2 + (4ǫL − 1)x + 4 , (3.4.3)

which can be solved in terms of elementary functions, see [31].

In the case of a 6-dimensional Schwarzschild space-time, however, the differential
equation (3.4.2) can be rewritten as

(

r̄
dr̄

dϕ

)2

= L(E2 − ǫ)r̄6 − r̄4 + 2d−3ǫLr̄3 + 2d−3r̄ , (3.4.4)

or, with the substitution u = 1
r̄

(

du

dϕ

)2

= 8u5 + 8ǫLu3 − u2 + L(E2 − ǫ) . (3.4.5)

This now can be solved in terms of hyperelliptic functions with the method used
for the geodesic equation in Schwarzschild-(anti-)de Sitter space-time. The only
difference is that the physical angle ϕ is now given by

ϕ − ϕ0 =

∫ u

u0

du′
√

P5(u′)
=

∫ u

u0

dz1 (3.4.6)

what corresponds to the holomorphic differential dz1 rather than to dz2 as it was
in the Schwarzschild-de Sitter case, see (2.2.2) and (3.3.36). This means that the
solution of the geodesic equation in 6-dimensional Schwarzschild space-time is given
by

r(ϕ) =
M

u(ϕ)
= −M

σ2(~ϕΘ,6)

σ1(~ϕΘ,6)
= −M

σ2

σ1

((

ϕ − ϕin

f ~K∞
(ϕ − ϕin)

))

,

where σ(~ϕΘ,6; τ) = 0 .

(3.4.7)

Here the function f ~K∞
describes the theta divisor Θ ~K∞

, i.e. σ(
( x

f ~K∞
(x)

)

; τ) = 0,
which is different from the theta divisor used in the solution of the geodesic equation
in Schwarzschild-de Sitter or Reissner-Nordström-de Sitter space-time in the sense
that it corresponds to a different normalized period matrix τ . The constant ϕin =
ϕ0 +

∫ ∞
u0

dz1 depends only on the initial values u0 = M
r0

and ϕ0.
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3. Geodesics in spherically symmetric space-times

(a) ǫ = 1 (b) ǫ = 0

Figure 3.20: Regions of different types of geodesic motion in 6-dimensional Schwarz-
schild space-time for test particles (ǫ = 1) and light (ǫ = 0). For effective potentials
see Fig. 3.21

The case d = 7 can be handled analogously to Reissner-Nordström-de Sitter
space-time, see (3.3.67). If we apply a substitution r̄ = 1

ξ
+ r̄P where r̄P is a zero of

R7, we obtain the differential equation

(

ξ
dξ

dϕ

)2

= b5ξ
5 + . . . b0ξ

0 (3.4.8)

with some constants bi. The solution is

r(ϕ) = −M
σ2(~ϕΘ,7)

σ1(~ϕΘ,7)
+ r̄P = −M

σ2

σ1

((

f ~K∞
(ϕ − ϕin)

ϕ − ϕin

))

+ r̄P ,

where σ(~ϕΘ,7; τ) = 0 .

(3.4.9)

Here, again, f ~K∞
describes the theta divisor corresponding to the normalized period

matrix τ corresponding to the polynomial
∑

i bix
i, i.e. σ

((

f ~K∞
(ϕ−ϕin)

ϕ−ϕin

)

; τ
)

= 0, and

ϕin = ϕ0 +
∫ ∞

u0
dz2.

Figure 3.20 shows the arrangement of zeros for a 6-dimensional Schwarzschild
space-time. The regions (I)-(III) have the same meaning as in Schwarzschild space-
time, i.e.

(I) R6(r̄) has 2 positive real zeros r1 < r2 with RS(r̄) > 0 for 0 ≤ r̄ ≤ r1 and
r2 ≤ r̄. Possible orbit types: flyby and terminating bound orbits.
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3.4. Higher-dimensional space-times

(a) Region (I) (b) Region (II) (c) Region (III)

Figure 3.21: Effective potentials for different regions of geodesic motion in 6-
dimensional Schwarzschild space-time. The red lines denote the squared energy
parameter E2.

(II) R6(r̄) has 0 positive real zeros and R6(r̄) ≥ 0 for positive r̄. Possible orbit
types: terminating escape orbits.

(III) R6(r̄) has 1 positive real zero r1 with R6(r̄) ≥ 0 for 0 ≤ r̄ ≤ r1. Possible orbit
types: terminating bound orbits.

There are no bound orbits for any values of E2 and L since the polynomial R6

possesses at most two positive zeros. For light (ǫ = 0) only regions (I) and (II) are
possible. For each region corresponding effective potentials are shown in Fig. 3.21.
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CHAPTER 4

Geodesics in axially symmetric space-times

In this chapter the results of Chap. 3 are generalized to axially symmetric black hole
solutions of the Einstein equations (3.0.1) with and without a cosmological constant.
The metric of the gravitational fields considered here have the Boyer-Lindquist form

ds2 =
∆r

χ2ρ2

(

dt − a sin2 θdϕ
)2 − ∆θ

χ2ρ2
sin2 θ(adt − (r2 + a2)dϕ)2

− ρ2

∆θ

dθ2 − ρ2

∆r

dr2 , (4.0.1)

where ρ2 = r2 + a2 cos2 θ, ∆r depends only on r, and ∆θ depends only on θ. The
functions ∆r, ∆θ, and χ will be specified for the different space-times considered
in this chapter, namely the Kerr and Kerr-(anti-)de Sitter space-times as well as
briefly, and with some generalisations of (4.0.1), the family of Plebański-Demiański
space-times without acceleration of the gravitating object. (Again, units are used
where the speed of light c and the gravitational constant G are equal to 1.) The Kerr
and Kerr-(anti-)de Sitter space-times are characterized by the mass M , the angular
momentum per mass a = J/M , and the cosmological constant Λ of the black hole.
All space-times with metrics of type (4.0.1) have a singularity at ρ2 = 0, i.e. at
simultaneously r = 0 and θ = π

2
. From a transformation of the Boyer-Lindquist form
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(4.0.1) to cartesian-like coordinates it becomes obvious that ρ2 = 0 corresponds to a
ring singularity [14]. Therefore, in these space-times geodesics do not terminate at
r = 0, θ 6= π

2
and negative values of r are possible. However, large negative values

of r correspond to a negative mass of the black hole [71]. The case that the ring
singularity is naked is widely neglected in this chapter. Other singularities of (4.0.1)
located at the axis θ = 0, π and at ∆r = 0 can be shown to be coordinate singularities
[14].

The geodesic motion in such a space-time is described by the geodesic equation

0 =
d2xµ

ds2
+ { µ

ρσ }
dxρ

ds

dxσ

ds
(4.0.2)

where { µ
ρσ } is the Christoffel symbol, see (3.0.4).

We start with the derivation of some general properties of geodesics, which are
valid for both space-times of type (4.0.1) discussed in the following sections, and
proceed in the second section with a review of geodesics in Kerr space-time. The
corresponding metric is given by (4.0.1) with [10]

∆r = ∆r,K = r2 + a2 − 2Mr ,

∆θ = 1 , and χ = 1
(4.0.3)

resulting in

ds2 =
∆r,K

ρ2

(

dt − a sin2 θdϕ
)2 − ρ2

∆r,K

dr2 − sin2 θ

ρ2
(adt − (r2 + a2)dϕ)2 − ρ2dθ2

=
∆r,K − a2 sin2 θ

ρ2
dt2 + sin2 θ

∆r,Ka2 sin2 θ − (r2 + a2)2

ρ2
dϕ2

+ 2a sin2 θ
(r2 + a2) − ∆r,K

ρ2
dtdϕ − ρ2

∆r,K

dr2 − ρ2dθ2 . (4.0.4)

Dependent on the parameters M and a of the black hole possible types of orbits
in this space-time will be discussed. Following an idea of Mino [30], the geodesic
equations in Kerr space-times can be decoupled and an analytical solution can be
found in terms of elliptic functions.

In the third section we consider the generalization of the metric discussed in the
foregoing section to the case of a nonvanishing cosmological constant. The metric of
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4. Geodesics in axially symmetric space-times

Kerr-(anti-)de Sitter space-times resulting from (4.0.1) with [12]1

∆r = ∆r,KdS =

(

1 − Λ

3
r2

)

(r2 + a2) − 2Mr ,

∆θ = 1 +
a2Λ

3
cos2 θ , and χ = 1 +

a2Λ

3

(4.0.5)

is given by

ds2 =
∆r,KdS

χ2ρ2

(

dt − a sin2 θdϕ
)2 − ρ2

∆r,KdS

dr2

− ∆θ sin2 θ

χ2ρ2
(adt − (r2 + a2)dϕ)2 − ρ2

∆θ

dθ2

=
∆r,KdS − ∆θa

2 sin2 θ

χ2ρ2
dt2 + sin2 θ

∆r,KdSa
2 sin2 θ − ∆θ(r

2 + a2)2

χ2ρ2
dϕ2

+ 2a sin2 θ
∆θ(r

2 + a2) − ∆r,KdS

χ2ρ2
dtdϕ − ρ2

∆r,KdS

dr2 − ρ2

∆θ

dθ2 . (4.0.6)

As in Kerr space-time, types of orbits will be discussed and, in particular, the in-
fluence of the cosmological constant on the geodesic motion will be analyzed. Fur-
thermore, the analytical solutions to the geodesic equations, again decoupled fol-
lowing Mino [30], are derived. This requires the techniques presented in Sec. 3.3
and additionally a method to analytically solve hyperelliptic integrals of third kind.
Afterwards, the analytical solution of the geodesic equation will be used to derive
analytical expressions for observables.

Finally, it will be demonstrated that the methods presented in this thesis can even
be used to analytically solve the geodesic equation in the general class of Plebański-
Demiański space-times without acceleration. As this class of space-times is the most
general admitting a separable Hamilton-Jacobi equation, which in turn exhaust all
integrable cases [75, 76, 77], it will be shown in this section that in all integrable
cases indeed an explicit analytical solution can be given.

4.1 General types of orbits

The geodesic equation (4.0.2) can be separated due to the existence of four constants
of motion. Two of these correspond to the energy per unit mass E and the angular

1The Kerr-de Sitter metric can also be derived using the Ernst equation [72, 73] together with
the solution generating techniques presented in [74].
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4.1. General types of orbits

momentum per unit mass in z direction Lz given by the generalized momenta pt and
pϕ

pt = gttṫ + gtϕϕ̇ =: E ,

−pϕ = −gϕϕϕ̇ − gtϕṫ =: Lz ,
(4.1.1)

where the dot denotes a derivative with respect to the proper time τ . In addition,
a third constant of motion is given by the normalization condition ǫ = gµν ẋ

µẋν with
ǫ = 1 for timelike and ǫ = 0 for null geodesics. A fourth constant of motion can be
obtained in the process of separation of the Hamilton-Jacobi equation

2
∂S

∂τ
= gij ∂S

∂xi

∂S

∂xj
(4.1.2)

using the ansatz

S =
1

2
ǫτ − Et + Lzϕ + Sr(r) + Sθ(θ) . (4.1.3)

If we insert this into (4.1.2) we get

ǫa2 cos2 θ + ∆θ

(

∂Sθ

∂θ

)2

+
χ2

∆θ sin2 θ

(

aE sin2 θ − Lz

)2
=

− ǫr2 − ∆r

(

∂Sr

∂r

)2

+
χ2

∆r

(

(r2 + a2)E − aLz

)2
, (4.1.4)

where each side depends on r or θ only. This means that each side is equal to a
constant K, the famous Carter constant, [11]. In the case of ∆θ = 1 Eq. (4.1.4) can
be reformulated as

ǫa2 cos2 θ +

(

∂Sθ

∂θ

)2

+ χ2

(

L2
z

sin2 θ
− a2E2

)

cos2 θ =

− ǫr2 − ∆r

(

∂Sr

∂r

)2

+
χ2

∆r

(

(r2 + a2)E − aLz

)2 − χ2(aE − Lz)
2, (4.1.5)

where we used the relation

1

sin2 θ

(

aE sin2 θ − Lz

)2
=

(

L2
z

sin2 θ
− a2E2

)

cos2 θ + (aE − Lz)
2 . (4.1.6)

Both sides in Eq. (4.1.5) are also equal to a constant, the modified Carter constant
C, which is related to K by C = K−χ2(aE−Lz)

2. In the following, we will use both
forms of the Carter constant. Usually, K yields simpler formulas whereas C can be
used for geometrical interpretations (see below).
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4. Geodesics in axially symmetric space-times

From the separation ansatz (4.1.3) we derive the equations of motion

ρ4

(

dr

dτ

)2

= χ2((r2 + a2)E − aLz)
2 − ∆r(ǫr

2 + K) =: R(r) , (4.1.7)

ρ4

(

dθ

dτ

)2

= ∆θ(K − ǫa2 cos2 θ) − χ2

sin2 θ
(aE sin2 θ − Lz)

2 =: Θ(θ) , (4.1.8)

ρ2

χ2

dϕ

dτ
=

a

∆r

((r2 + a2)E − aLz) −
1

∆θ sin2 θ
(aE sin2 θ − Lz) , (4.1.9)

ρ2

χ2

dt

dτ
=

r2 + a2

∆r

((r2 + a2)E − aLz) −
a

∆θ

(aE sin2 θ − Lz) . (4.1.10)

In the following sections we will explicitly solve these equations for different choices
of ∆r, ∆θ, and χ. Analogously to the case of spherically symmetric space-times
Eq. (4.1.7) suggests the introduction of an effective potential Veff,r such that Veff,r = E

corresponds to
(

dr
dτ

)2
= 0. However, in contrast to the spherically symmetric case,

there are two solutions

V ±
eff,r =

χLza ±
√

∆r(ǫr2 + K)

(r2 + a2)χ
, (4.1.11)

where
(

dr
dτ

)2 ≥ 0 for E ≤ V −
eff,r and E ≥ V +

eff,r. In the same way an effective potential
corresponding to Eq. (4.1.8) can be introduced

V ±
eff,θ =

Lχ ±
√

∆θ sin2(θ)(K − ǫa2 cos2(θ))

a sin2(θ)χ
, (4.1.12)

but here
(

dθ
dτ

)2 ≥ 0 for V −
eff,θ ≤ E ≤ V +

eff,θ.

The following different types of orbits can be identified in space-times described
by the metric (4.0.1), see 3.1 and [78].

(i) Flyby orbit: r̄ starts from ±∞, then approaches a periapsis r̄ = rp and goes
back to ±∞.

(ii) Bound orbit: r̄ oscillates between to boundary values r1 ≤ r̄ ≤ r2 with −∞ <
r1 < r2 < ∞.

(iii) Transit orbit: r̄ starts from ±∞ and goes to ∓∞ crossing r̄ = 0.
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4.1. General types of orbits

All other types of orbits are exceptional and treated separately. They are either
connected with the ring singularity ρ2 = 0 or with the appearance of multiple zeros
on the right hand side of (4.1.7), which simplifies the structure of this differential
equation considerably. Examples for the latter type are circular orbits and homo-
clinic orbits, see [79]. Orbits terminating at the ring singularity can be classified
analogously to spherically symmetric space-times:

(iv) Terminating bound orbit: r starts in (0, ra] with 0 < ra < ∞ or in [ra, 0) with
−∞ < ra < 0 and falls into the singularity at ρ2 = 0.

(v) Terminating escape orbit: r comes from ±∞ and falls into the singularity.

As large negative r̄ correspond to a negative mass of the black hole [71], we will
assign the attribute crossover to flyby, bound, or terminating orbits which pass from
positive to negative r̄ or vice versa. (By definition, a transit orbit is always a crossover
orbit and, therefore, we will not explicitly state that.)

These types of geodesic motion correspond to different arrangements of real zeros
of R and Θ together with the sign of R and Θ between them. Thus, for given
parameters of the space-time (a, Λ) and the test particle or light ray (ǫ, E, Lz, K) a
geodesic motion is possible only in intervals of r and θ where R(r) ≥ 0 and Θ(θ) ≥ 0.
These two conditions can be studied separately.

Let us consider in more detail the meaning of the Carter constant K or, more
precisely, of the modified Carter constant C. It will become obvious with the following
theorems that C has a direct geometrical interpretation. The corresponding theorems
for the special case of Λ = 0 can be found in [78].

Theorem 4.1. If a geodesic lies entirely in the equatorial plane θ = π
2

or if it hits

the ring singularity ρ2 = 0 then the modified Carter constant C = K − χ2(aE −Lz)
2

is zero.

Proof. A geodesic lies entirely in the equatorial plane iff θ(τ) = π
2

for all τ . This
implies that Θ(θ) = ( dθ

dτ
)2 = 0 and with

Θ
(

θ =
π

2

)

= K − χ2(aE − Lz)
2 = C

it follows C = 0. If a geodesic hits the ring singularity, then there is a τ such that
r(τ) = 0 and θ(τ) = π

2
. As R(r) ≥ 0 and Θ(θ) ≥ 0 for all r and θ of the geodesic,
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4. Geodesics in axially symmetric space-times

and in particular for r̄ = 0, θ = π
2
, it follows

R(r = 0) = χ2a2(aE − Lz)
2 − a2K = −a2C ≥ 0 ⇒ C ≤ 0

and as above Θ
(

θ = π
2

)

= C ≥ 0.

This theorem implies that C = 0 is a necessary condition for equatorial orbits,
which is an important class found in many astrophysical objects like accretion discs
and planetary systems. Note that the modified Carter constant C depends on the
cosmological constant through χ2 = 1+ a2

3
Λ, which also influences the next theorem.

Theorem 4.2. For Λ > − 3
a2 all timelike and null geodesics have K ≥ 0. In this

case K = 0 implies C = 0 and the geodesic lies entirely in the equatorial plane.

Proof. A geodesic can only exist if there are values for r̄(τ) and θ(τ) with R(r) ≥ 0
and Θ(θ) ≥ 0. From Λ > −3

a2 it follows ∆θ = 1 + a2

3
Λ cos2 θ > 1 − cos2 θ ≥ 0. If

K < 0 then (K − ǫa2 cos2 θ) < 0 and

Θ(θ) = ∆θ(K − ǫa2 cos2 θ) − χ2

sin2 θ
(aE sin2 θ − Lz)

2 < 0

for all values of θ. Assume now K = 0. Consequently

Θ(θ) = −ǫa2 cos2 θ∆θ −
χ2

sin2 θ
(aE sin2 θ − Lz)

2 ≤ 0

and Θ(θ) = 0 only if cos2 θ = 0 and additionally (aE sin2 θ−Lz) = aE−Lz = 0.

Since from observation the cosmological constant has a small positive value, the
condition Λ > −3

a2 is fulfilled.

From these two theorems it is obvious that, while K originates from the separation
procedure, the modified Carter constant C has a geometric interpretation since it is
related to possible θ values of the orbits. This relation can be formulated even more
explicite with the help of (i) Θ is symmetric with respect to θ = π

2
, (ii) Θ has at

most 3 real zeros in [0, π
2
], (iii) limθ→0 Θ(θ) = −∞ (assuming Lz 6= 0), and (iv) Θ(π

2
)

has the same sign as C:

• For C < 0 the θ coordinate is confined to 0 < θmin ≤ θ ≤ θmax < π
2

(or the
corresponding region in the southern hemisphere).
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4.2. Kerr space-time

• If Λ ≥ 0 a positive modified Carter constant C > 0 implies that the θ coordinate
oscillates around the equatorial plane. This follows from the fact that in this
case: (i) for Λ = 0 there may be at most 2 real zeros in [0, π

2
], and (ii) for Λ > 0

there may be only 1 real zero in [0, π
2
] as can be inferred from −ǫa4 Λ

3
x1x2x3 = C,

where xi are the zeros of Θ(x = cos(θ)2).

• The case C = 0 implies that θ = π
2

is a double zero of Θ and, thus, that the
corresponding geodesic lies entirely in the equatorial plane (stable or unstable),
or asymptotically approaches the equatorial plane.

The sign of the modified Carter constant C also determines whether crossover
orbits are possible. The value r = 0 is allowed for a geodesic iff

0 ≤ R(0) = χ2a2(aE − Lz)
2 − a2K = −a2C(= −a2Θ(π

2
)) . (4.1.13)

It follows that r = 0 can only be crossed if C < 0 whereas for C > 0 a transition from
positive to negative r is not possible. For C = 0 the geodesic hits the ring singularity
if it lies entirely in the equatorial plane or the geodesic asymptotically approaches
the singularity.

4.2 Kerr space-time

This section deals with the geodesic equation (4.0.2)

0 =
d2xµ

ds2
+ { µ

ρσ }
dxρ

ds

dxσ

ds

in Kerr space-times given by the metric (4.0.4) and characterized by the mass M as
well as the angular momentum per mass a = J/M of the black hole. The geodesic
motion in Kerr space-time is described by Eqs. (4.1.7) - (4.1.10) with the coordinate
functions (4.0.3)

∆r = ∆r,K = r2 + a2 − 2Mr ,

∆θ = 1 , and χ = 1 .

The equations of motion (4.1.7) - (4.1.10) are coupled by ρ2 = r2 + cos2 θ. This
difficulty can be overcome by introducing the Mino time λ [30] which is related to
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4. Geodesics in axially symmetric space-times

the proper time τ by dτ
dλ

= ρ2. Then the equations of motions decouple and read
(

dr

dλ

)2

= RK(r) = ((r2 + a2)E − aLz)
2 − ∆r,K(ǫr2 + K) , (4.2.1)

(

dθ

dλ

)2

= ΘK(θ) = K − ǫa2 cos2 θ − 1

sin2 θ
(aE sin2 θ − Lz)

2 , (4.2.2)

dϕ

dλ
=

a

∆r,K

((r2 + a2)E − aLz) −
1

sin2 θ
(aE sin2 θ − Lz) , (4.2.3)

dt

dλ
=

r2 + a2

∆r,K

((r2 + a2)E − aLz) − a(aE sin2 θ − Lz) . (4.2.4)

The function RK(r) is a polynomial of degree 4 and, thus, Eq. (4.2.1) can in general
be solved in terms of elliptic functions. Eq. (4.2.2) can be transformed such that its
right hand side is a polynomial of degree 3 and, thus, can also be solved in terms
of elliptic functions. These solutions can then be substituted in the remaining two
equations (4.2.3) and (4.2.4) yielding elliptic integrals of third kind.

Kerr space-times can be classified according to their number of horizons which
depends on the rotation parameter a. Horizons are located at the coordinate singu-
larities given by ∆r,K = r2 + a2 − 2Mr = 0, i.e. at r± = M ±

√
M2 − a2. We speak

of slow Kerr if there are two horizons, i.e. if a2 < M2, of extreme Kerr if there is
one horizon, i.e. if a2 = M2, and of fast Kerr if there is no horizon at all, i.e. if
a2 > M2. For the slow case with a2 < M2 the outer horizon is an event horizon
and the inner a Cauchy horizon. In the following section we will concentrate on the
slow case, but the extreme and fast case can be studied analogously. However, the
analytical solution to the geodesic equation presented afterwards is valid for all types
of Kerr space-times.

4.2.1 Types of orbits

All possible orbit types in Kerr space-time can be read of the right hand sides RK(r)
and ΘK(θ) of Eqs. (4.2.1) and (4.2.2). For given parameters M and a of the black
hole, a geodesic with parameters ǫ, E, Lz, and K can exist only if there is any
θ ∈ [0, π] such that ΘK(θ) ≥ 0 and any r such that RK(r) ≥ 0. The orbit type of a
geodesic can then be determined by the number of positive real zeros of RK together
with the sign of its leading coefficient as explained in Sec. 4.1.

For the analysis of the dependence of the possible types of orbits on the parameters
of the space-time and the test particle or light ray it is convenient to rescale the

84



4.2. Kerr space-time

parameters appearing in Eqs. (4.2.1)-(4.2.4) such that they are dimensionless. Thus,
we introduce

r̄ =
r

M
, t̄ =

t

M
, ā =

a

M
, L̄z =

Lz

M
, K̄ =

K

M2
, (4.2.5)

and accordingly

∆r̄,K = r̄2 + ā2 − 2r̄ , (∆r,K = M2∆r̄,K) . (4.2.6)

In addition, we can absorb M in the definition of λ by introducing

γ = Mλ . (4.2.7)

Then the equations (4.2.1)-(4.2.4) can be rewritten as

(

dr̄

dγ

)2

= P
2(r) − ∆r̄,K(ǫr̄2 + K̄) =: R̄K(r̄) , (4.2.8)

(

dθ

dγ

)2

= K̄ − ǫā2 cos2 θ − T2(θ)

sin2 θ
=: Θ̄K(θ) , (4.2.9)

dϕ

dγ
=

ā

∆r̄,K

P(r) − 1

sin2 θ
T(θ) , (4.2.10)

dt̄

dγ
=

r̄2 + ā2

∆r̄,K

P(r) − āT(θ) . (4.2.11)

where
P(r) = (r̄2 + ā2)E − āL̄z ,

T(θ) = āE sin2 θ − L̄z .
(4.2.12)

First, we will study the motion in θ direction.

Types of latitudinal motion

Geodesics can take an angle θ if and only if Θ̄K(θ) ≥ 0. Thus, it has to be determined
which values of ā, E, L̄z, K̄, and θ ∈ [0, π] result in positive Θ̄K(θ). For simplicity,
we substitute ν = cos2 θ giving

Θ̄K(ν) = K̄ − ǫā2ν −
(

ā2E2(1 − ν) − 2āEL̄z +
L̄2

z

1 − ν

)

. (4.2.13)
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4. Geodesics in axially symmetric space-times

Assume now that for a given set of parameters there exists a certain number of zeros
of Θ̄K(ν) in [0, 1]. If we vary the parameters, the position of zeros varies and the
number of real zeros in [0, 1] can change only if (i) a zero crosses 0 or 1 or (ii) two
zeros merge. Let us consider case (i). 0 is a zero iff

Θ̄K(ν = 0) = K̄ − (āE − L̄z)
2 = 0 (4.2.14)

or

L̄z = āE ±
√

K̄ . (4.2.15)

As ν = 1 is in general a pole of Θ̄K(ν) it is a necessary condition for 1 being a zero of
Θ̄K(ν) that this pole becomes a removable singularity. From (4.2.13) it follows that
this is the case for L̄z = 0. Under this assumption we obtain

Θ̄K(ν) = ā2(E2 − ǫ)ν + K̄ − ā2E2 for L̄z = 0 (4.2.16)
ν=1
= K̄ − ǫā2 . (4.2.17)

Summarized, L̄z = āE±
√

K̄ and simultaneously L̄z = 0 and K̄ = ǫā2 give us border
cases of the θ motion.

Now let us consider case (ii). If we exclude the coordinate singularities θ = 0, π
or ν = 1 the zeros of Θ̄K(ν) are given by the zeros of

Θν(ν) = (1 − ν)(K̄ − ǫā2ν) −
(

āE − L̄z − āEν
)2

, (4.2.18)

= −ā2(E2 − ǫ)ν2 + (2āE(āE − L̄z) − K̄ − ǫā2)ν + K̄ − (āE − L̄z)
2 ,

which is in general a polynomial of degree 2. The two zeros of Θ coincide at a double
zero x ∈ [0, 1) iff

Θν(x) = 0 and
dΘν

dν
(x) = 0 . (4.2.19)

These two equations can be solved for L̄z depending on E and the remaining param-
eters ā and K̄ by

L̄z =
(E ±

√
E2 − 1)(ā2 − K̄)

2ā
for ǫ = 1 ,

L̄z =
−K̄

4āE
for ǫ = 0 .

(4.2.20)
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4.2. Kerr space-time

From this equation it is obvious that in the case of timelike geodesics double
zeros may only occur for E2 ≥ 1. More precisely, from the condition that double
zeros are considered only in [0, 1) a lower bound for E can be derived, see below.
The representation (4.2.20) of values of L̄z again correspond to border cases of the
θ motion. Let us additionally consider the conditions for ν = 1 being a double zero.
With L̄z = 0 and K̄ = ǫā2 it follows

dΘK(ν)

dν

∣

∣

∣

ν=1
= ā2(E2 − ǫ) , (4.2.21)

which is zero for E2 = ǫ. Note that in the case L̄z = 0 the function ΘK(ν) is linear
and, thus, that L̄z = 0, K̄ = ǫā2, and E2 = ǫ correspond to ΘK ≡ 0.

From the number of zeros of ΘK in [0, 1] the type of latitudinal motion can be
inferred if the sign of ΘK at θ = 0 (which is same as at θ = π) is known. For L̄z 6= 0,
it is limθ→0 ΘK(θ) = −∞, but for L̄z = 0 the sign of ΘK(θ = 0) is given by K̄ − ǫā2.

For given parameter of the black hole ā we can use these informations to analyse
the θ motion of all possible geodesics in this space-time. As a typical example for
timelike geodesics in a slow Kerr space-time consider Fig. 4.1, where the curves divide
the half plane into four regions (a)-(d) which correspond to different arrangement of
zeros in [0, 1] and to the following different types of motion in θ direction:

(a) no geodesic motion possible,

(b) Θν has one real zero νmax in [0, 1) with Θν ≥ 0 for ν ∈ [0, νmax], i.e. θ oscillates
around the equatorial plane θ = π

2
,

(c) no geodesic motion possible,

(d) Θν has two real zeros νmin, νmax in [0, 1) with Θν ≥ 0 for ν ∈ [νmin, νmax], i.e. θ
oscillates between arccos(±√

νmin) and arccos(±√
νmax).

A geodesic motion is only possible in regions (b) and (d) because in all other regions
Θν is negative for all ν ∈ [0, 1]. Note that for the special case of K̄ = ǫā2 strictly
speaking regions (b) and (d) are divided by L̄z = 0 as this is a border case of the θ
motion. However, in each region we have for L̄z > 0 and L̄z < 0 the same number
of zeros in [0, 1] and, thus, the same type of motion. (More precisely, near L̄z = 0 a
zero ν0 < 1 of ΘK(ν) approaches 1, but does not cross it.) Therefore, in each region
we put the parts above and below L̄z = 0 together.
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4. Geodesics in axially symmetric space-times

(a) ā = 0.4, K̄ = 2 (b) ā = 0.4, K̄ = 6

(c) ā = 0.8, K̄ = 2 (d) ā = 0.8, K̄ = 6 (e) ā = 0.8, K̄ = 1, ǫ = 0

Figure 4.1: Typical regions of different types of θ-motion in slow Kerr space-time.
A geodesic motion is only possible in the regions (b) and (d) in each plot. On the
boundaries of region (b) the modified Carter constant C vanishes. Here ǫ = 1 with
the exception of plot (e), where it is shown that region (d) may have E2 < 1 for
ǫ = 0 (note the rescaled axes). For effective potentials see Fig. 4.2.
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4.2. Kerr space-time

Figure 4.2: Effective potentials for different regions of the theta motion in Kerr
space-time. The red lines denote the energy parameter E.

Note that the case L̄z = 0 itself has to be treated separatly as Θν is not the
appropiate function here but ΘK(ν), which is then a linear function with a zero at
ā2E2−K̄
ā2(E2−ǫ)

. If K̄
ā2 < ǫ, the case L̄z = 0 belongs to region (b) if E2 ≤ K̄

ā2 but to region (a)

or (c) if E2 > K̄
ā2 . However, if K̄

ā2 > ǫ, θ may take all values in [0, π] if E2 < K̄
ā2 but

only a range 0 ≤ θ ≤ θmax (or π ≥ θ ≥ π − θmax) if E2 ≥ K̄
ā2 . In the case of K̄

ā2 = ǫ,
θ = 0, π is always a zero of ΘK and ΘK(π

2
) = −ā2(E2 − ǫ).

Typical examples of the corresponding effective potentials for each region are
pictured in Fig. 4.2. Remember that ΘK > 0 between the two potentials V ±

eff,θ,

see (4.1.12). The boundaries of region (b) are given by L̄z = āE ±
√

K̄ (for both
ǫ = 0 and ǫ = 1) and, therefore, the regions gets larger if K̄ grows. A change of
ā in addition causes region (b) to shift up or down. The upper boundary of (d) is
identical with the lower boundary of region (b) whereas the lower boundary of (d)
is given by (4.2.20). The point where the upper and lower boundaries of region (d)
touch each other is where 0 is a double zero of Θν , which is given by

E =
1

2

K̄ + ā2

√
K̄ā

for ǫ = 1 ,

E =
1

2

√
K̄

ā
for ǫ = 0 .

(4.2.22)

The regions (b) and (d) are characterized in a simple way in terms of the modified
Carter constant C as explained in Sec. 4.1: As in region (d) Θν(0) < 0 it follows that
this region corresponds to C < 0. In the same way we can conclude that region (b),
where Θν(0) > 0, corresponds to C > 0. In addition, crossover orbits corresponding
to C < 0 are only possible in region (d).
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4. Geodesics in axially symmetric space-times

(a) Regions of r̄ motion (b) Combination with θ motion

Figure 4.3: Regions of different types of timelike geodesics in Kerr space-time for
both r̄ and θ motion. Here ā = 0.8 and K̄ = 12. Blue lines correspond to boundaries
of the r̄ motion and red lines to boundaries of the θ motion.

Types of radial motion

A geodesic can take a radial coordinate r̄ if and only if

R̄K(r̄) = ((r̄2 + ā2)E − āL̄z)
2 − ∆r̄,K(ǫr̄2 + K̄) ≥ 0 .

The zeros of R̄K are extremal values of r̄(γ) and determine the type of geodesic.
The polynomial R̄K is in general of degree 4 in r̄ and, therefore, has 4 possibly
complex zeros of which the real zeros are of interest for the type of motion. As a
Kerr space-time has no singularity in r̄ = 0, θ 6= π

2
, we can also consider negative r̄

as valid.

For a given set of parameters, R̄K has a certain number of real zeros. If we vary
the parameters this number can change only if two zeros merge to one. This happens
at r̄ = x iff

RK(r̄) = (r̄ − x)2(a2r̄
2 + a1r̄ + a0) (4.2.23)

for some real constants ai. By a comparison of coefficients we can solve the resulting
5 equations for E2(x) and L̄z(x) depending on the remaining parameters ā and K̄.
This yields two complicated expressions for E2 and L̄z, which can not be analyzed
easily for the influence of each of the parameters ā and K̄. However, a typical result
in a slow Kerr space-time including the results of the analysis of the θ motion is
shown in Fig. 4.3 for timelike geodesics and in 4.4 for null geodesics. Here, the dark

90



4.2. Kerr space-time

(a) Regions of r̄ motion (b) Combination with θ motion

Figure 4.4: Regions of different types of null geodesics in Kerr space-time for both
r̄ and θ motion. Here ā = 0.8 and K̄ = 12. Blue lines correspond to boundaries of
the r̄ motion and red lines to boundaries of the θ motion.

blue lines correspond to pairs of E2 and L̄z which are given by negative x, the blue
line to positive x and the reddish lines to the analysis of the latitudinal motion. The
alterations due to changing ā and K̄ are shown in Fig. 4.5. From these plots in can
be concluded that for growing ā and K̄ regions (IIIb) and (IVb) are enlarged. As in
general for growing K̄ region (b) of the θ motion is widened, it can be inferred that
in this case the regions (IIb) to (Vb) are enlarged for fixed ā. However, at the same
time the regions (Id) and (IId) gets smaller.

We recognize five regions of different types of timelike r motion. (Here we always
assume ri < ri+1.)

(I) All zeros of RK are complex and R̄K(r̄) ≥ 0 for all r̄. Possible orbit types:
transit orbit.

(II) R̄K has two real zeros r1, r2 and R̄K(r̄) ≥ 0 for r̄ ≤ r1 and r2 ≤ r̄. Possible
orbit types: two flyby orbits, one to +∞ and one to −∞.

(III) All four zeros ri, 1 ≤ i ≤ 4, of R̄K are real and R̄K(r̄) ≥ 0 for r2k−1 ≤ r̄ ≤ r2k,
k = 1, 2. Possible orbit types: two different bound orbits.

(IV) Again all four zeros of R̄K are real but R̄K(r̄) ≥ 0 for r̄ ≤ r1, r2 ≤ r̄ ≤ r3, and
r4 ≤ r̄. Possible orbit types: two flyby orbits, one to each of ±∞ and a bound
orbit.
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4. Geodesics in axially symmetric space-times

(a) ā = 0.4, K̄ = 2 (b) ā = 0.4, K̄ = 12 (c) ā = 0.4, K̄ = 25

(d) ā = 0.8, K̄ = 2 (e) ā = 0.8, K̄ = 12 (f) ā = 0.8, K̄ = 25

Figure 4.5: Alterations of regions of different types of timelike geodesics in Kerr
space-time

(V) R̄K has two real zeros r1, r2 and R̄K(r̄) ≥ 0 for r1 ≤ r̄ ≤ r2. Possible orbit
types: a bound orbit.

Although there is the same number of real zeros the different orbit types in regions
(III)/(IV) and (II)/(V) are due to the different behavior of R̄K when r̄ → ±∞. The
expression R̄K =

∑4
i=1 air̄

4 is a polynomial of degree 4 with a4 = E2 − ǫ which for
r̄ → ±∞ yields R̄K(r̄) → ∞ if E2 > ǫ and R̄K(r̄) → −∞ if E2 < ǫ. For light (ǫ = 0)
only regions (I),(II), and (IV) are present, see Fig. 4.4. The corresponding effective
potentials for every region are pictured in Fig. 4.6

Let us also analyse where we have crossover orbits. As region (I) can only contain
a transit orbit, which is by definition a crossover orbit, it can only intersect region (d).
Examples of ā and K̄ where region (IIb) as well as region (IId) appears are shown
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(a) Region (I) (b) Region (II) (c) Region (III) (d) Region (IV) (e) Region (V)

Figure 4.6: Effective potentials for different regions of the r motion in Kerr space-
time. The red lines denote the energy parameter E.

region − + range of r̄ types of orbits

Id 0 0 transit

IIb 1 1 2x flyby

IId 2 0 flyby, crossover flyby

IIIb 0 4 2x bound

IVb 1 3 2x flyby, bound

Vb 0 2 bound

Table 4.1: Orbit types in slow Kerr space-time. The + and − columns give the
number of positive and negative real zeros of the polynomial R̄K. In the fourth
column, the thick lines represent the range of orbits. Turning points are shown by
thick dots. The small vertical line denotes r̄ = 0.

in Fig. 4.3. The regions (III) and (V) have E2 < 1 and, thus, no points in region (d)
due to (4.2.22). Therefore, there are no crossover orbits in these regions. Apparently,
also region (IV) only contains region (b) of θ motion although this remains to be
shown. The results of this paragraph together with the numbers of positive and
negative zeros for each region are summarized in Tab. 4.1.

In Figs. 4.7 and 4.8 typical examples for timelike and null geodesics in a slow
Kerr space-time are shown. Due to the singularities on the right hand sides of the
differential equations (4.2.10) and (4.2.11) for ϕ and t̄ a geodesic approaching one of
the horizons at 1 ±

√
1 − ā2 will infinitely many times spiral around the black hole

as well as it will take an infinite time to cross the horizon. However, an observer
traveling along such a geodesic will experience a cross of the horizon in a finite time.
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(a) E2 = 1.1, L̄z = −1, flyby orbit in region (IIb)

(b) E2 = 0.95, L̄z = 3, outer bound orbit in
region (IIIb)

(c) E2 = 0.95, L̄z = 3, inner bound orbit in
region (IIIb)

(d) E2 = 1.1, L̄z = 3, flyby orbit in region (IVb) (e) E2 = 0.5, L̄z = −1, bound orbit in region
(Vb)

Figure 4.7: Timelike geodesics in Kerr space-time for ā = 0.8 and K̄ = 12. In each
subplot, on the left side the r-θ plane and on the right side a 3d-image and/or the
r-ϕ plane is shown. Light grey lines and cones correspond to extremal θ and dark
grey spheres as well as dashed black circles to horizons. The bound orbits in (c) and
(e) crosses the Cauchy horizon several times and, thus, are many world bound orbits.
The flyby orbit in (a) is a two-world orbit. At every horizon, the ϕ-coordinate goes
to ∞ as witnessed by a distant observer.
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(a) E2 = 0.2, L̄z = 2, flyby orbit in region (IVb) (b) E2 = 0.2, L̄z = 2, many-world bound orbit
in region (IVb)

(c) E2 = 20, L̄z = −0.5, crossover flyby orbit in region (IId)

Figure 4.8: Null geodesics in Kerr space-time for ā = 0.8 and K̄ = 12. In each
subplot, on the left side the r-θ plane and on the right side a 3d-image and/or the
r-ϕ plane is shown. Grey or black lines, cones, and spheres as in Fig. 4.7.

For describing this smooth cross other coordinates in place of ϕ and t has to be
introduced which have no singularity at that horizon. These coordinates are known
as ∗K or K∗ coordinates, see [78, 14]. As in Reissner-Nordström space-time, there
exist bound and flyby orbits crossing the Cauchy horizon at r̄C = 1−

√
1 − ā2, then

being reflected and again crossing r̄C thereby entering a new copy of the Kerr space-
time. This can be inferred from the Carter-Penrose diagram of the Kerr space-time,
see e.g. [14]. We will call such orbits many-world bound or two-world flyby orbits,
as in Reissner-Nordström space-time.

95



4. Geodesics in axially symmetric space-times

4.2.2 Analytical solutions of the geodesic equations

In this subsection the analytical solutions of the geodesic equations (4.2.8)-(4.2.11)

(

dr̄

dγ

)2

= R̄K(r̄) = P
2(r) − ∆r̄,K(ǫr̄2 + K̄) , (4.2.8)

(

dθ

dγ

)2

= Θ̄K(θ) = K̄ − ǫā2 cos2 θ − T2(θ)

sin2 θ
, (4.2.9)

dϕ

dγ
=

ā

∆r̄,K

P(r) − 1

sin2 θ
T(θ) , (4.2.10)

dt̄

dγ
=

r̄2 + ā2

∆r̄,K

P(r) − āT(θ) , (4.2.11)

where

P(r) = (r̄2 + ā2)E − āL̄z ,

T(θ) = āE sin2 θ − L̄z ,

are presented. Each equation is treated separately.

r̄ motion

As mentioned before the function R̄K(r̄) in (4.2.8)

R̄K(r̄) = P
2(r) − ∆r̄,K(ǫr̄2 + K̄)

is a polynomial of degree 4 for both ǫ = 1 and ǫ = 0 and, therefore, the differential
equation (4.2.8) is of elliptic type if R̄K has only simple zeros but can be solved
in terms of elementary functions if R̄K has multiple zeros. In the latter case the
analytical solution can be found for example in [31]. In the following it is assumed
that R̄K has only simple zeros.

Analogous to the situation in Reissner-Nordström space-time, see Sec. 3.2.2, the
polynomial R̄K can be transformed to the Weierstrass form (2.1.5) by the standard
substitutions, i.e. first r̄ = 1

ξ
+ r̄K for a zero r̄K of R̄K(r̄), what yields

(

dξ

dγ

)2

=
3

∑

j=0

aj ξj , aj =
1

(4 − j)!

d(4−j)R̄K

dr̄4−j
(rK) . (4.2.24)
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Second, ξ = 1
a3

(

4y − a2

3

)

casts (4.2.24) in the form

(

dy

dγ

)2

= 4y3 − g2y − g3 , (4.2.25)

where g2, g3 are given by the standard equation (2.1.11)

g2 =
1

16

(

4

3
a2

2 − 4a1a3

)

,

g3 =
1

16

(

1

3
a1a2a3 −

2

27
a3

2 − a0a
2
3

)

.

The analytical solution of Eq. (4.2.8) for Kerr space-time is then given by

r̄(γ) =
1

ξ(γ)
+ rK =

a3

4℘(γ − γr,in) − a2

3

+ rK , (4.2.26)

where

γr,in = γ0 +

∫ ∞

y0

dz
√

4z3 − g2z − g3

, y0 =
1

4

(

a3

r̄0 − rK

+
a2

3

)

, (4.2.27)

depends only on the initial values γ0 and r̄0.

θ motion

The first step to an analytical solution of Eq. (4.2.9) is a substitution ν = cos2 θ
which yields the easier differential equation

(

dν

dγ

)2

= 4νΘν(ν) (4.2.28)

= −4ā2(E2 − ǫ)ν3 + 4(2āE(āE − L̄z) − K̄ − ǫā2)ν2 + 4(K̄ − (āE − L̄z)
2)ν

where Θν is defined in (4.2.18). The polynomial on the right hand side of (4.2.28) is
in general of degree 3 for both ǫ = 1 and ǫ = 0 and, thus, of elliptic type. However,
if the degree of 4νΘν is reduced to 2, which is the case for E2 = ǫ, or if νΘν has
multiple zeros Eq. (4.2.28) can be solved in terms of elementary functions, see e.g.
[31]. In the following we assume that this is not the case.
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Eq. (4.2.28) can be cast in the Weierstrass form (2.1.5) with the standard substi-
tution

ν =
3y − 2āE(āE − L̄z) + K̄ + ǫā2

−3ā2(E2 − ǫ)
. (4.2.29)

The solution of (4.2.9) is then given by

θ(γ) = arccos

(

±
√

3℘(γ − γθ,in) − 2āE(āE − L̄z) + K̄ + ǫā2

−3ā2(E2 − ǫ)

)

, (4.2.30)

where

γθ,in = γ0 +

∫ ∞

y0

dz
√

4z3 − g2z − g3

,

y0 =
1

3

(

−3ā2 cos2 θ0(E
2 − ǫ) + 2āE(āE − L̄z) − K̄ − ǫā2

)

,

(4.2.31)

and

g2 =
4

3

(

2āE(āE − L̄z) − K̄ − ǫā2
)2

+ 4ā2(K̄ − (āE − L̄z)
2)(E2 − ǫ) ,

g3 = 4(2āE(āE − L̄z) − K̄ − ǫā2)
[−ā2

3
(K̄ − (āE − L̄z)

2)(E2 − ǫ)

− 2

27
(2āE(āE − L̄z) − K̄ − ǫā2)2

]

.

(4.2.32)

The sign of the square root in (4.2.30) has to be chosen according to θ being in
the northern (plus sign) or southern (minus sign) hemisphere and, thus, depends on
the initial value θ0. If the motion oscillates around the equatorial plane, the two
solutions with different signs have to be glued together along θ = π

2
starting with

the sign indicated by θ0.

ϕ motion

The equation for ϕ

dϕ

dγ
=

ā

∆r̄,K

P(r) − 1

sin2 θ
T(θ)
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can be splitted in a part only dependent on r and a part only dependent on θ. An
integration yields

ϕ − ϕ0 =

∫ γ

γ0

āP(r)

∆r̄(γ),K

dγ −
∫ γ

γ0

T(θ)dγ

sin2 θ(γ)

=

∫ r̄

r̄0

āP(r)dr̄

∆r̄,K

√

R̄K(r̄)
−

∫ θ

θ0

T(θ)dθ

sin2 θ
√

Θ̄K(θ)
, (4.2.33)

where we substituted r̄ = r̄(γ), i.e. dr̄
dγ

=
√

R̄K, in the first and θ = θ(γ), i.e.
dθ
dγ

=
√

Θ̄K, in the second integral.

We will solve now the two integrals in (4.2.33) separately.

r̄ dependent part Let us consider the first, r̄ dependent integral in (4.2.33)

Ir :=

∫ r̄

r̄0

ā
(

(r̄2 + ā2)E − āL̄z

)

dr̄

∆r̄,K

√

R̄K

. (4.2.34)

Analogous to subsection 4.2.2 this integral can be solved by elementary functions
if R̄K has multiple zeros [31]. However, in general Ir is an elliptic integral of third
kind. Thus, a transformation of R̄K to the standard Weierstrass form has to be
carried out, what can be achieved in the same way as in subsection 4.2.2. The
substitutions r̄ = ξ−1 + r̄K for a zero r̄K and ξ = 1

a3

(

4y − a2

3

)

where a3, a2 are given
by (4.2.24) together with a subsequent partial fraction decomposition cast Ir in the
form

Ir = −ā
|a3|
a3

[

P(r̄K)

∆r̄K,K

∫ y

y0

dy
√

PW (y)
+

2
∑

i=1

∫ y

y0

Cidy

(y − yi)
√

PW (y)

]

= −ā
|a3|
a3

[

P(r̄K)

∆r̄K,K

(v − v0) +
2

∑

i=1

∫ v

v0

Cidv

(℘(v) − yi)

]

, (4.2.35)

where PW (y) = 4y3 − g2y − g3, yi are the zeros of the polynomial 144∆r̄K,Kz2 −
24(a2∆r̄K,K + 3a3(r̄K − 1))z + a2

2∆r̄K,K − 6a2a3(r̄K − 1) + 9a2
3, and Ci is the coefficient

of the partial fraction (y − yi)
−1. This integral can now be solved with the standard
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4. Geodesics in axially symmetric space-times

procedure described in Thm. 2.5 and appendix A. The result is

Ir(γ) = −ā
|a3|
a3

[

P(r̄K)

∆r̄K,K

(γ − γ0) +
2

∑

i,j=1

Ci

℘′(vij)

(

ζ(vij)(γ − γ0) + log σ(γ − γij) − log σ(γ0 − γij)
)

]

, (4.2.36)

where ℘(γij − γr,in) = yi.

θ dependent part We solve now the θ dependent integral

Iθ :=

∫ θ

θ0

(

āE sin2 θ − L̄z

)

dθ

sin2 θ
√

Θ̄
, (4.2.37)

which can be transformed to the easier form

Iθ = ∓
∫ ν

ν0

āE(1 − ν) − L̄z

(1 − ν)
√

4νΘν

dν (4.2.38)

by the substitution ν = cos2 θ, where Θν is defined in (4.2.18). Here we have to pay
special attention to the integration path. If θ ∈ (0, π

2
] we have cos θ = +

√
ν but for

θ ∈ [π
2
, π) it is cos θ = −√

ν. Accordingly, we first have to split the integration path
from θ0 to θ such that every piece is fully contained in the interval (0, π

2
] or [π

2
, π)

and then to choose the appropriate sign of the square root of ν in cos θ =
√

ν. By
these considerations it seems like the sign of Iθ and, thus, the ϕ coordinate depends
on whether the particle is in the nothern or southern hemisphere. But in fact the
branches of the square root

√
4νΘν also change when the substitution cos θ = +

√
ν

changes to cos θ = −√
ν. Therefore, in the whole the sign of Iθ does not depend on

whether θ is in the northern or southern hemisphere. In the following we assume for
simplicity that cos θ = +

√
ν.

Analogous to subsection 4.2.2 the integral Iθ can be solved by elementary functions
if νΘν has at least a double zero [31]. If νΘν has only simple zeros Iθ is of elliptic
type and of third kind. If this is the case, a substitution

ν =
1

a3

(

4y − a2

3

)

(4.2.39)

with a2 = 4(2āE(āE − L̄z) − K̄ − ǫā2) , a3 = −4ā2(E2 − ǫ)
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4.2. Kerr space-time

transforms Iθ to

Iθ = −|a3|
a3

∫ y

y0

4āEy − āE(a3 + a2

3
) + L̄za3

(4y − a3 − a2

3
)
√

PW (y)
dy

= −|a3|
a3

[

āE

∫ y

y0

dy
√

PW (y)
+

∫ y

y0

a3L̄zdy

(4y − a3 − a2

3
)
√

PW (y)

]

= −|a3|
a3

[

āE(v − v0) +

∫ v

v0

a3L̄zdv

4℘(v) − a3 − a2

3

]

, (4.2.40)

where PW (y) = 4y3 − g2y − g3 with g2, g3 as in (4.2.31) and ℘(v) = y. The square
root of PW has to be chosen such that it coincides with the sign of ℘′. The integral
in (4.2.40) can now be solved with the standard procedure described in Thm. 2.5
and appendix A. The result is

Iθ(γ) = −|a3|
a3

[

āE(γ − γ0) +
a3L̄z

4

2
∑

j=1

1

℘′(vj)
(

ζ(vj)(γ − γ0) + log σ(γ − γj) − log σ(γ0 − γj)

)]

, (4.2.41)

where ℘(γj − γθ,in) = a3

4
+ a2

12
.

t motion

The differential equation for t̄,

dt̄

dγ
=

r̄2 + ā2

∆r̄,K

P(r̄) − āT(θ) ,

can be solved analogously to the equation for the ϕ motion (4.2.10). First, the
equation can be integrated yielding

t̄ − t̄0 =

∫ γ

γ0

r̄2 + ā2

∆r̄,K

P(r̄)dγ − ā

∫ γ

γ0

T(θ)dγ

=

∫ r̄

r̄0

r̄2 + ā2

∆r̄,K

P(r̄)
√

R̄K(r̄)
dr̄ − ā

∫ θ

θ0

T(θ)
√

Θ̄K(θ)
dθ (4.2.42)

=: Ĩr − āĨθ . (4.2.43)
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4. Geodesics in axially symmetric space-times

As the solution procedure for the type of integrals on the right hand side of this
equation was already explained, we just write down here the result for the most
general cases.

The integral Ĩr is solved by

Ĩr = C0

∫ y

y0

dy
√

4y3 − g2y − g3

+
3

∑

i=1

Ci1

∫ y

y0

dy

(y − yi)
√

4y3 − g2y − g3

+ C32

∫ y

y0

dy

(y − y3)2
√

4y3 − g2y − g3

= C0(γ − γ0) +
3

∑

i=1

2
∑

j=1

Ci1

℘′(vij)

(

ζ(vij)(γ − γ0) + log σ(γ − γij) − log σ(γ0 − γij)
)

−
2

∑

j=1

C32

℘′(v3j)

[

℘(v3j)℘
′(v3j) + 2℘′′(v3j)ζ(v3j)

℘′(v3j)2
(γ − γ0) + ζ(γ − γ3j)

+ 2℘′′(v3j)(log σ(γ − γ3j) − log σ(γ0 − γ3j))

]

, (4.2.44)

where C0 is a constant, Cik are the coefficients of the partial fractions (y − yi)
−k

which may be computed with the help of a computer algebra system, y1, y2 are
the two zeros of ∆y(r̄),K, y3 = a2

12
with a2 as in (4.2.24), g2, g3 as in the Sec. 4.2.2,

℘(vi1) = yi = ℘(vi2), and γij = γr,in + vij.

With the same substitutions as in Sec. 4.2.2 the polynomial Θ(θ) can be trans-
formed to the standard Weierstrass form. With these substitutions the integral Ĩθ

becomes

Ĩθ = −4āE

a3

∫ y

y0

ydy
√

4y3 − g2y − g3

+
3āEa3 + āEa2 − 3La3

3a3

∫ y

y0

dy
√

4y3 − g2y − g3

=
4āE

a3

ζ(γ − γ0) +
3āEa3 + āEa2 − 3La3

3a3

(γ − γ0) (4.2.45)

where a3 = −4ā2(E2 − ǫ) and a2 = 4(2āE(āE − L̄z) − K̄ − ǫā2).

4.3 Kerr-de Sitter space-time

The aim of this section is the generalization of the results of Sec. 4.2 to the case of
a nonvanishing cosmological constant. Thus, the geodesic equations (4.1.7)-(4.1.10)

102



4.3. Kerr-de Sitter space-time

in Kerr-(anti-)de Sitter space-time

ρ4

(

dr

dτ

)2

= R(r) = χ2((r2 + a2)E − aLz)
2 − ∆r,KdS(ǫr

2 + K) , (4.1.7)

ρ4

(

dθ

dτ

)2

= Θ(θ) = ∆θ(K − ǫa2 cos2 θ) − χ2

sin2 θ
(aE sin2 θ − Lz)

2 , (4.1.8)

ρ2

χ2

dϕ

dτ
=

a

∆r,KdS

((r2 + a2)E − aLz) −
1

∆θ sin2 θ
(aE sin2 θ − Lz) , (4.1.9)

ρ2

χ2

dt

dτ
=

r2 + a2

∆r,KdS

((r2 + a2)E − aLz) −
a

∆θ

(aE sin2 θ − Lz) , (4.1.10)

where ∆r,KdS and ∆θ are given by (4.0.5)

∆r = ∆r,KdS =

(

1 − Λ

3
r2

)

(r2 + a2) − 2Mr ,

∆θ = 1 +
a2Λ

3
cos2 θ , χ = 1 +

a2Λ

3
,

are analyzed and analytically solved along the lines of [80, 81]. The Kerr-(anti-)
de Sitter space-time in Boyer-Lindquist form describes an axially symmetric and
stationary vacuum solution of Einstein’s equations and is characterized by the mass
M of the gravitating body, the angular momentum per mass a = J/M , and the
cosmological constant Λ.

The geodesic equations (4.1.7)-(4.1.10) are coupled by ρ2 = r2 + a2 cos2 θ. Anal-
ogously to Kerr space-time this can be handled by introducing the Mino time λ
[30] connected to the proper time τ by dτ

dλ
= ρ2. Dependent on this Mino time the

equations of motions read

(

dr

dλ

)2

= RKdS(r) = χ2((r2 + a2)E − aLz)
2 − ∆r,KdS(ǫr

2 + K) , (4.3.1)

(

dθ

dλ

)2

= ΘKdS(θ) = ∆θ(K − ǫa2 cos2 θ) − χ2

sin2 θ
(aE sin2 θ − Lz)

2 , (4.3.2)

1

χ2

dϕ

dλ
=

a

∆r,KdS

((r2 + a2)E − aLz) −
1

∆θ sin2 θ
(aE sin2 θ − Lz) , (4.3.3)

1

χ2

dt

dλ
=

r2 + a2

∆r,KdS

((r2 + a2)E − aLz) −
a

∆θ

(aE sin2 θ − Lz) . (4.3.4)
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4. Geodesics in axially symmetric space-times

(a) black: Λ = 0,
grey: Λ = −10−5

(b) Λ = 10−5

Figure 4.9: Regions of slow and fast Kerr-de Sitter for different values of Λ. a)
Below the line we have a slow Kerr-anti-de Sitter space-time (with a Cauchy and an
event horizon) and above a fast one corresponding to a naked singularity. b) In the
region bounded by the two curves we have a slow Kerr-de Sitter space-time with two
cosmological horizons, where one is located at negative r, a Cauchy horizon and an
event horizon. Outside we have a fast one with two cosmological horizons, one again
at negative r.

As RKdS is in general a polynomial of degree 6, the differential equation (4.3.1) is of
hyperelliptic type and an analytical solution can be found with the method presented
in Chap. 3, Sec. 3.3. The right hand side ΘKdS of Eq. (4.3.2) can be transformed to
a polynomial of degree 4 and, thus, this equation is of elliptic type with a analytical
solution in terms of Weierstrass functions. However, Eqs. (4.3.3) and (4.3.4) have the
most complicated form considered in this thesis. If the solutions of (4.3.1) and (4.3.2)
are substituted in these two equations the resulting integrals are of hyperelliptic type
and third kind.

Analogously to the situation in Kerr space-time, we classify this form of the metric
according to the number of (disconnected) regions where ∆r,KdS > 0, which depends
on the parameters M , a and Λ. We speak of slow Kerr-de Sitter if there are two
regions and of fast Kerr-de Sitter if there is one region where ∆r,KdS > 0. The
limiting case where two regions are connected by a zero of ∆r,KdS is called extreme

Kerr-de Sitter. Other cases are not possible, what can be seen by a comparison of
coefficients in ∆r,KdS = −Λ

3
r4 + (1− Λ

3
a2)r2 − 2Mr + a2 = −Λ

3

∏4
i=1(r − ri) where ri

denote the zeros of ∆r,KdS. Fig. 4.9 shows the modification of regions of slow, fast,
and extreme Kerr-de Sitter with varying Λ. From this plot it can be inferred that
for a positive cosmological constant the gravitating object in a slow Kerr-de Sitter
space-time is not necessarily slowly rotating with respect to its mass.

104



4.3. Kerr-de Sitter space-time

4.3.1 Types of orbits

Before solving the equations of motion for Kerr-de Sitter space-time, we analyse the
structure of possible orbits dependent on the black hole parameters ā, Λ̄ and the
particle parameters ǫ, E, Lz, and K. As explained in Sec. 4.1 the major point in
this analysis is that (4.3.1) and (4.3.2) imply RKdS(r̄) ≥ 0 and ΘKdS(θ) ≥ 0 as a
necessary condition for the existence of a geodesic.

Again, it is most convenient to introduce dimensionless quantities for an analysis
of the dependence of the possible types of orbits on the parameters of the space-time
and the geodesic. Thus, we define

r̄ =
r

M
, t̄ =

t

M
, ā =

a

M
, L̄z =

Lz

M
, K̄ =

K

M2
, Λ̄ =

1

3
ΛM2 (4.3.5)

and accordingly

∆r̄,KdS =
(

1 − Λ̄r̄2
)

(r̄2 + ā2) − 2r̄ , (∆r,KdS = M2∆r̄,KdS) ,

∆θ = 1 + ā2Λ̄ cos2 θ , and χ = 1 + ā2Λ̄ .
(4.3.6)

In addition, we can absorb M in the definition of λ by introducing

γ = Mλ . (4.3.7)

Then the equations (4.3.1)-(4.3.4) can be rewritten as

(

dr̄

dγ

)2

= χ2
P

2(r) − ∆r̄,KdS(ǫr̄
2 + K̄) =: R̄KdS(r̄) , (4.3.8)

(

dθ

dγ

)2

= ∆θ(K̄ − ǫā2 cos2 θ) − χ2T2(θ)

sin2 θ
=: Θ̄KdS(θ) , (4.3.9)

1

χ2

dϕ

dγ
=

ā

∆r̄,KdS

P(r) − 1

∆θ sin2 θ
T(θ) , (4.3.10)

1

χ2

dt̄

dγ
=

r̄2 + ā2

∆r̄,KdS

P(r) − ā

∆θ

T(θ) , (4.3.11)

where
P(r) = (r̄2 + ā2)E − āL̄z ,

T(θ) = āE sin2 θ − L̄z ,

as in (4.2.12). In the remainder of this section we will study the consequences of the
two conditions RKdS(r̄) ≥ 0 and ΘKdS(θ) ≥ 0.

105



4. Geodesics in axially symmetric space-times

Types of latitudinal motion

Analogously to the case of a vanishing cosmological constant the function ΘKdS(θ)
can be simplified by introducing ν = cos2 θ, which yields

ΘKdS(ν) = (1+ ā2Λ̄ν)(K̄− ǫā2ν)−χ2

(

ā2E2(1 − ν) − 2āEL̄z +
L̄2

z

1 − ν

)

. (4.3.12)

It will be analyzed in the following which values of ā, Λ̄, E, L̄z, K̄, and θ ∈ [0, π] result
in positive ΘKdS(ν). For this, assume that for a given set of parameters there exists
a certain number of zeros of ΘKdS(ν) in [0, 1]. These zeros correspond to turning
points of the θ motion. Therefore, the type of θ motion changes if the number of
real zeros in [0, 1] changes. This may happen only if (i) a zero crosses 0 or 1 or (ii)
two zeros merge to one. Case (i) occurs iff

ΘKdS(ν = 0) = K̄ − χ2(āE − L̄z)
2 = 0 ⇔ L̄z = āE ±

√
K̄

χ
(4.3.13)

or ΘKdS(ν = 1) = 0. As ν = 1 is in general a pole of ΘKdS(ν) it is a necessary
condition for ΘKdS(ν = 1) = 0 that this pole becomes a removable singularity. From
(4.3.12) it can be inferred that this happens for L̄z = 0. If this is inserted in (4.3.12)
we obtain

ΘKdS(ν) = (1 + ā2Λ̄ν)(K̄ − ǫā2ν) − χ2ā2E2(1 − ν) for L̄z = 0 (4.3.14)
ν=1
= χ(K̄ − ǫā2) .

Thus, it can be inferred that ΘKdS(ν = 1) = 0 if and only if L̄z = 0 and additionally

K̄ = ǫā2 (as χ = 0 can be excluded, see also Thm. 4.2). Summarized, L̄z = āE±
√

K̄
χ

and simultaneously L̄z = 0 and K̄ = ǫā2 specify border cases of the θ motion.

Now let us study case (ii). If the coordinate singularities θ = 0, π or ν = 1 are
excluded the zeros of ΘKdS(ν) are given by the zeros of

Θν = (1 − ν)(1 + ā2Λ̄ν)(K̄ − ǫā2ν) − χ2
(

āE(1 − ν) − L̄z

)2
, (4.3.15)

which is in general a polynomial of degree 3 for ǫ = 1 but of degree 2 for ǫ = 0. Then
for timelike geodesics two zeros coincide at x ∈ [0, 1) iff

Θν = (ν − x)2(a1ν + a0) (4.3.16)

106



4.3. Kerr-de Sitter space-time

for some real constants a1, a0. By a comparison of coefficients we can solve the
resulting 4 equation for L̄z(x) and E2(x) depending on the remaining parameters
ā, Λ̄, and K̄. This parametric representation of values of L̄z and E2 again correspond
to border cases of the θ motion. For null geodesics a parametric representation can
be obtained by setting a1 = 0 in (4.3.16), or by directly comparing the only two zeros
of Θν , which coincide iff

L̄z =
χE ±

√

K̄Λ̄ + χ2E2

2āΛ̄
. (4.3.17)

Let us additionally consider the conditions for ν = 1 being a double zero. With
L̄z = 0 it follows

dΘKdS(ν)

dν

∣

∣

∣

ν=1
= ā2Λ̄(K̄ − ǫā2) + ā2χ(χE2 − ǫ) , (4.3.18)

where additionally K̄ = ǫā2 has to be fulfilled. Then ν = 1 is a double zero for
E2 = ǫ

χ
.

To determine the type of latitudinal motion, in addition to the number of zeros in
[0, π] the sign of ΘKdS at θ = 0 and θ = π has to be known. In the case of L̄z 6= 0, this
sign is given by limθ→0 ΘKdS(θ) = −∞, but for L̄z = 0 it is ΘK(θ = 0) = χ(K̄ − ǫā2).

For given parameters ā, Λ̄ of the black hole, we can use these informations to
identify all possible types of θ motion in this space-time. As a typical example for
timelike geodesics consider Fig. 4.10. Analogously to the situation for a vanishing
cosmological constant the curves divide the half plane into four regions (a)-(d) which
correspond to different arrangement of zeros in [0, 1]. Again, geodesic motion is only
possible in regions (b) and (d) because in all other regions Θ̄KdS is negative for all
ν ∈ [0, 1]. The types of θ motion in the regions (b) and (d) are the same as in a Kerr
space-time, i.e.:

(b) Here Θν has one real zero νmax in [0, 1] with Θν ≥ 0 for ν ∈ [0, νmax], i.e. θ
oscillates around the equatorial plane θ = π

2
.

(d) In this case Θν has two real zeros νmin, νmax in [0, 1] with Θν ≥ 0 for ν ∈
[νmin, νmax], i.e. θ oscillates between arccos(±√

νmin) and arccos(±√
νmax).

As in Kerr space-time, the case of L̄z = 0 has to be treated separately because ΘKdS

instead of Θν has to be used here for the analysis.
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4. Geodesics in axially symmetric space-times

(a) ā = 0.4, Λ̄ = 10−45, K̄ =
2

(b) ā = 0.4, Λ̄ = 10−5, K̄ = 2

(c) ā = 0.8, Λ̄ = 10−45, K̄ = 6 (d) ā = 0.8, Λ̄ = 10−5, K̄ = 6 (e) ā = 0.8, Λ̄ = 10−5, K̄ = 1,
ǫ = 0

Figure 4.10: Typical regions of different types of θ-motion in slow Kerr-de Sitter
space-time. A geodesic motion is only possible in the regions (b) and (d) in each
plot. On the boundaries of region (b) the modified Carter constant C vanishes. Here
ǫ = 1 with the exception of plot (e), where it is shown that region (d) may have
E2 < 1 for ǫ = 0 (note the rescaled axes). For effective potentials see Fig. 4.2.
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4.3. Kerr-de Sitter space-time

Compared to the case of Λ̄ = 0 with fixed ā, region (b) shrinks for a positive
cosmological constant Λ̄ > 0 and grows if Λ̄ < 0, what can be seen from the expression

for the boundaries of (b), L̄z = āE ±
√

K̄
χ

. The dependence of region (d) on the

parameters K̄, ā and Λ̄ is much more involved. The upper boundary of (d) is also
the lower boundary of region (b). The lower boundary of (d) is in the case of ǫ = 0
given by (4.3.17), but for ǫ = 1 in a complicated parametric form which makes it
apparently impossible to determine an explicit connection between the form of region
(d) and the parameters. However, the point where the upper and lower boundaries
of region (d) touch each other is where 0 is a double zero of Θν , which is given by
x = 0 in E(x) and L̄z(x) from (4.3.16),

E(0) =
1

2

ā2 + K̄(1 − ā2Λ̄)

ā
√

K̄χ
, L̄z(0) =

1

2

ā2 − K̄χ√
K̄χ

for ǫ = 1 ,

E(0) =
1

2

√
K̄(1 − ā2Λ̄)

āχ
, L̄z(0) = −

√
K̄

2
for ǫ = 0 .

(4.3.19)

The regions (b) and (d) can be characterized in terms of the modified Carter constant
C in the same way as for Λ̄ = 0. As in region (d) Θν(0) < 0 it follows that this region
corresponds to C < 0. In the same way we can conclude that region (b), where
Θν(0) > 0, corresponds to C > 0.

Types of radial motion

In Sec. 4.1 it was explained that the real zeros of

R̄KdS = χ2((r̄2 + ā2)E − āLz)
2 − ∆r̄,KdS(ǫr̄

2 + K̄)

are extremal values of r̄(γ) and, thus, that their number together with the sign
of R̄KdS between them determine the type of geodesic. The polynomial R̄KdS is in
general of degree six in r̄ and, therefore, has six possibly complex zeros of which the
real zeros are of interest for the type of motion. As in Kerr space-times negative
values of r̄ are also possible.

The number of real zeros, which determines the type of orbit, changes at that
combination of parameters ā, Λ̄, ǫ, E, L̄z, and K for which two zeros of R̄KdS coincide.
For fixed ā, Λ̄, ǫ, and K the parameters E and L̄z for which this happens can be
derived by a comparison of coefficients from

R̄KdS(x) = (r̄ − x)2(a4r̄
4 + a3r̄

3 + a2r̄
2 + a1r̄ + a0) , (4.3.20)

109



4. Geodesics in axially symmetric space-times

(a) Regions of r̄ motion (b) Combination with θ motion

Figure 4.11: Regions of different types of timelike geodesics in Kerr-anti-de Sitter
space-time for both r̄ and θ motion. Here ā = 0.8, Λ̄ = −10−5, and K̄ = 12. Blue
lines correspond to boundaries of the r̄ motion and red lines to boundaries of the θ
motion.

where ai are some real constants with a4 = a3 = 0 in the case of ǫ = 0. This yields
two expressions for E(x) and L̄z(x), where x is the position of the double zero, which
are even more complicated as in the case of Λ̄ = 0. A typical result in slow Kerr-de
Sitter including the results of the foregoing subsection is shown in Fig. 4.13 for Λ < 0
and in Fig. 4.12 for small Λ > 0. As in Kerr space-time, dark blue lines correspond
to negative double zeros x, blue lines to positive x, and red lines to regions of θ
motion. The alterations of regions of timelike geodesics for varying ā2 < 1 and K̄
are analogous to vanishing Λ̄, see Fig. 4.5.

In the following, we first shortly discuss the resulting types of orbits for timelike
geodesics in Kerr-anti-de Sitter space-time (Λ < 0) and proceed with an analysis
of types of orbits for null as well as timelike geodesics in Kerr-de Sitter space-time
(Λ > 0). In the latter case also exceptional orbits will be discussed.

Case Λ < 0. In the case of timelike geodesics and a negative cosmological constant
region (V) from Λ = 0 merges with region (I) and region (III) becomes larger for
Λ < 0 due to the shift of the E2 = 1 line to the right. Compared to the situation for
Λ = 0 the possible orbit types in region (III) do not change, but a set of parameters
located there may be located in a different region for Λ = 0. Let us examine the
possible orbit types in the remaining regions (I), (II), and (IV).

(I) Here R̄KdS has two real zeros r1 < r2 and R̄KdS(r̄) ≥ 0 for r1 ≤ r̄ ≤ r2. Possible
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4.3. Kerr-de Sitter space-time

region − + range of r̄ types of orbits

Id 1 1 crossover bound

IIb 2 2 2x bound

IId 3 1 bound, crossover bound

IIIb 0 4 2x bound

IVb 2 4 3x bound

Table 4.2: Orbit types for Λ < 0. For the description of the +, − and range of r̄
columns see Tab. 4.1.

orbit types: bound orbit.

(II) (and (III)): R̄KdS has four real zeros with R̄KdS(r̄) ≥ 0 for r2k−1 ≤ r̄ ≤ r2k,
k = 1, 2. Possible orbit types: two different bound orbits.

(IV) In this case all six zeros of R̄KdS are real and R̄KdS(r̄) ≥ 0 for r2k−1 ≤ r̄ ≤ r2k,
k = 1, 2, 3. Possible orbit types: three different bound orbits.

Concerning crossover orbits, region (III) and (apparently) region (IV) again only
contain region (b) of θ motion. Also region (II) intersects both (b) and (d) whereas
region (I) can only contain region (d) of θ motion.

Summarizing, the types of orbits significantly change if E2 > 1. The transit orbit
in region (I) for Λ = 0 is transformed to a bound orbit for Λ < 0 as well as the flyby
orbits in regions (II) and (IV). Although region (V) for Λ = 0 merges with region (I)
for Λ < 0, the types of orbits do not change there. In general, because of R → −∞
if r̄ → ±∞ we can not have orbits reaching r̄ = ±∞ at all as expected due to the
attractive cosmological force related to Λ < 0.

All orbit types for Λ < 0 are summarized in Tab. 4.2

Case Λ > 0. Let us analyse now which regions change for a positive cosmological
constant if compared to the case of Λ = 0. For null geodesics the possible orbit types
in regions (I), (II), and (IV) are the same as for Λ = 0 but the boundaries are slightly
deformed. For timelike geodesics region (V) of Λ = 0 merged with region (IV), and
region (III) becomes smaller for Λ > 0 due to the shift of the separating E2 = 1 line
towards the left. A comparison of the possible orbit types for Λ > 0 with the one
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4. Geodesics in axially symmetric space-times

(a) Regions of r̄ motion (b) Combination with θ motion

Figure 4.12: Regions of different types of timelike geodesics in Kerr-de Sitter space-
time for both r̄ and θ motion. Here ā = 0.8, Λ̄ = 10−5, and K̄ = 12. Blue lines
correspond to boundaries of the r̄ motion and red lines to boundaries of the θ motion.

(a) Regions of r̄ motion (b) Combination with θ motion

Figure 4.13: Regions of different types of null geodesics in Kerr-de Sitter space-time
for both r̄ and θ motion. Here ā = 0.8, Λ̄ = 10−5, and K̄ = 12. Blue lines correspond
to boundaries of the r̄ motion and red lines to boundaries of the θ motion.
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4.3. Kerr-de Sitter space-time

(a) Region (I) (b) Region (II) (c) Region (III) (d) Region (IV)

Figure 4.14: Effective potentials for different regions of the r̄ motion in Kerr-de Sitter
space-time. The red lines denote the energy parameter E.

for Λ = 0 shows that in regions (I) and (II) there are no differences. However, these
regions are slightly deformed (for small Λ) and a pair of parameters (E2, L̄z) located
in region (I) or (II) for Λ > 0 may be located in a different region for Λ = 0. For
convenience, the possible orbit types for regions (I) and (II) are listed below together
with the changed regions (III) and (IV). (Here again we assume ri < ri+1.)

(I) Here all zeros of R̄KdS are complex and R̄KdS(r̄) ≥ 0 for all r̄. Possible orbit
types: transit orbit.

(II) R̄KdS has two real zeros r1, r2 and R̄KdS(r̄) ≥ 0 for r̄ ≤ r1 and r2 ≤ r̄. Possible
orbit types: two flyby orbits, one to +∞ and one to −∞.

(III) All six zeros ri of R̄KdS are real and R̄KdS(r̄) ≥ 0 for r̄ ≤ r1, r6 ≤ r̄ and
r2k ≤ r̄ ≤ r2k+1 for k = 1, 2. Possible orbit types: two flyby orbits, one to
each of ±∞, and two different bound orbits.

(IV) R̄KdS has four real zeros and R̄KdS(r̄) ≥ 0 for r̄ ≤ r1, r2 ≤ r̄ ≤ r3, r4 ≤ r̄.
Possible orbit types: two flyby orbits, one to each of ±∞ and a bound orbit.

For each region, corresponding effective potentials are shown in Fig. 4.14. Analogous
to Λ = 0, regions (III) and (apparently) (IV) only contain region (b) of the θ motion
implying that there are no crossover orbits. Region (I) can only intersect region (d)
because only transit orbits are possible. The remaining region (II) is the only one
proven to intersect regions (b) and (d). In Fig. 4.15 some typical orbits for different
regions are shown, which were created using the analytical solution of the geodesic
equation presented in the next section.
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4. Geodesics in axially symmetric space-times

(a) E2 = 1.1, L̄z = −1, flyby orbit in region (IIb)

(b) E2 = 0.95, L̄z = 3, outer bound orbit in
region (IIIb)

(c) E2 = 0.95, L̄z = 3, inner bound orbit in
region (IIIb)

(d) E2 = 0.5, L̄z = −1, bound orbit in region
(IVb)

(e) E2 = 0.5, L̄z = −1, flyby orbit in region
(IVb)

Figure 4.15: Timelike geodesics in the Kerr-de Sitter space-time with ā = 0.8, Λ̄ =
1
3
10−5, and K̄ = 12. In each subplot, on the left side the r-θ plane and on the right

side a 3d-image and/or the r-ϕ plane is shown. Light grey lines and cones correspond
to extremal θ and dark grey spheres as well as dashed black circles to horizons. The
bound orbits in (c) and (d) cross the Cauchy horizon several times and, thus, are
many world bound orbits. The flyby orbit in (a) is a two-world orbit.
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4.3. Kerr-de Sitter space-time

region − + range of r̄ types of orbits

Id 0 0 transit

IIb 1 1 2x flyby

IId 2 0 flyby, crossover flyby

IIIb 1 5 2x flyby, 2x bound

IVb 1 3 2x flyby, bound

Table 4.3: Orbit types of timelike geodesics in Kerr-de Sitter space-time for small
Λ > 0. For the description of the +, − and range of r̄ columns see Tab. 4.1.

We conclude that for E2 > 1 the types of timelike orbits are not noticeably
changed, whereas for E2 ≤ 1 there are significant changes. In the former region (V)
(for Λ = 0), which is now in region (IV), and in region (III) we have two additional
flyby orbits which are not present for Λ = 0. In a small vertical stripe left of E2 = 1
there are even orbits which are bound for Λ = 0 but reaching infinity for Λ > 0.
In particular, it is independent of the value of E if a geodesic may reach infinity as
expected from the repulsive cosmological force related to Λ > 0.

Note that for huge Λ the separation in regions (I) to (IV) as explained above is
no longer possible because the repulsive cosmological force becomes so strong that
all bound orbits become flyby orbits. In this case region (III) vanishes and we have
only two regions, one with two real zeros corresponding to two flyby orbits and one
with only complex zeros corresponding to a transit orbit.

Examples of orbits which highlight the influence of Λ on the geodesics are illus-
trated in Fig. 4.16. From the discussion in this section it can be inferred that for
Λ > 0 there are four parameter regions where the changes compared to Λ = 0 are
most obvious. The first two are the regions (III) and (IV) with E2 < 1, where we
have additional flyby orbits not present for Λ = 0. Third and fourth, the shift from
region (V) of Λ = 0 to region (II) of Λ > 0 for E2 = 1− δ, δ > 0 small, and the shift
from region (III) of Λ = 0 to region (IV) of Λ > 0, again for E2 = 1 − δ are most
interesting as the (outer) bound orbit becomes a flyby orbit.

All orbit types for small Λ > 0 are summarized in Tab. 4.3.
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4. Geodesics in axially symmetric space-times

(a) ǫ = 1, E2 = 0.97, L̄z = 3.5. Left: Λ̄ = 0, region (III), right: Λ̄ = 1
3
× 10−5, region (IV)

(b) ǫ = 1, E2 = 0.97, L̄z = −1. Left: Λ̄ = 0, region (V), right: Λ̄ = 1
3
× 10−5, region (II)

Figure 4.16: Comparison between orbits in Kerr and Kerr-de Sitter space-time for
ā = 0.8 and K̄ = 12. In (a) the maximal r in Kerr space-time is rmax ≈ 57.01 and in
(b) rmax ≈ 61.56 indicated by the blue dotted lines.

Exceptional orbits

In this section some exceptional orbits related to multiple zeros of R̄KdS, i.e. spherical
orbits with constant r and orbits asymptotically approaching a constant r, will be
discussed. There are two types of spherical orbits: stable and unstable. Stable
spherical orbits with r̄(γ) ≡ r̄0 occur if radial coordinates adjacent to r̄0 are not
allowed due to R̄KdS(r̄) < 0, which happens if r̄0 is a maximum of R̄KdS. Unstable
spherical orbits with r̄(γ) ≡ r̄0 are trajectories where radial coordinates r̄ in the
neighbourhood of r̄0 with r̄ < r̄0 or r̄ > r̄0 are allowed. Therefore, these orbits are
related to a minimum or to an inflection point of R̄KdS. If r̄0 is an inflection point,
an asymptotic approach to r̄0 is only possible from one side of r̄0 whereas this is
possible from both sides if r̄0 is a minimum of R̄KdS. Asymptotic orbits can also be
devided into two types: unbound and bound. The latter case corresponds to orbits
which approach for both t → ∞ and t → −∞ a spherical orbit. Bound asymptotic
orbits are also known as homoclinic orbits. If the asymptotic orbit is unbound it
reaches r̄ = ∞ for either t → ∞ or t → −∞.
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4.3. Kerr-de Sitter space-time

For asymptotic bound or unbound trajectories corresponding to an unstable
spherical orbit the equations of motion simplify considerably. In this case the equa-
tion for r̄(γ) as well as the r̄ dependent integrals in the ϕ and t equations are of elliptic
type and can be solved in terms of Weierstrass elliptic functions, see (4.3.31), (4.3.44),
and (4.3.56). Note that these solutions are not limited to the case of equatorial cir-
cular orbits but are valid for all types of asymptotic orbits and, thus, generalize the
analytical solutions for homoclinic orbits in [79] not only to Kerr-de Sitter space-time
but also to arbitrary inclinations.

From all spherical orbits the Last Stable Spherical Orbit (LSSO) and, in par-
ticular, the Innermost Stable Circular Orbit (ISCO) in the equatorial plane are of
importance as they represent the transition from stable orbits to those which fall
through the event horizon. The corresponding multiple zero of R̄KdS appears at the
boundaries of the different regions of r motion, see Fig. 4.12. Because necessarily
K̄ = χ2(āE − L̄z)

2 for equatorial orbits, from this we can determine the LSSO for
given ā, Λ̄, K̄ and the ISCO for given ā, Λ̄ by solving first

R̄KdS(r̄) = 0 ,
dR̄KdS

dr̄
(r̄) = 0 , and

d2R̄KdS

dr̄2
(r̄) = 0 (4.3.21)

for r̄ ≥ r̄h with the event horizon r̄h. The solutions are limiting cases of the stable
spherical and circular orbits, and are given by the corner points on the boundaries of
region (III) of the r̄ motion. From the results of (4.3.21) we search for the smallest
possible double zero r̄ which is a maximum. In general, this will be the lower left
corner of the boundary of region (III). In the case of the ISCO in the equatorial
plane we are now done. For the LSSO, we have to check in addition whether the
corresponding values of E2(r̄) and L̄z(r̄) (given by (4.3.20)) are located in an allowed
region of the θ motion. If this is the case, we found the LSSO. If not, we can determine
the LSSO as the intersection point of the boundary of region (III) with a boundary of
an allowed θ region. Note that it is not possible to determine an LSSO (for given ā,
Λ̄, and K̄) if there is no spherical orbit at all outside the event horizon which happens
if no boundary of the r̄ motion is located in an allowed region of the θ motion. As
an example, this is the case for Λ̄ = 10−5, ā = 0.2, and K̄ = 0.4. Also, the LSSO is
identical with the ISCO if it is given as an intersection point with the boundary of
region (b) of the θ motion. For examples of spherical orbits see Figs. 4.17 and 4.18.
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Figure 4.17: Last Stable Spherical orbit at r̄(γ) ≡ 4.864 for ā = 0.4, Λ̄ = 10−5, and
K̄ = 8. The corresponding parameter values are (approximately) E2 = 0.86238633
and L̄z = 2.5063691.
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Figure 4.18: Unstable spherical orbit with r̄(γ) ≡ 1.5 (left) and asymptotic approach
(right). Here ā = 0.6, Λ̄ = 10−5, K̄ = 8, E = 0.9720311146 and L̄z = 5.1355914740
(boundary of region (IIIb)).
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4.3. Kerr-de Sitter space-time

4.3.2 Analytical solution of geodesic equations

We will now analytically solve the geodesic equation in Kerr-de Sitter space-time
(4.3.8) - (4.3.11)

(

dr̄

dγ

)2

= R̄KdS(r̄) = χ2
P

2(r) − ∆r̄,KdS(ǫr̄
2 + K̄) , (4.3.8)

(

dθ

dγ

)2

= Θ̄KdS(θ) = ∆θ(K̄ − ǫā2 cos2 θ) − χ2T2(θ)

sin2 θ
, (4.3.9)

dϕ

dγ
=

ā

∆r̄,KdS

P(r) − 1

∆θ sin2 θ
T(θ) , (4.3.10)

dt̄

dγ
=

r̄2 + ā2

∆r̄,KdS

P(r) − ā

∆θ

T(θ) , (4.3.11)

where P and T are given by

P(r) = (r̄2 + ā2)E − āL̄z ,

T(θ) = āE sin2 θ − L̄z .

Each equation will be treated separately.

θ motion

We begin with the differential equation (4.3.9)
(

dθ

dγ

)2

= Θ̄KdS(θ) = ∆θ(K̄ − ǫā2 cos2 θ) − χ2T2(θ)

sin2 θ
,

which can be simplified by the substitution ν = cos2 θ yielding
(

dν

dγ

)2

= 4νΘν , (4.3.22)

where Θν is the polynomial of degree 3 defined in (4.3.15). This differential equation
can be solved easily if 4νΘν has a zero with multiplicity 2 or more. In this case
(4.3.22) can be rewritten as

γ − γ0 =

∫ ν

ν0

dν ′

(ν ′ − νi)j
√

P2(ν ′)
, (4.3.23)
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where γ0 and ν0 are initial values, P2 is a polynomial with maximum degree 2, and
νi is a zero of 4νΘν with multiplicity 2j or 2j + 1, j = 1, 2. The integral on the
right hand side can then be solved by elementary functions [31]. As in this case the
explicit expression provides no further insight and some case distinctions would be
necessary we skip the solution procedure.

Timelike geodesics If 4νΘν has only simple zeros the differential equation (4.3.22)
is of elliptic type and first kind and can be solved in terms of the Weierstrass elliptic
function ℘. To obtain a solution we transform 4νΘν to the Weierstrass form (4y3 −
g2y−g3) for some constants g2 and g3 by the standard procedure described in (2.1.9):
First, we substitute ν = ξ−1 giving

(

dξ

dγ

)2

= Θξ , (4.3.24)

where

Θξ := 4ξ3
(

K̄ − χ2(āE − L̄z)
2
)

+ 4ξ2(ā2(K̄Λ̄ − ǫ) − K̄ + 2χ2ā(āE − L̄z))

+ 4ā2(ǫ(1 − Λ̄ā2) − χ2 − Λ̄K̄)ξ + 4ǫā4Λ̄ (4.3.25)

=:
3

∑

i=1

aiξ
i .

Second, the substitution ξ = 1
a3

(

4y − a2

3

)

implies

(

dy

dγ

)2

= 4y3 − g2y − g3 , (4.3.26)

where g2, g3 are given by (2.1.11)

g2 =
1

16

(

4

3
a2

2 − 4a1a3

)

,

g3 =
1

16

(

1

3
a1a2a3 −

2

27
a3

2 − a0a
2
3

)

.

The differential equation (4.3.26) is of elliptic type and first kind, which can be solved
by (2.1.8)

y(γ) = ℘(γ − γθ,in; g2, g3) . (4.3.27)
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Accordingly, the solution of (4.2.9) is given by

θ(γ) = arccos

(

±
√

a3

4℘(γ − γθ,in; g2, g3) − a2

3

)

for ǫ = 1 , (4.3.28)

where γθ,in = γ0 +
∫ ∞

y0

dy′√
4y′3−g2y′−g3

with y0 = a3

4 cos2(θ0)
+ a2

12
depends on the initial

values γ0 and θ0 only. The sign of the square root depends on whether θ(γ) should
be in (0, π

2
) (positive sign) or in (π

2
, π) (negative sign) and reflects the symmetry of

the θ motion with respect to the equatorial plane θ = π
2
. If the motion is located in

region (b) from the previous section this implies that the two solutions have to be
glued together along θ(γ) = π

2
if the whole θ motion should be considered.

Null geodesics In contrast to the r̄ motion considered in the next subsection,
the structure of (4.3.22) does not considerably simplify if we consider light with
ǫ = 0. The only difference to the solution method outlined above is that 4νΘν

is already a polynomial of degree 3 and, thus, that the substitution ν = ξ−1 is
not necessary. Indeed, the standard substitution ν = 1

b3

(

4y − b2
3

)

where 4νΘν =
∑3

i=1 biν
i transforms the problem to the form (4.3.26). The solution is then given by

θ(γ) = arccos

(

±
√

4

b3

℘(γ − γθ,in; g2, g3) −
b2

3b3

)

for ǫ = 0 , (4.3.29)

where γθ,in, g2, and g3 are as above with ai replaced by bi.

r motion

The differential equation that describes the dynamics of r

(

dr̄

dγ

)2

= R̄KdS(r̄) = χ2
P

2(r) − ∆r̄,KdS(ǫr̄
2 + K̄) (4.3.8)

is more complicated because R̄KdS is a polynomial of a degree up to 6. If R̄KdS has
a zero of multiplicity 4 or more, two zeros of multiplicity 2 or more, or if ǫ = 0 and
R̄KdS has a zero of multiplicity 2 or more the differential equation (4.2.8) can be
written as

γ − γ0 =

∫ r̄

r̄0

dr̄′
∏k

i=1(r̄
′ − r̄i)ji

√

P2(r̄′)
, (4.3.30)
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where γ0 and r̄0 are initial values, P2 is a polynomial with maximum degree 2, r̄i

are zeros of R̄KdS with multiplicity 2ji or 2ji + 1 where ji = 1, 2, and k = 2 if there
are two zeros of multiplicity 2 or more and k = 1 else. The integral on the right
hand side can then be solved by elementary functions [31]. As the explicit expression
provides no further insight and some case distinctions would be necessary we skip
the solution procedure.

Null geodesics If we consider light, i.e. ǫ = 0, R̄KdS is in general of degree 4 and
the differential equation (4.3.8) is of elliptic type and first kind. Thus, (4.3.8) can
be solved using the standard method for this type of equation, see (2.1.5): With the
substitutions r̄ = ξ−1 + r̄KdS, where r̄KdS is a zero of R̄KdS, and ξ = 1

b3

(

4y − b2
3

)

,

where bi = 1
(4−i)!

d(4−i)R̄KdS

dr̄(4−i) (r̄KdS), we arrive at the standard Weierstrass form (2.1.5).
The solution can then be formulated in terms of the Weierstrass elliptic functions.
The result is

r̄(γ) =
b3

4℘(γ − γr̄,in; g2, g3) − b2
3

+ r̄KdS , (4.3.31)

where γr̄,in = γ0+
∫ ∞

y0

dy′√
4y′3−g2,ry′−g3,r

and y0 = b3
4(r̄0−rR)

+ b2
12

depend only on the initial

values γ0, r̄0, and g2, g3 are defined in (2.1.11).

Timelike geodesics If we consider particles, i.e. ǫ = 1, the differential equation
(4.3.8) is also of elliptic type but of the third kind if R̄KdS has a double or triple zero
r̄1. In this case (4.2.8) reads

γ − γ0 =

∫ r̄

r̄0

dr̄′

(r − r1)
√

P4(r̄)
, (4.3.32)

where P4 is a polynomial of degree 4. This equation can be solved for r̄(γ) with the
method presented in Thm. 2.5 and appendix A.

If we assume that R̄KdS has only simple zeros the differential equation (4.3.8)
is of hyperelliptic type. It can be solved in terms of derivatives of the Kleinian σ
function with the method already used for the solution of the geodesic equation in
Schwarzschild-de Sitter space-time, see Chap. 3, Sec. 3.3. For this, we have to cast
(4.3.8) into the standard form by a substitution r̄ = ± 1

u
+ r̄KdS with a zero r̄KdS of

R̄KdS. This yields
(

u
du

dγ

)2

= c5Ru , (4.3.33)

122



4.3. Kerr-de Sitter space-time

where

Ru =
5

∑

i=0

ci

c5

ui , ci =
(±1)i

(6 − i)!

d(6−i)R̄KdS

du(6−i)
(r̄KdS) . (4.3.34)

For convenience, the sign in the substitution should be chosen such that the constant
c5 is positive and, therefore, depends on the choice of r̄KdS and the sign of Λ̄. The
differential equation (4.3.33) is of first kind and can be solved by

u(γ) = −σ1

σ2

(

f(
√

c5γ − γr̄,in)√
c5γ − γr̄,in

)

, (4.3.35)

where γr̄,in =
√

c5γ0 +
∫ ∞

u0

udu√
R̃u

and u0 = ± (r̄0 − r̄KdS)
−1 depends only on the

initial values γ0 and r̄0. Here f is the function that describes the θ-divisor, i.e.
σ ((f(x), x)t) = 0, see Chap. 3. The radial distance r̄ is then given by

r̄(γ) = ∓σ2

σ1

(

f(
√

c5γ − γr̄,in)√
c5γ − γr̄,in

)

+ r̄KdS , (4.3.36)

where the sign depends on the sign chosen in the substitution r̄ = ± 1
u

+ r̄KdS, i.e. is
such that c5 in (4.3.34) is positive.

ϕ motion

We treat now the most complicated equation of motion in Kerr-de Sitter space-time,
namely the equation for the azimuthal angle (4.3.10)

1

χ2

dϕ

dγ
=

ā

∆r̄,KdS

P(r) − 1

∆θ sin2 θ
T(θ) . (4.3.10)

This equation can be splitted in a part only dependent on r̄ and in a part only
dependent on θ. Integration yields

ϕ − ϕ0 = χ2

[
∫ γ

γ0

āP(r)

∆r̄(γ)

dγ −
∫ γ

γ0

T(θ)dγ

∆θ(γ) sin2 θ(γ)

]

= χ2

[
∫ r̄

r̄0

āP(r)dr̄′

∆r̄′
√

R
−

∫ θ

θ0

T(θ′)dθ′

∆θ′ sin
2 θ′

√
Θ

]

, (4.3.37)

where we substituted r̄ = r̄(γ), i.e. dr̄
dγ

=
√

R̄KdS, in the first and θ = θ(γ), i.e.
dθ
dγ

=
√

Θ̄KdS, in the second integral.

We will solve now the two integrals in (4.3.37) separately.
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4. Geodesics in axially symmetric space-times

The θ dependent integral Let us consider the integral

Iθ :=

∫ θ

θ0

(

sin2 θāE − L̄z

)

dθ

∆θ sin2 θ
√

Θ̄KdS

, (4.3.38)

which can be transformed to the simpler form

Iθ = ∓
∫ ν

ν0

āE(1 − ν) − L̄z

∆ν(1 − ν)
√

4νΘν′

dν ′ (4.3.39)

by the substitution ν = cos2 θ, where Θν is defined in (4.3.15) and ∆ν = 1+ ā2Λ̄ν. As
in Kerr space-time, we have to split here the integration part such that every piece
is fully contained in the interval (0, π

2
] or [π

2
, π). If θ ∈ (0, π

2
] we have cos θ = +

√
ν,

but for θ ∈ [π
2
, π) it is cos θ = −√

ν. Thus, for every part of the integration path
the sign of the square root of ν has to be chosen appropriately. In the following we
assume for simplicity that cos θ = +

√
ν.

Analogous to subsection 4.3.2 the integral Iθ can be solved by elementary functions
if 4νΘν has at least a double zero [31]. If 4νΘν has only simple zeros, Iθ is of elliptic
type and of third kind. If this is the case, the solution of Iθ is given by

Iθ =
|a3|
a3

{

(āE − L̄z)(v − v0) −
4

∑

i=1

a3

4χ℘′(vi)

(

ζ(vi)(v − v0) + log
σ(v − vi)

σ(v0 − vi)

+ 2πiki

)

(

ā3Λ̄(χE − āΛ̄L̄z)(δi1 + δi2) + L̄z(δi3 + δi4)
)

}

(4.3.40)

where the constants ai are defined as in section 4.3.2,

℘(v1) =
a2

12
− 1

4
ā2Λ̄a3 = ℘(v2) ,

℘(v3) =
a2

12
+

a3

4
= ℘(v4) ,

(4.3.41)

v = v(γ) = γ − γθ,in with γθ,in as in (4.3.27) and v0 = v(γ0). The integers ki

correspond to different branches of log. The details of the computation can be found
in appendix A.

The r dependent integral We solve now the r̄ dependent integral in (4.3.37)

Ir :=

∫ r̄

r̄0

ā
(

(r̄2 + ā2)E − āL̄z

)

dr̄

∆r̄,KdS

√

R̄KdS

. (4.3.42)

124



4.3. Kerr-de Sitter space-time

Analogous to subsection 4.3.2 this integral can be solved by elementary functions if
R̄KdS has a zero with multiplicity 4 or more or two zeros with multiplicity 2 or more
[31].

Null geodesics For ǫ = 0 the polynomial R̄KdS is in general of degree 4 and Ir

is of elliptic type and third kind. In this case it can be solved analogously to Iθ. The
same substitutions r̄ = 1

ξ
+ r̄KdS and ξ = 1

b3

(

4y − b2
3

)

as in subsection 4.3.2 for the
case ǫ = 0, a subsequent partial fraction decomposition, and the final substitution
y = ℘(v) result in

b3

|b3|
Ir =

4
∑

i=1

Ci

∫ v

v0

dv

℘(v) − yi

− ā (r̄2
KdS + ā2 − āD)

∆r̄=r̄KdS

∫ v

v0

dv , (4.3.43)

where yi are the four zeros of ∆y(r̄),KdS, b3 defined as in (4.3.31), and Ci are the
coefficients of the partial fractions dependent on the parameters and r̄KdS. The four
functions fi(v) = (℘(v)− yi)

−1 have simple poles in vi1, vi2 with ℘(vi1) = yi = ℘(vi2)
and have to be integrated with the method presented in Thm. 2.5 and appendix A.
Then Ir is given by

b3

|b3|
Ir =

4
∑

i=1

2
∑

j=1

Ci

℘′(vij)

[

ζ(vij)(v − v0) + log σ(v − vij)

− log σ(v0 − vij)

]

− ā
(

(r̄2
KdS + ā2)E − āL̄z

)

∆r̄=r̄KdS

(v − v0) , (4.3.44)

where v = v(γ) = γ − γr̄,in, v0 = v(γ0) with γr̄,in as in (4.3.31). In the same way Ir

can be solved if ǫ = 1 and R̄KdS has a double or triple zero.

Timelike geodesics If we consider particles, i.e. ǫ = 1, and assume that R̄KdS

has only simple zeros, Ir is of hyperelliptic type and third kind. The solution can be
found with the help of (2.4.12) and (2.4.15). First, we transform Ir analogously to
section 4.3.2 to the standard form by a substitution r̄ = ±1/u+ r̄KdS with a zero r̄KdS

of R̄KdS. Afterward we simplify the integrand by a partial fraction decomposition
which allows us to express Ir in terms of the canonical holomorphic differentials
d~z (2.2.2) and the canonical differential of third kind dP (x1, x2) (2.2.10). These
differentials can then in turn be expressed in terms of the Mino time γ. The first
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4. Geodesics in axially symmetric space-times

step results in

Ir = ∓ā

∫ u

u0

(± 1
u

+ r̄KdS)
2 + ā(āE − L̄z)

∆r̄=±1/u+r̄KdS

√
u−6c5Ru

du

u2

= ∓ā

∫ u

u0

[r̄2
KdS + ā(āE − L̄z)]u

2 ± 2r̄KdSu + 1
√

c5 ∆u

√
Ru

|u3|du , (4.3.45)

where Ru and c5 are defined in Sec. 4.3.2, Eq. (4.3.34), and 1
u4 ∆u = ∆r̄=± 1

u
+r̄KdS

, i.e.

∆u = (u2(1 − Λ̄r̄2
KdS) ∓ 2r̄KdSΛ̄u − Λ̄)(u2(r̄2

KdS + ā2) ± 2r̄KdSu + 1)

∓ 2u3 − 2r̄KdSu
4 , (4.3.46)

which is a polynomial of degree 4 in u. Note that for geodesic motion, the coordi-
nate r̄ is always contained in an interval bounded by two adjacent real zeros of the
polynomial R or by a real zero and infinity. This implies that u = ±(r̄ − r̄KdS)

−1 for
a real zero r̄KdS of R̄KdS does not change sign on the integration path and, therefore,
we can neglect the absolute value of u appearing in the integrand if we multiply the
hole integral with sign(u0) = u0

|u0| . Consequently

Ir

ā
= ∓|u0|

u0

∫ u

u0

[r̄2
KdS + ā(āE − L̄z)]u

2 ± 2r̄KdSu + 1
√

c5 ∆u

√
Ru

u3du . (4.3.47)

The second step is a partial fraction decomposition of the integrand (neglecting√
Ru

−1
) which simplifies Ir to

∓
√

c5|u0|
āu0

Ir = C1

∫ u

u0

udu√
Ru

+ C0

∫ u

u0

du√
Ru

+
4

∑

i=1

C2,i

∫ u

u0

du

(u − ui)
√

Ru

, (4.3.48)

where ui, 1 ≤ i ≤ 4 denote the zeros of ∆u and C0, C1, C2,i are the coefficients of the
partial fractions, which may be calculated by a computer algebra system and depend
on the parameters as well as the zero r̄KdS of R̄KdS.

The first two integrals in (4.3.48) are of first kind and can be expressed in terms
of γ analogous to Sec. 4.3.2, Eq. (4.3.33), i.e.

∫ u

u0

udu√
Ru

=
√

c5(γ − γ0) , (4.3.49)

∫ u

u0

du√
Ru

=

∫ ∞

u0

du√
Ru

+

∫ u

∞

du√
Ru

= −f(
√

c5γ0 − γr̄,in) + f(
√

c5γ − γr̄,in) , (4.3.50)
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where again γr̄,in =
√

c5γ0 +
∫ ∞

u0

udu√
Ru

with u0 = ± (r̄0 − r̄KdS)
−1 only depends on the

initial values γ0 and u0, and f describes the θ-divisor, i.e. σ ((f(z), z)t) = 0.

The four integrals in (4.3.48) containing (u − ui)
−1 are in general of third kind

and can be expressed in terms of the canonical integral of third kind
∫

dP (x1, x2)
defined in (2.2.10). In particular, we get

∫ u

u0

du

(u − ui)
√

Ru

=
1

+
√

Rui

∫ u

u0

dP (u+
i , u−

i ) , (4.3.51)

where u+
i = (ui,

√

Rui
) is the pole ui located on the positive branch of the square

root and u−
i = (ui,−

√

Rui
) is the pole ui located on the negative branch of the

square root. With Eqs. (2.4.12) and (2.4.15) it can be inferred that

∫ u

u0

dP (u+
i , u−

i ) =
1

2
log

σ(
∫ u

∞ d~z − 2
∫ u+

i

∞ d~z)

σ(
∫ u

∞ d~z − 2
∫ u−

i

∞ d~z)

− 1

2
log

σ(
∫ u0

∞ d~z − 2
∫ u+

i

∞ d~z)

σ(
∫ u0

∞ d~z − 2
∫ u−

i

∞ d~z)
−

(
∫ u

u0

d~z

)t
(

∫ u+
i

u−

i

d~r

)

, (4.3.52)

where d~z, d~r are the vectors of the canonical differentials of the first and second
kind defined in (2.2.2) and (2.2.3). Finally, we rewrite (4.3.52) in terms of the
affine parameter γ. By (4.3.49) and (4.3.50) we can express

∫ u

u0
d~z as well as the

arguments of the σ functions
∫ u

∞ d~z =
∫ u

u0
d~z −

∫ ∞
u0

d~z as functions of γ. If we define
w = w(γ) =

√
c5γ − γr̄,in and w0 = w(γ0) the integral Ir is given by

Ir = ∓ āu0√
c5|u0|

{

C1(w − w0) + C0(f(w) − f(w0))

+
4

∑

i=1

C2,i
√

Rui

[

1

2
log

σ(W+(w))

σ(W−(w))
− 1

2
log

σ(W+(w0))

σ(W−(w0))

−
(

f(w) − f(w0), w − w0

)

(

∫ u+
i

u−

i

d~r

)

]}

, (4.3.53)

where W±(w) := (f(w), w)t − 2
∫ u±

i

∞ d~z and the sign has to be chosen according to
the initial substitution r̄ = ± 1

u
+ r̄KdS.
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t motion

The equation for t (4.3.11)

1

χ2

dt̄

dγ
=

r̄2 + ā2

∆r̄,KdS

P(r) − ā

∆θ

T(θ) (4.3.11)

has the same structure as the equation for the ϕ motion. An integration yields

t̄ − t̄0 = χ2

[
∫ γ

γ0

r̄2 + ā2

∆r̄,KdS

P(r)dγ −
∫ γ

γ0

ā

∆θ

T(θ)dγ

]

= χ2

[

∫ r̄

r̄0

(r̄2 + ā2)P(r)

∆r̄,KdS

√

R̄KdS(r̄)
dr̄ − ā

∫ θ

θ0

T(θ)

∆θ

√

Θ̄KdS(θ)
dθ

]

= χ2
[

Ĩr − āĨθ

]

. (4.3.54)

Because we already demonstrated the solution procedure, we only give here the
results for the most general case.

If 4νΘν , where Θν is defined in (4.3.15), has only simple zeros the solution of the
θ dependent part is given by

a3

|a3|
Ĩθ = (āE − L̄z)(v − v0) −

2
∑

i=1

āa3(χE − āΛ̄L̄z)

4℘′(vi)

[

ζ(vi)(v − v0)

+ log σ(v − vi) − log σ(v0 − vi)
]

(4.3.55)

where ℘(v1) = a2

12
− 1

4
ā2Λ̄a3 = ℘(v2), a3, a2 are defined in (4.3.25), and v = v(γ) =

γ − γθ,in, v0 = v(γ0) as in (4.3.40).

If we consider light, i.e. ǫ = 0, the solution for the r̄ dependent part is given by

b3

|b3|
Ĩr =

4
∑

i=1

2
∑

j=1

C̃i

℘′(vij)

[

ζ(vij)(v − v0) + log σ(v − vij)

− log σ(v0 − vij)

]

− (r̄2
KdS + ā2)((r̄2

KdS + ā2)E − āL̄z)

∆r̄=r̄KdS

(v − v0) , (4.3.56)

where the notation is as in (4.3.31), C̃i are the coefficients of the partial fractions
(y − yi)

−1 with the four zeros yi of ∆y(r̄), and ℘(vi1) = yi = ℘(vi2).
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4.3. Kerr-de Sitter space-time

If R̄KdS has only simple zeros and we consider timelike geodesics ǫ = 1 the solution
of the r̄ dependent part is given by

Ĩr =
u0

|u0|
√

c5

{

C̃1(w − w0) + C̃0(f(w) − f(w0))

+
4

∑

i=1

C̃2,i
√

Rui

[

1

2
log

σ(W+(w))

σ(W−(w))
− 1

2
log

σ(W+(w0))

σ(W−(w0))

− (f(w) − f(w0), w − w0)

(

∫ u+
i

u−

i

d~r

)

]}

(4.3.57)

where the notation is as in (4.3.53) and C̃0, C̃1, C̃2,i are the coefficients of the partial
fractions (u − ui)

−1.

4.3.3 Analytic expressions for observables

For the understanding of characteristic features of a space-time by measurements of
geodesics it is crucial to identify certain theoretical quantities of observables. For
flyby orbits, this can be the deflection angle of the geodesic whereas for bound orbits
it is of interest to determine the orbital frequencies as well as the periastron shift
(see also [82]) and the Lense-Thirring effect. The latter can be defined as the motion
of the nodes where the orbit of a test particle or light intercepts the equatorial
plane. This motion is caused by the g0i components of the space-time metric. In the
weak field regime the Lense-Thirring effect becomes visible by a precession of the
orbital plane, see Fig. 4.19 for an obvious example. This orbital precession has been
confirmed within an accuracy of about 10% by the LAGEOS (Laser Geodynamics
Satellite) mission [83] 2.

Let us first consider flyby orbits. The deflection angle of such an orbit depends
on the two values γ±

∞ of the Mino time for which r̄(γ±
∞) = ∞. These are given by

γ±
∞ =

∫ ∞

r̄0

dr̄
√

R̄KdS

=
1√
c5

(
∫ 0

u0

udu√
Ru

− γ0

)

(4.3.58)

2Another method to observe the influence of the gravitomagnetic components g0i is through the
precession of gyroscopes also known as Schiff effect [84]. Such a measurement has been carried
through by Gravity Probe B [85]. While the Lense-Thirring effect is an orbital effect involving the
motion of the whole trajectory thus constituting a global measurement, the Schiff effect describes
the dragging of local inertial frames due to the existence of the g0i components. For more on
gravitomagnetic effects see [86, 87].
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Figure 4.19: Precession of the orbital plane for a bound orbit with Λ̄ = 10−5, ā = 0.8,
K̄ = 18, L̄z = −1, and E2 = 0.96 (region (IIIb)). As in Fig. 4.15, the cones and
spheres correspond to extremal θ and horizons.

for the two branches of
√

Ru. Therefore, we can calculate the values of θ and ϕ for
r̄ → ∞ that are taken by this flyby orbit by θ± = θ(γ±

∞) and ϕ± = ϕ(γ±
∞). The

deflection angles are then given by ∆θ = θ+ − θ− and ∆ϕ = ϕ+ − ϕ−.

For bound orbits we can identify three orbital frequencies Ωr, Ωθ and Ωϕ associ-
ated with the coordinates r, θ and ϕ. The precessions of the orbital ellipse and the
orbital plane, which in the weak field regime can be identified with the periastron
advance and the Lense-Thirring effect, respectively, are induced by mismatches of
these orbital frequencies. More precisely, the orbital ellipse precesses at Ωϕ −Ωr and
the orbital plane at Ωϕ − Ωθ.

Let us consider the orbital frequency Ωr. For bound orbits the coordinate r̄ is
contained in an interval r̄p ≤ r̄ ≤ r̄a with the peri- and apoapsis distances r̄p and
r̄a. The orbital period ωr̄ defined by r̄(γ + ωr̄) = r̄(γ) is then given by a complete
revolution from r̄p to r̄a and back (with reversed sign of the square root) to r̄p,

ωr̄ = 2

∫ r̄a

r̄p

dr̄
√

R̄KdS

. (4.3.59)

The orbital frequency of the r motion with respect to γ is then given by
2π

ωr̄

. For the

calculation of Ωr, which represents the orbital frequency with respect to t, we need in
addition the average rate Γ at which t accumulates with γ. This will be determined
below.

For the calculation of the orbital frequency Ωθ we have to determine the orbital
period ωθ such that θ(γ + ωθ) = θ(γ). The θ motion is likewise bounded by θmin ≤
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θ ≤ θmax for two real zeros θmin, θmax ∈ [0, π] of Θ̄KdS and, therefore,

ωθ = 2

∫ θmax

θmin

dθ
√

Θ̄KdS

. (4.3.60)

Again, the orbital frequency of the θ motion with respect to γ is given by
2π

ωθ

.

The orbital periods of the remaining coordinates t and ϕ has to be treated some-
what differently because they depend on both r̄ and θ. The solutions t(γ) and ϕ(γ)
consist of two different parts, one which represents the average rates Γ and Yϕ at
which t and ϕ accumulate with γ and one which represents oscillations around it
with periods ωr̄ and ωθ [88, 42]. The periods Γ and Yϕ can be calculated by [42]

Γ =
2

ωr̄

∫ r̄a

r̄p

(r̄2 + ā2)P(r)

∆r̄,KdS

√

R̄KdS

dr̄ − 2

ωθ

∫ θmax

θmin

āT(θ)dθ

∆θ

√

Θ̄KdS

, (4.3.61)

Yϕ =
2

ωr̄

∫ r̄a

r̄p

āP(r)

∆r̄,KdS

√

R̄KdS

dr − 2

ωθ

∫ θmax

θmin

T(θ)dθ

∆θ sin2 θ
√

Θ̄KdS

. (4.3.62)

The orbital frequencies Ωr, Ωθ, and Ωϕ are then given by

Ωr =
2π

ωr̄

1

Γ
, Ωθ =

2π

ωθ

1

Γ
, Ωϕ =

Yϕ

Γ
. (4.3.63)

If the integral expressions for ωr and the r̄ dependent parts of Γ and Yϕ degenerate
to elliptic or elementary type, i.e. if we consider light or R̄KdS possesses multiple
zeros, we can find analytical expressions for (4.3.59), (4.3.61), and (4.3.62) with the
techniques presented in [42]. If R̄KdS has only simple zeros and ǫ = 1, the integral
ωr̄ is an entry of the fundamental period matrix 2ω which enters in the definition of
the period lattice of the holomorphic differentials d~z, {2ωv + 2ω′v | v, v′ ∈ Z2}. The
more complicated integrals involving R̄KdS in (4.3.61) and (4.3.62) can be rewritten
in terms of periods of the differentials of the second kind d~r and of the third kind
dP (x1, x2) by a decomposition in partial fractions. In this way, expressions for ωr, Γ
and Yϕ which are totally analogous to the elliptic case can be obtained.

It follows that the periastron advance is given by

∆peri = Ωϕ − Ωr =

(

Yϕ − 2π

ωr̄

)

1

Γ
(4.3.64)
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and the Lense-Thirring effect by

∆Lense−Thirring = Ωϕ − Ωθ =

(

Yϕ − 2π

ωθ

)

1

Γ
. (4.3.65)

Another way to access information encoded in the orbits is through a frequency
decomposition of the whole orbit [88]. This could be the aim of future work.

4.4 Plebański-Demiański space-times

The methods for analysing geodesic motion and analytically solving the equations
of motions developed and applied in this thesis are not limited to the space-times
presented so far in this and the foregoing chapter. Indeed, they can also be used
for the most general space-times with separable Hamilton-Jacobi equation, which
are the electrovac type-D space-times without acceleration of the gravitating object
[75, 76, 77]. The Plebański-Demiański black hole solutions exhausts all electrovac
type-D space-times and, thus, it is possible to explicitly and analytically solve the
geodesic equations in all space-times, where they are integrable, if this can be done in
Plebański-Demiański space-time without acceleration. This space-time is described
by [89, 90]

ds2 =
∆r,PD

ρ2
PD

(

dt − (a sin2 θ + 2n cos θ)dϕ
)2 − ρ2

PD

∆r,PD

dr2

− ∆θ,PD

ρ2
PD

sin2 θ(adt − (r2 + a2 + n2)dϕ)2 − ρ2
PD

∆θ,PD

dθ2 (4.4.1)

with

ρ2
PD = r2 + (n − a cos θ)2 ,

∆θ,PD = 1 + 1
3
a2Λ cos2 θ − 4

3
Λan cos θ (4.4.2)

∆r,PD =

(

1 − Λ

3
r2 − Λn2

)

(r2 + a2 − n2) − 2Mr + Q2
e + Q2

m − 4

3
Λn2r2

where M is the mass, a = J/M the anguar momentum per mass, Λ the cosmological
constant, n is the NUT charge, Qe is the electric, and Qm the magnetic charge
of a gravitating source. The axially symmetric space-times considered so far in this
chapter emerge from (4.4.1) in the Boyer-Lindquist coordinates t → tχ−1, ϕ → ϕχ−1,
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where χ = 1 + 1
3
a2Λ, and by setting n = 0, Qe = 0, Qm = 0, and in the case of Kerr

space-time also Λ = 0. In Plebański-Demiański space-times there are four constants
of motion, namely ǫ = gµν ẋ

µẋν with ǫ = 1 for timelike and ǫ = 0 for null geodesics,
conserved energy per unit mass E given by the generalized momenta pt, conserved
angular momentum per unit mass in z direction Lz given by pϕ, and the Carter
constant K obtained by the separation process of the Hamilton-Jacobi equation. It
is convenient to introduce the dimensionless quantities

r̄ =
r

M
, t̄ =

t

M
, ā =

a

M
, L̄z =

Lz

M
, K̄ =

K

M2
,

Λ̄ =
1

3
ΛM2, n̄ =

n

M
, Q̄e =

Qe

M
, Q̄m =

Qm

M

(4.4.3)

and accordingly

∆r̄,PD =
(

1 − Λ̄(r̄2 + 3n̄2)
)

(r̄2 + ā2 − n̄2) − 2r̄ + Q̄2
e + Q̄2

m − 4Λ̄n̄2r̄2 ,

(∆r,PD = M2∆r̄,PD) , (4.4.4)

∆θ,PD = 1 + ā2Λ̄ cos2 θ − 4ān̄Λ̄ cos θ ,

with which the geodesic equation can be reduced to ordinary differential equations.
(Here we not consider the motion of charged test particles which can be treated
analogously, see [57].) In addition, these equations can be decoupled in terms of the
normalized Mino time γ = λM , where λ is related to the proper time τ by dτ

dλ
= ρ2

PD,
yielding

(

dr̄

dγ

)2

= P
2(r̄) − ∆r̄,PD(ǫr̄2 + K̄) =: R̄PD(r̄) , (4.4.5)

(

dξ

dγ

)2

= ∆θ,PD(1 − ξ2)
(

K̄ − ǫ(n̄ − āξ)2
)

− T(θ)2
PD =: Θξ(ξ) , (4.4.6)

dϕ

dγ
=

ā

∆r̄,PD

P(r)PD − 1

∆θ,PD sin2 θ
T(θ)PD , (4.4.7)

dt̄

dγ
=

r̄2 + ā2 + n̄2

∆r̄,PD

P(r)PD − ā sin2 θ + 2n̄ cos θ

∆θ,PD sin2 θ
T(θ)PD , (4.4.8)

where ξ = cos θ and

P(r̄)PD = (r̄2 + ā2 + n̄2)E − āL̄z ,

T(θ)PD = (ā sin2 θ + 2n̄ cos θ)E − L̄z ,
(4.4.9)

which reduce to (4.2.12) in the case of Kerr or Kerr-de Sitter space-time. Both of the
polynomials R̄ and Θξ are in general of degree 6 and, thus, Eqs. (4.4.5) and (4.4.6)
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4. Geodesics in axially symmetric space-times

are of hyperelliptic type and first kind. After inserting r̄(γ) and θ(γ) into Eqs. (4.4.7)
and (4.4.8) they will be of hyperelliptic type and third kind. Therefore, the equations
of motions in Plebański-Demiański space-times can be completely analytically solved
with the methods used earlier in this chapter (as also shown in [80]).

A standard substitution ξ = ± 1
u

+ ξΘ, where ξΘ is a zero of Θξ, transforms
Eq. (4.4.6) to the standard form (udu

dγ
)2 = cθΘu for a constant cθ and a polynomial

Θu of degree 5. The solution of Eq. (4.4.6) for θ is then given by

θ(γ) = arccos

(

∓ σ2

σ1

(

f(γ − γθ,in)
γ − γθ,in

)

+ ξΘ

)

, (4.4.10)

where the sign in (4.4.10) is the same as in the substitution ξ = ± 1
u
+ξΘ. Note that in

contrast to the axially symmetric space-times considered so far in this chapter, here
the motion in θ direction is in general not symmetric with respect to the equatorial
plane.

The same type of substitution r̄ = ± 1
u

+ r̄R with a zero r̄R of R̄PD casts R̄PD in
the standard form (udu

dγ
)2 = cr̄Ru, where cr̄ is a constant and Ru a polynomial of

degree 5. The solution of (4.4.5) can be written as

r̄(γ) = ∓σ2

σ1

(

f(γ − γr̄,in)
γ − γr̄,in

)

+ r̄R , (4.4.11)

where the sign again depends on the one chosen in the substitution. Here and
in (4.4.10) the function f describes the theta divisor, i.e. σ(( f(x)

x ) ; τ) = 0, which
depends on the normalized period matrix τ which in turn depends on the polynomials
Θξ for the θ motion and on R̄PD for the r̄ motion.

The equations for ϕ and t̄ can be solved analogously to (4.3.37) and (4.3.54). The
solution for (4.4.7) is given by

ϕ − ϕ0 = Iϕ,r̄ + Iϕ,θ . (4.4.12)

Here the integral Iϕ,r̄ can be solved by

Iϕ,r̄ = − āu0√
cr̄|u0|

{

C r̄
1(w − w0) + C r̄

0(f(w) − f(w0))

+
4

∑

i=1

C r̄
2,i

√

Ru(ui)

[

1

2
log

σ(W+(w))

σ(W−(w))
− 1

2
log

σ(W+(w0))

σ(W−(w0))

−
(

f(w) − f(w0), w − w0

)

(

∫ u+
i

u−

i

d~r

)

]}

, (4.4.13)
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where the notation is as in (4.3.53), and the integral Iϕ,θ by

Iϕ,θ = − u0√
cθ|u0|

{

Cθ
1(w − w0) + Cθ

0(f(w) − f(w0))

+
4

∑

i=1

Cθ
2,i

√

Θu(ui)

[

1

2
log

σ(W+(w))

σ(W−(w))
− 1

2
log

σ(W+(w0))

σ(W−(w0))

−
(

f(w) − f(w0), w − w0

)

(

∫ u+
i

u−

i

d~r

)

]}

, (4.4.14)

where ui are the zeros of ∆θ=arccos(±u−1−ξΘ),PD, u0 is the initial value u0 = (cos(θ0)−
ξΘ)−1), Cθ

0 , C
θ
1 , and Cθ

2,i are the coefficients of the partial fractions of u0, u1 and
(u − ui)

−1, respectively, which can be obtained by a computer algebra system. The
notation of w, w0, and W± are the same as in (4.3.53). The solution of Eq. (4.4.8)
can be written in the same way with the appropiate partial fractions.

Therefore we succeeded in obtaining the complete analytic solution of the geodesic
equation in all Plebański-Demiański black hole space-times without acceleration. An
analysis of possible orbit types in these space-times is very voluminous due to the
large number of parameters, which are the four constants of motion ǫ, E, L̄z, and K̄
as well as the five parameters characterizing this class of space-times ā, Λ̄, Q̄e, Q̄m,
and n̄ (the mass is absorbed through the rescaling (4.4.3)). However, an analysis
for the special cases of spherical symmetric space-times can be found in Chap. 3, for
the cases of Kerr and Kerr-de Sitter space-times in this chapter, and for Taub-NUT-
de Sitter space-time corresponding to ā = 0, Q̄e = 0, and Q̄m = 0 in [80]. As the
Plebański-Demiański black hole solutions exhaust all electrovac type-D solutions and
the analytical solutions of the geodesic equations in Plebański-Demiański space-times
without accelearation was given above, it can be concluded that the analytic solutions
of the geodesic equations in all electrovac type-D space-times without acceleration
can explicitly be given.
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CHAPTER 5

Summary and Outlook

5.1 Summary

The aim of this thesis was to study the influence of the cosmological constant on
geodesics in the black hole space-times of Schwarzschild, Reissner-Nordström, and
Kerr. All calculations were carried out by using analytical methods, which enabled
a systematic study of effects and assured an, in principle, unlimited calculational
accuracy. Both timelike and null geodesics were discussed including some particular
interesting orbits like the innermost stable circular orbit, and analytic expressions
for observables were derived.

The foundations of the mathematical methods used in this thesis are known since
the 19th century and were outlined here in the second chapter. In particular, the
theory of elliptic function was used already in 1931 to solve geodesic equations in
Schwarzschild space-time. However, solutions of the more complicated geodesic equa-
tions containing polynomials of a degree up to six, namely those in space-times with
a nonvanishing cosmological constant, require the theory of hyperelliptic functions.
Here a new aspect enters with the introduction of the theta divisor, which is defined
as the set of zeros of a theta function. Usually, it was assumed that the given prob-
lem is not defined on the theta divisor, but in the cases considered here the contrary
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5.1. Summary

holds and is the key element for the solution method. This application of the theta
divisor was first used in [51] for the case of a double pendulum.

In the following chapters, the mathematical methods were applied to the geodesic
equation corresponding to different solutions of Einstein’s field equations. At first,
the geodesic equations in spherically symmetric space-times, namely the Schwarz-
schild, Reissner-Nordström, and their generalizations to a nonvanishing cosmological
constant were considered. Although the geodesic motion in Schwarzschild space-time
was analyzed in detail long before by Hagihara [6], a treatise of the same complete-
ness was given only recently for Reissner-Nordström space-times by Slezáková [15],
where the analytical solutions of the geodesic equation were given in terms of Ja-
cobi elliptic functions. In this thesis, not only the almost complete set of orbits was
analyzed but also the analytical solutions for the most general cases of geodesic mo-
tion for both timelike and null geodesics were derived in terms of Weierstrass elliptic
functions. The only types of orbits not considered here are the motions of charged
particles treated, for example, in [14].

On the contrary, the complete analytical treatment of geodesic motion in the
corresponding space-times with a nonvanishing cosmological constant is entirely new.
In this thesis for the first time the complete set of orbits in Schwarzschild-(anti-)
de Sitter and Reissner-Nordström-(anti-)de Sitter space-times were classified and
the general analytical solution for the geodesic equation presented. In addition, an
approximation of the periastron advance of bound orbits for a small cosmological
constant was derived in Schwarzschild-de Sitter space-time, applied to the orbital
data of Mercury and Quasar QJ287, and in the first case compared to earlier results
[40]. As a further application of the analytical results the influence of the cosmological
constant on the Pioneer 10 and 11 spacecraft was computed and found to be too small
to produce a measureable effect. Finally, it was demonstrated that the methods
developed and applied in this chapter can also be used to integrate the geodesic
equation in up to seven-dimensional Schwarzschild space-times. This can even be
extended to more general higher-dimensional space-times as shown in [53].

In the fourth chapter the methods presented and developed in the foregoing chap-
ters were applied to more general axially symmetric space-times, i.e. to Kerr as well
as Kerr-(anti-)de Sitter space-time and even to the wide class of Plebański-Demiański
space-times. A major difficulty compared to the spherical symmetric space-times con-
sidered before is the need for a fourth constant of motion, the Carter constant [11].
The geodesic motion in Kerr space-time was investigated since the metric was discov-
ered in 1963, but due to the coupled character of the equations and the complexity of
the space-time a number of special classes of geodesics were analyzed instead of con-
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sidering the most general case. Again, a complete analytical treatment was presented
only recently by Slezáková [15] using Jacobi elliptic functions. However, Slezáková
was obviously not aware of a major simplification of the equations of motion in Kerr
space-time first presented in 2003 by Mino [30], which decouples the equations and
allows to explicitly solve the equations of motions in terms of an affine parameter. In
this thesis, this approach was used to formulate the most general analytical solution
of the geodesic equation in Kerr space-time in terms of Weierstrass elliptic functions
depending on an affine parameter, the Mino time. Also, the complete set of orbits
for slowly rotating Kerr black holes was classified in terms of the parameters of the
test particle or light ray.

The generalization of these results to the case of a nonvanishing cosmological con-
stant could in principle be done in the same way as the generalization in the spheri-
cally symmetric case. However, two difficulties arise here. The first is connected to
the Carter constant derived in the separation process of the Hamilton-Jacobi equa-
tion. For a vanishing cosmological constant there are two forms of this constant one
of which is directly related to the geometry of the geodesic [14]. Although for a
nonvanishing cosmological constant only the other one of these two forms emerges
from the separation process, it was shown in this thesis that for a positive and, to
some extend, for a negative cosmological constant the Carter constant is neverthe-
less related to the geometry of the orbit. The second difficulty is connected to the
fact that in contrast to the spherically symmetric case, the radial and latitudinal
coordinate can not be directly expressed in terms of the azimuthal angle, which in-
troduces hyperelliptic integrals of third kind. This issue could be solved and, thus,
the analytical solution of the geodesic equation in Kerr-(anti-)de Sitter space-time
could be presented for the first time in this thesis. Furthermore, the differences
between the geodesic motion in Kerr and Kerr-de Sitter space-times were analyzed
and a procedure for the determination of the last stable spherical and the innermost
circular orbit in the equatorial plane was outlined. The properties of the analytical
solution were used to determine analytic expressions for observables in Kerr-de Sitter
space-time, namely the deflection angle of flyby orbits and the periastron advance
as well as the Lense-Thirring effect of bound orbits. Last but not least, the methods
used so far were also applied to the general class of Plebański-Demiański electrovac
space-times without acceleration of the gravitating object, which exhaust all space-
times with integrable equation of motions. Therefore, it was shown in this thesis
that in all space-times with integrable equations of motion an analytical solution can
indeed be found.

For the explicit calculation of orbits in the mentioned space-times several work-
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sheets for the computer algebra system Maple were created. The contents of these
worksheets were prepared as Maple packages and stored in library files. This enables
the portability of the program and guarantees an easy access also for unexperienced
users. It proved to be an important tool for the verification of the analytical so-
lutions and enhanced the intuitive understanding of the dynamics in the different
space-times.

5.2 Outlook

The work accomplished in this thesis can be continued in a number of ways, namely
by improvements of the used methods, enhanced discussion of geodesics and observ-
ables in space-times with nonvanishing cosmological constant, and application of the
methods developed here to geodesic motion in more general space-times and the
effective one-body formalism.

Improvement of methods A key element of the analytical solution of the geodesic
equation in space-times with a nonvanishing cosmological constant is the concept of
the theta divisor. However, its definition is rather implicit and not well suited for
computations. It would be a major improvement of the solution method to formulate
this complex one-dimensional submanifold in terms of charts or as the graph of a
differentiable function (using the implicit function theorem). If it will turn out that
this differentiable function can not be expressed in a closed form, at least it should be
possible to find a series expansion. More precisely, as exp(Re((m + g)t(iτ)(m + g)t))
becomes small for large |m| (see (2.3.1)), the expression (2.3.4) can be approximated
by considering only small |m| and may then be solved for z1 depending on z2 or vice
versa.

Another important aspect of this method is the definition and computation of the
periodicity of the resulting solutions, which is directly connected to the period matrix
of the vector of holomorphic differentials on the corresponding Riemann surface. As
explained in this thesis, this periodicity also defines the observables connected with
the trajectory of a geodesic, i.e. the periastron advance and the Lense-Thirring effect.
Therefore, it is desireable to solve the integrals defining the period matrix in terms
of analytic functions. Hints for a realization can be found in [91].

So far the analytical solution methods presented in this thesis are limited to
hyperelliptic problems with an underlying polynomial of degree 6 or lower. However,
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the equations of motion in some higher-dimensional spherically symmetric space-
times and maybe also in some of the generalized space-times discussed below contain
polynomials of a higher degree. These types of equations can not be solved using
the restriction to the theta divisor discussed in Sec. 3.3.1.2, as this is a manifold of
complex dimension two or higher in these cases. Hints for a generalization of the
solution method to these cases can be found in [51].

Enhanced discussion of geodesics and observables The results of this thesis
can be viewed as the starting point for the analysis of several features of geodesics in
space-times with a nonvanishing cosmological constant not treated here. Although
mathematical analogous to the case of slow Kerr-de Sitter a complete discussion of
orbits in fast and extreme Kerr-de Sitter space-times may lead to special features.
This was carried out for the fast case [92] but should be extended also to the extreme
case. It would also be interesting to study bound geodesics crossing r̄ = 0 (and
maybe also the Cauchy horizon for positive r̄) in general and, in particular, their
causal structure. In this context the analysis of closed timelike trajectories is also of
interest. In addition, we did not consider geodesics lying entirely on the axis θ = 0, π
or even crossing it, yet. Until now, we only considered the Boyer-Lindquist form of
the Kerr-de Sitter metric which is not a good choice for considering geodesics which
fall through a horizon. Therefore, for future work it would be interesting to use a
coordinate-singularity free version of the metric.

Analytic solutions are the starting point for approximation methods for the de-
scription of real stellar, planetary, comet, asteroid, or satellite trajectories (see e.g.
[93]). In particular, it is possible to derive post-Kerr, post-Schwarzschild, or post-
Newton series expansions of analytical solutions. In addition to the series expansion
of the periastron advance in Schwarzschild-de Sitter space-time in terms of Λ pre-
sented in Sec. 3.3 it would be interesting to derive post-Kerr, post-Schwarzschild, or
post-Newton expressions for this and other observables. Due to the high precission,
the analytical expressions for observables in space-times with a nonvanishing Λ may
be used for comparisons with observations where the influence of the cosmological
constant might play a role. This could be the case for stars moving around the
galactic center black hole or binary systems with extreme mass ratios where one
body serves as test particle.

Due to the, in principle, arbitrary high accuracy of analytic solutions of the
geodesic equation they can also serve as test beds for numerical codes for the dy-
namics of binary systems in the extreme stellar mass ratio case (extreme mass ratio
inspirals, EMRIs) and also for the calculation of corresponding gravitational wave
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templates. For the case of Kerr space-time with a vanishing cosmological constant
it has already been shown that gravitational waves from EMRIs can be computed
more accurately by using analytical solutions than by numerical integration [42].

Generalized space-times and effective one-body formalism The methods
for obtaining analytical solutions of geodesic equations presented in this thesis can
also be applied to other space-times. Indeed, they have already been used to solve
the geodesic equations in higher-dimensional static spherically symmetric space-times
[53] and to a Schwarzschild black hole pierced by a cosmic string [94]. It will also be
interesting to apply the presented methods to higher-dimensional stationary axially
symmetric space-times like the Myers-Perry solutions and to generalize the results
of [94] to stationary space-times or to a nonvanishing cosmological constant. In par-
ticular, the Plebański-Demiański space-time without acceleration treated in Sec. 4.4
and all its special cases could be elaborated [80, 95]. For the case of Taub-NUT and
Taub-NUT-de Sitter space-time this work is already in progress [96] including an
extensive discussion of geodesic incompleteness.

The same structure of equations solved in this thesis is also present in the geodesic
equation of the effective one-body formalism of the relativistic two-body problem.
The effective metric in this formalism can be described as a perturbed Schwarzschild
or Kerr metric, where the perturbation is given in powers of the radial coordinate
r [97, 98, 99]. Therefore, it can be expected that the polynomial appearing in the
resulting equations of motion will have a higher degree than the corresponding poly-
nomial in the Schwarzschild or Kerr case and, thus, that analytical solutions of these
equations will require the use of hyperelliptic instead of elliptic functions. A similar
situation can be found in the expressions of axisymmetric gravitational multipole
space-times. For example, some types of geodesics in Erez-Rosen space-time, which
reduces to the Schwarzschild case if the quadrupole moment is neglected, were al-
ready solved analytically [100, 101]. Probably, the methods presented in this thesis
will be helpful to solve geodesics in space-times with higher order multipoles.
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APPENDIX A

Calculation of elliptic integrals of third kind

In this appendix we will give the details for the calculation of elliptic integrals of the
third kind (see also (2.1.17))

∫ y2

y1

f(y) dy
√

4y3 − g2y − g3

=

∫ v2

v1

f(℘(v))dv , (A.0.1)

where g2, g3 are the Weierstrass invariants, f is a rational function, and the sign
of the square root is chosen according to the sign of ℘′. The different choices of f
discussed in the following sections correspond to different problems discussed in this
thesis. For solving the integral (A.0.1) the function f will be expressed in terms of
the Weierstrass ζ function as well as the Weierstrass ℘ function and its derivatives
along the lines of Thm. 2.5. The reason is that these functions can be integrated
easily since ζ ′ = −℘ and (log σ)′ = ζ, where σ is the Weierstrass σ-function:

∫

γ

℘(v − v0)dv = ζ(γ(0) − v0) − ζ(γ(1) − v0) , (A.0.2)

∫

γ

ζ(v − v0)dv = log σ(γ(1) − v0) − log σ(γ(0) − v0) , (A.0.3)

where γ(0) = v1 and γ(1) = v2 (the branches of log will be discussed later).
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Although the integration procedure for (A.0.1) is not complicated, often lengthy
calculations are necessary to obtain the constants An

i defined in Thm. 2.5, i.e. to
find the representation of an elliptic function in terms of the Weierstrass ζ function
and its derivatives. These calculation are explicitly carried out in this appendix for
the case of the post-Schwarzschild periastron advance presented in Sec.3.3.1.3 and
for a generic case which can easily be matched to all other elliptic integrals of third
kind discussed in this thesis.

A.1 General solution procedure

In this section we present the general solution procedure for an elliptic integral of
third kind and demonstrate it for an example. We consider

∫ v

v0

dv

c1℘(v) − c2

=:

∫ v

v0

f(v)dv , (A.1.1)

where c1 and c2 are constant. By using some substitutions and a partial fraction de-
composition this generic case can easily be adapted to the integrals (4.2.34), (4.2.40),
(4.2.43), the θ dependent part of (4.3.54) and (for null geodesics) (4.3.42) as well as
the r dependent part of (4.3.54).

The function f has poles of first order at v1, v2 ∈ {2tω + 2sω′ | 0 ≤ t, s < 1} with
the periods 2ω ∈ R, 2ω′ ∈ C of ℘, where ℘(vj) = c2

c1
. (This means that v2 = 2ω − v1

if v1 = 2tω, v2 = 2ω′ − v1 if v1 = 2sω′, and v2 = 2ω + 2ω′ − v1 else.) Therefore, in a
neighborhood of vj the function f is given by

f(v) =
aj

v − vj

+ holomorphic part (A.1.2)

whereas (c1℘(v) − c2) expands in this neighborhood as

c1℘(v) − c2 = c1℘
′(vj)(v − vj) + higher orders . (A.1.3)

The combination of these two expansions can now be used to determine the constants
An

i defined in Thm. 2.5. A comparison of coefficients yields

1 = f(v)(c1℘(v) − c2) = ajc1℘
′(vj) ⇒ aj =

1

c1℘′(vj)
. (A.1.4)
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Because ζ is an elliptic function with a simple pole in 0 with residue 1 this implies
that

f(v) −
2

∑

j=1

ζ(v − vj)

c1℘′(vj)
(A.1.5)

is an elliptic function without poles and, therefore (see Thm. 2.2), equal to a constant
A, which can be computed using f(0) = 0. From this it can be inferred that

f(v) =
2

∑

j=1

ζ(v − vj) + ζ(vj)

c1℘′(vj)
. (A.1.6)

By the formula (A.0.3) f can then be integrated to

∫ v

v0

f(v)dv =
2

∑

j=1

ζ(vj)(v − v0) + log σ(v − vj) − log σ(v0 − vj)

c1℘′(vj)
. (A.1.7)

Note that ℘′(vj) can be expressed in terms of c1 and c2 by using the relation ℘′(vj) =

±
√

4℘(vj)3 − g2℘(vj) − g3 = ±
√

4
c32
c31
− g2

c2
c1
− g3.

In general, the elliptic integrals of third kind to be solved in this thesis arrived at
the form (A.1.1) by substitutions of the form x = g(y) and y = ℘(v), where x denotes
a space-time coordinate and g a rational function. Furthermore, the substitution
x = g(y) was in general applied before to an integral of first kind, with the result
that y = ℘(γ − γin) for an affine parameter γ (the normalized Mino time) and a
constant γin depending on the initial values of the problem. This allows to substitute
v = γ−γin (modulo periods) and accordingly v0 = v(γ0) in Eq. (A.1.7), what results
in

∫ v

v0

f(v)dv =
2

∑

j=1

1

c1℘′(vj)

(

ζ(vj)(γ − γ0)

+ log σ(γ − γin − vj) − log σ(γ0 − γin − vj)
)

. (A.1.8)

As an example, consider the integral Ir in Eq. (4.2.34). The corresponding integral
of first kind

∫ r̄

r̄0

dr̄√
R̄K

was solved in 4.2.2 with substitutions r̄ = 1
ξ

+ r̄K and ξ =

1
a3

(

4y − a2

3

)

. The solution for y was then given by y = ℘(γ − γr,in). As the same
substitutions and additionally y = ℘(v) were used to cast the integral Ir in the
standard form as a sum of terms (A.1.1), the result y = ℘(γ − γr,in) can be used to
express Ir in terms of γ.
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Example We explicitly demonstrate the generic solution procedure explained above
for the conrete integral (4.2.40)

Iθ := −|a3|
a3

[

āE(v − v0) +

∫ v

v0

a3L̄zdv

4℘(v) − a3 − a2

3

]

,

where a3 and a2 are some constants.

Here the function f from (A.0.1) is given by

f(v) =
1

4℘(v) − c
, (A.1.9)

where c = a3 + a2

3
= 4

(

1
3
(2āE(āE − L̄z) − K̄ − ǫā2) − ā2(E2 − ǫ)

)

. The function f
has poles of first order at v1, v2 ∈ {tω + sω′ | 0 ≤ t, s < 1} with the periods ω, ω′ of
℘, where ℘(vj) = c

4
. Therefore, in a neighborhood of vj the function f is given by

f(v) =
aj

v − vj

+ holomorphic part (A.1.10)

and the expression (4℘(v) − c) by

4℘(v) − c = 4℘′(vj)(v − vj) + higher orders . (A.1.11)

The combination of these two expansions yields

1 = f(v)(4℘(v) − c) = aj4℘
′(vj) ⇒ aj =

1

4℘′(vj)
. (A.1.12)

Because ζ is an elliptic function with a simple pole in 0 with residue 1 this implies
that

f(v) −
2

∑

j=1

ζ(v − vj)

4℘′(vj)
(A.1.13)

is an elliptic function without poles, and, therefore, equal to a constant A, which can
be computed using f(0) = 0. The yields

f(v) =
2

∑

j=1

ζ(v − vj) + ζ(vj)

4℘′(vj)
. (A.1.14)
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Then f can be integrated giving

∫ v

v0

f(v)dv =
2

∑

j=1

1

℘′(vj)
(ζ(vj)(v − v0) + log σ(v − vj) − log σ(v0 − vj)) . (A.1.15)

Here ℘′(vj) can be expressed in terms of c by using ℘(vj) = c
4

and the differential
equation (2.1.2). We insert this result in (4.2.40):

Iθ = −|a3|
a3

[

āE(v − v0) +
a3L̄z

4

2
∑

j=1

1

℘′(vj)
(

ζ(vj)(v − v0) + log σ(v − vj) − log σ(v0 − vj)

)]

. (A.1.16)

Because ℘(v) = y and y(γ) = ℘(γ − γθ,in), which was derived in the solution process
of the θ equation (see (4.2.30)), it can be inferred that v = γ − γθ,in modulo periods.
This implies

Iθ(γ) = −|a3|
a3

[

āE(γ − γ0) +
a3L̄z

4

2
∑

j=1

1

℘′(vj)
(

ζ(vj)(γ − γ0) + log σ(γ − γj) − log σ(γ0 − γj)

)]

(A.1.17)

modulo the periods ω, ω′ and the periods of second kind η, η′. (More precisely, these
periods are multiplied by the constant factors in this equation. See also (2.1.16))
Here ℘(γj − γθ,in) = a3

4
+ a2

12
.

A.2 Post-Schwarzschild periastron advance

For an integration of the second term on the right hand side in (3.3.40), which can
be transformed to (3.3.45), the functions

F1(v) =
1

PW (℘(v))
=

1

(℘′(v))2
,

F2(v) =
1

(2℘(v) + 1
6
)2PW (℘(v))

=
1

(2℘(v) + 1
6
)2(℘′(v))2

(A.2.1)
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have to be integrated along a path γ with γ(0) = v1 and γ(1) = v1 + 2ω, where ω is
the purely real period of the ℘ function. Due to the periodicities

ζ(z + 2ω) = ζ(z) + 2η , (A.2.2)

σ(z + 2ω) = e2η(z+ω)+πiσ(z) , (A.2.3)

Eqs. (A.0.2) and (A.0.3) can be rewritten as
∫

γ

℘(v − v0)dv = −2η , (A.2.4)

∫

γ

ζ(v − v0)dv = 2η(v1 − v0 + ω) + πi + 2πik (A.2.5)

for a k ∈ Z, where η is the period of second kind.

Integration of F1: The function F1 only possesses poles of second order in ρ1 = ω′,
ρ2 = ω′ + ω, ρ3 = ω (see Fig. 3.14). In a neighborhood of ρj, the function F1 can be
expanded as

F1(v) =
aj2

(v − ρj)2
+

aj1

v − ρj

+ holomorphic part . (A.2.6)

Since ℘′(ρj + z)2 = ℘′(ρj − z)2 for all j and z, F1 is symmetric with respect to all
ρj and, therefore, depends only on even powers of (v − ρj) implying aj1 = 0. The
constant aj2 can be evaluated by a comparison of coefficients. For this, we note that
℘′(ρj) = 0 = ℘′′′(ρj) and, thus,

℘′(v) = ℘′′(ρj)(v − ρj) +
∞

∑

i=3

ci(v − ρj)
i (A.2.7)

in a neighborhood of ρj and for some constants ci. If we square both sides of the
equation, we see that ℘′2 contains only even powers of (v − ρj) larger than 1. It
follows

1 = F1(v)℘′(v)2 = aj2℘
′′(ρj)

2 + higher powers of (v − ρj) . (A.2.8)

From that it follows aj2 = 1
℘′′(ρj)2

for all j. The function ℘(v − ρj) has only one pole

of second order in ρj with zero residue. Therefore, the difference

F1(v) −
3

∑

j=1

aj2℘(v − ρj) (A.2.9)
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is a holomorphic elliptic function and, thus, constant by Thm. 2.2. This yields

F1(v) =
3

∑

j=1

aj2℘(v − ρj) + c1 . (A.2.10)

The constant c1 can be determined by F1(0) = 0 using the relation ℘(−ρj) = ℘(ρj) =
yj:

c1 = −
3

∑

j=1

aj2yj . (A.2.11)

In summary, we obtain

∮

A

dy

PW (y)
√

PW (y)
=

∫

γ

F1(v)dv

=

∫

γ

3
∑

j=1

aj2(℘(v − ρj) − yj)dv

=
3

∑

j=1

1

℘′′(ρj)2

(
∫

γ

℘(v − ρj)dv − 2ωyj

)

=
3

∑

j=1

1

℘′′(ρj)2
(−2η − 2ωyj) . (A.2.12)

Integration of F2: The function F2 possesses poles of second order in ρ1 = ω′,
ρ2 = ω′ + ω, ρ3 = ω and in all v0 ∈ R such that ℘(v0) = − 1

12
. Since we assumed

that the considered orbit is bound, all zeros of PSdS have to be positive and, thus,
− 1

12
< y1 < y2 < y3. This means that 0 < Im(v0) < Im(ρ1). The function ℘ is even

and, hence, also ṽ0 := 2ω′ − v0 ∈ R is a pole of second order (see Fig. 3.14).

Since ℘ is symmetric with respect to ρj, the function F2 can be expanded in the
same way as above as

F2(v) =
aj2

(v − ρj)2
+ holomorphic part (A.2.13)

in a neighborhood of ρj. An expansion of (2℘(v) + 1
6
)℘′(v) near ρj yields

(

2℘(v) + 1
6

)

℘′(v) = αj1(v − ρj) + αj2(v − ρj)
2 + higher orders (A.2.14)
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because of ℘′(ρj) = 0. The coefficients are given by

αj1 =
((

2℘(v) + 1
6

)

℘′(v)
)′

v=ρj
=

(

2yj + 1
6

)

℘′′(ρj)

αj2 =
((

2℘(v) + 1
6

)

℘′(v)
)′′

v=ρj
= 0 .

(A.2.15)

A comparison of coefficients

1 = F2(v)
((

2℘(v) + 1
6

)

℘′(v)
)2

= aj2α
2
j1 + higher powers of (v − ρj) (A.2.16)

yields

F2(v) =
1

(v − ρj)2

((

2yj + 1
6

)

℘′′(ρj)
)−2

+ holomorphic part (A.2.17)

in a neighborhood of ρj.

The same procedure will be carried out for v0 and ṽ0. We have

F2(v) =
b2

(v − v0)2
+

b1

v − v0

+ holomorphic part (A.2.18)

and

(

2℘(v) + 1
6

)

℘′(v) = β1(v − v0) + β2(v − v0)
2 + higher orders (A.2.19)

near v0. The coefficients of (A.2.19) read

β1 = 2℘′(v0)
2

β2 = 3℘′(v0)℘
′′(v0) .

(A.2.20)

Again, a comparison of coefficients

1 = F2(v)
((

2℘(v) + 1
6

)

℘′(v)
)2

= b2β
2
1 + (2b2β1β2 + b1β

2
1)(v − v0) + higher orders (A.2.21)

yields

b2 = β−2
1 =

1

4℘′(v0)4

b1 = −2β1β2b2β
−2
1 = −2β2β

−3
1 = −3

4

℘′′(v0)

℘′(v0)5
.

(A.2.22)
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In a neighborhood of ṽ0, the function F2 is given by

F2(v) =
b̃2

(v − ṽ0)2
+

b̃1

v − ṽ0

+ holomorphic part . (A.2.23)

As ℘′ is an odd and ℘′′ an even function we get for the coefficients of the expansion
of (2℘(v) + 1

6
)℘′(v) near ṽ0 with ṽ0 = 2ω′ − v0 the relations

β̃1 = β1, β̃2 = −β2 (A.2.24)

and, therefore,

b̃1 = −b1, b̃2 = b2 . (A.2.25)

Summarized, the function

g2(v) :=
3

∑

j=1

aj2℘(v − ρj) + b2(℘(v − v0) + ℘(v − ṽ0))

+ b1(ζ(v − v0) − ζ(v − ṽ0)) (A.2.26)

has the same poles with the same coefficients as F2. Therefore, F2 − g2 is a holomor-
phic elliptic function and, thus, equal to a constant c2 by Thm. 2.2. This constant
can be determined by the condition 0 = F2(0) = g2(0) + c2 which yields

c2 = −
3

∑

j=1

aj2yj − 1
6
b2 + b1(−ζ(v0) + ζ(ṽ0)) . (A.2.27)

As a consequence,

F2(v) =
3

∑

j=1

aj2(℘(v − ρj) − yj) + b2(℘(v − v0) + ℘(v − ṽ0) + 1
6
)

+ b1(ζ(v − v0) − ζ(v − ṽ0) + ζ(v0) − ζ(ṽ0)) . (A.2.28)

Now we can carry out the integration of the second term on the right hand side
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of (3.3.45):

∫

γ

F2(v)dv =
3

∑

j=1

aj2

(
∫

γ

℘(v − ρj)dv − 2ωyj

)

+ b2

∫

γ

℘(v − v0) + ℘(v − ṽ0)dv

+ b2
3
ω + b1

∫

γ

ζ(v − v0) − ζ(v − ṽ0)dv + 2b1ω(ζ(v0) − ζ(ṽ0))

=
3

∑

j=1

−2aj2(η + yjω) + b2

(

1
3
ω − 4η

)

+ 2b1ω(ζ(v0) − ζ(ṽ0))

+ b1(2η(ṽ0 − v0) + 2πi(k1 − k2))

=
3

∑

j=1

−2aj2(η + yjω) + b2

(

1
3
ω − 4η

)

+ 2b1ω(2ζ(v0) − 2η′)

+ b1(2η(2ω′ − 2v0) + 2πi(k1 − k2)) . (A.2.29)

The difference (k1 − k2) can be calculated as follows. First note that via u =
2℘(v)+ 1

6
, v0 corresponds to u = 0 and v1 to u = u1. Since 0 < u1 for the bound orbits

under consideration we have Im(v0) < Im(v1) < Im(ṽ0). Let now l be determined by

∫ v2+2ω

v2

ζ(v − ṽ0)dv = 2η(v2 − ṽ0 + ω) + πi + 2πil , (A.2.30)

where v2 ∈ i ·R is such that Im(v2) > Im(ṽ0) > Im(v1) > Im(v0). From

(i) l does not depend on ṽ0 as long as Im(ṽ0) < Im(v2) holds and, thus,

∫ v2+2ω

v2

ζ(v − v0)dv = 2η(v2 − v0 + ω) + πi + 2πil (A.2.31)

and

(ii) (A.2.31) holds also for v2 replaced by v1 by Cauchy’s integral formula for the
rectangle with corners v1, v1 + 2ω, v2 + 2ω, and v2

it follows that l = k1.

We show now that k2 = l+1 and, thus, k2 = k1+1. Consider the counterclockwise
oriented rectangle with corners v1, v1 +2ω, v2 +2ω, and v2. Let c be the boundary of
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this rectangle but with a two symmetric small bumps such that c encircles the pole
ṽ0 of ζ(v − ṽ0) with residue 1, but not ṽ0 + 2ω. Then the residue theorem gives

2πi =

∮

c

ζ(v − ṽ0)dv

=

∫ v1+2ω

v1

ζ(v − ṽ0)dv +

∫ v2+2ω

v1+2ω

ζ(v − ṽ0)dv +

∫ v2

v2+2ω

ζ(v − ṽ0)dv

+

∫ v1

v2

ζ(v − ṽ0)dv

=

∫ v1+2ω

v1

ζ(v − ṽ0)dv −
∫ v2+2ω

v2

ζ(v − ṽ0)dv + 2η(v2 − v1)

= 2η(v1 − ṽ0 + ω) + πi + 2πik2 − (2η(v2 − ṽ0 + ω) + πi + 2πil) + 2η(v2 − v1)

= 2πi(k2 − l) . (A.2.32)

With the Legendre relation 4(ηω′ − η′ω) = 2πi we finally obtain

∫

γ

F2(v)dv =
3

∑

j=1

−2(η + yjω)
(

2yj + 1
6

)2
℘′′(ρj)2

+
ω − 12η

12℘′(v0)4

+ 3
℘′′(v0)

℘′(v0)5
(ηv0 − ωζ(v0)) . (A.2.33)

Note that though the values ℘′(v0)
5, v0 and ζ(v0) appearing in the last part of the

right-hand side are all purely imaginary, the hole term is real.
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APPENDIX B

Maple program

The orbit plots in the various space-times discussed in this thesis (Figs. 3.4, 3.5,
3.8, 3.9, 3.12, 3.13, 3.19, 4.7, 4.8) were computed using the Maple computer algebra
system. In this chapter, the modules created for this purpose are presented and
explained. Each of these modules has a number of exported procedures which are
’public’ and can be used outside the module as well as some local procedures which
are ’private’ to the module and are used by the exported procedure to produce results.
In the following, only the source code of the procedures is displayed. To collect them
in modules, copy all exported and local procedures of a module to a Maple worksheet
of the following form.
> restart:

> libdir:="<path to own libraries>":

> libname:=libname,libdir:

> <modulename>:=module()
export <list of exported procedures>:
option package;
<exported procedures>
<local procedures>
end module:

> savelibname:=cat(libdir,"/<modulename>.mla"):

> LibraryTools[Save](’<modulename>’,savelibname);
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By executing such a worksheet, a library file corresponding to the module is
created. This module has the ’package’ option which means that the exported pro-
cedures of the module are available by adding <libdir> to the global variable <lib-
name> and executing the with(<modulename>) statement. The top-level module of
this software package is SolveGeodesics. An example worksheet for using it can be
found below.

> restart:
> # path to the directory containing the library files

# (SolveGeodesics.mla and related)
libdir:="<path to own libraries>":

> # inlcude the libdir to the global variable libname
# (enables Maple to find the libraries)
libname:=libname,libdir:

> # define the working directory, where datafiles should be stored
# workdir is required to have subdirectories "data" and "temp"
# and is a global variable in solve_geodesics
workdir:="<path to working directory>":

> # get the date and time
# date is a global variable in solve_geodesics
date:=StringTools[FormatTime]("%y%m%e_%H%M"):

> # Digits for the computation
# for Digits>15 the computation time is much larger than for Digits<=15!
Digits:=35:

> # Input parameters of the black hole
# the mass
mass:=1:
# the rotation parameter
rot:=0.8:
# the electrical charge
echarge:=0:
# the cosmological constant
cosmo:=3*10^(-5);
# the NUT parameter
NUT:=0:
# the magnetic charge
mcharge:=0:

> # Input parameters of the geodesic
# timelike (1) or lightlike (0) geodesic
particle_light:=1:
# squared energy parameter
energy:=0.95:
# angular momentum (in z direction for not rot=0)
ang_mom:=0.025:
# Carter constant
carter:=12:
# type of orbit (examples can be found in Sec.B.1)
orbittype:="bound":
# initial values as a list (may be empty)
initial_values:=[]:
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> # load package
with(SolveGeodesics):

> # eventually give a period matrix
# read cat(workdir,"temp/rdata_",date,".mpl"):
# periodMatrix;

> sol:=solve_geodesics(mass, rot, echarge, cosmo, NUT, mcharge, particle_light,
energy, ang_mom, carter, orbittype, initial_values):

> # get bounds for phi in case of timelike geodesics
# and nonvanishing cosmological constant
# especially useful for flyby and terminating orbits
if (not cosmo=0) and particle_light=1 then
read cat(workdir,"temp/val_phi_",date,".mpl"):
end if;

> # compute solution points:
# n and affinelist has to be adapted to the problem
if rot=0 and (cosmo=0 or particle_light=0) then
n:=100:
affinelist:=[seq(6*i/n,i=0..6*n)]:
rlist:=[seq(sol(affinelist[i]),i=1..nops(affinelist))]:
elif rot=0 and (not cosmo=0) then
n:=50:
affinelist:=evalf([seq(val_phi[1]+i*(val_phi[2]-val_phi[1])/n,i=0..1.5*n)]);
rlist:=sol(affinelist):
elif (not rot=0) and (cosmo=0 or particle_light=0) then
n:=100:
affinelist:=[seq(i*2/n,i=0..3*n)]:
rlist:=[seq(evalf(sol[1](affinelist[j])),j=1..nops(affinelist))]:
thetalist:=[seq(sol[2](affinelist[j]),j=1..nops(affinelist))]:
philist:=sol[3](affinelist):
else
n:=50:
affinelist:=evalf([seq(val_phi[1]+i*(val_phi[2]-val_phi[1])/n,i=0..3*n)]):
print("compute rlist");
rlist:=sol[1](affinelist):
print("compute thetalist");
thetalist:=[seq(sol[2](affinelist[j]),j=1..nops(affinelist))]:
print("compute philist");
philist:=sol[3](affinelist):
end if:

> # ------------- SAVE ----------
# save solution points to a datafile for later use (for example plotting)

> Inputs_blackhole:=[mass,rot,echarge,cosmo,NUT,mcharge]:

> Inputs_geodesic:=[particle_light,energy,ang_mom,carter,orbittype,
initial_values]:

> Inputs_Maple:=[date,workdir,Digits]:

> Outputs_sol:=sol:

> Outputs_data:=[affinelist,rlist,thetalist,philist]:

> Outputs_extended:=[val_phi,periodMatrix]:
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> if mcharge=0 then
if rot=0 then
if NUT=0 and cosmo=0 and echarge=0 then spacetime:="S";
elif NUT=0 and cosmo=0 then spacetime:="RN";
elif NUT=0 and echarge=0 then spacetime:="SdS";
elif NUT=0 then spacetime:="RNdS"; end if:
else
if NUT=0 and cosmo=0 and echarge=0 then spacetime:="K";
elif NUT=0 and echarge=0 then spacetime:="KdS"; end if:
end if:
end if:

> save Inputs_blackhole,Inputs_geodesic,Inputs_Maple,Outputs_sol,Outputs_data,
Outputs_extended, cat(workdir,"data/",spacetime,"_",orbittype,"_",date,".mpl"):

B.1 Module SolveGeodesics

This module collects all top-level procedures used to solve the geodesic equations in
the space-times discussed in this thesis. At this time this means geodesic equations in
Schwarzschild, Reissner-Nordström, Schwarzschild-de Sitter, Reissner-Nordström-de
Sitter, Kerr, and Kerr-de Sitter space-times. In this module itself, all preparations
for the actual solution process are carried out. This includes the checks of the space-
time, orbit types, and initial values. For the procedures computing the solution see
the module SolveEOM.

Exported procedures

Procedure solve geodesics: Top-level procedure for solving geodesic equations
in Plebański-Demiański space-times. Until now, Schwarzschild, Reissner-Nordström,
Schwarzschild-de Sitter, Reissner-Nordström-de Sitter, Kerr, and Kerr-de Sitter space-
times are implemented.
Input:

mass: mass parameter
rot: rotation parameter
echarge: electric charge parameter
cosmo: cosmological constant
NUT: NUT parameter
mcharge: magnetic charge parameter
particle light: if particle light=0 null geodesics are computed, if particle light=1
timelike geodesics are computed.
energy: squared energy of the particle of light ray
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ang mom: angular momentum of the particle or light ray. For axially symmetric
space-times this is the angular momentum in z direction.
carter: carter constant
orbittype: type of orbit which should be computed. Possible types depend on the
space-time.
(optional) initial values: initial values of the affine parameter or space-time coordi-
nate in the form [initial value affine parameter, initial value coordinate 1,..., initial
value coordinate n]. For spherically symmetric space-time the first entry is the initial
value of the ϕ-coordinate.
(optional) periodM: the period matrix or list of period matrices. For the default
value 0 all period matrices needed are computed in the procedure invert eom, which
is called by the procedures solve <space-time>
Output:

solution function: may take one of four forms:

1. In spherical symmetric space-times with vanishing cosmological constant a single
solution function for r(ϕ) is returned.

2. In spherical symmetric space-times with nonvanishing cosmological constant a
single procedure for r(ϕ) is returned. In this case ϕ has to be a list containing
one or more values of ϕ, which is the more precise and less time-consuming when
computing many values of r(ϕ).

3. In axially symmetric space-times with vanishing cosmological constant a function
r(λ), and two procedures θ(λ) and ϕ(λ) are returned, where λ is the Mino time.
The procedure ϕ(λ) take lists of values as input, see (2).

4. In axially symmetric space-time with nonvanishing cosmological constant three
procedures r(λ), θ(λ), and ϕ(λ) are returned. Here r(λ) and ϕ(λ) take lists of
values as input.

solve_geodesics:=proc(mass, rot, echarge, cosmo, NUT, mcharge, particle_light,

energy, ang_mom, carter, orbittype, initial_values:=[],periodM:=0)

global workdir, date:

# catch wrong inputs

if (mass<=0 or rot<0 or energy<0 or (particle_light<>0 and particle_light<>1)) then

error "parameters are not feasible" end if:

if not (orbittype in ["bound","inner bound","middle bound","flyby","terminating",

"crossover bound","transit","terminating escape","crossover flyby"]) then

error "Type of orbit %1 is not allowed,orbittype";
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end if:

# determine space-time

if mcharge=0 then

# static space-times

if rot=0 then

# Schwarzschild

if NUT=0 and cosmo=0 and echarge=0 then

solve_S(mass, particle_light, energy, ang_mom, orbittype,

initial_values, periodM):

# Reissner-Nordstrom

elif NUT=0 and cosmo=0 then

solve_RN(mass, echarge, particle_light, energy, ang_mom, orbittype,

initial_values, periodM):

# Schwarzschild-de Sitter

elif NUT=0 and echarge=0 then

solve_SdS(mass, cosmo, particle_light, energy, ang_mom, orbittype,

initial_values, periodM):

# Reissner-Nordstrom-de Sitter

elif NUT=0 then

solve_RNdS(mass, echarge, cosmo, particle_light, energy, ang_mom,

orbittype, initial_values, periodM):

else

error "unknown space-time":

end if:

# stationary space-times

else

# Kerr

if NUT=0 and cosmo=0 and echarge=0 then

solve_K(mass, rot, particle_light, energy, ang_mom, carter, orbittype,

initial_values, periodM):

# Kerr-de Sitter

elif NUT=0 and echarge=0 then

solve_KdS(mass, rot, cosmo, particle_light, energy, ang_mom, carter,

orbittype, initial_values, periodM):

else

error "unknown space-time":

end if:

end if:

else

error "unknown space-time";

end if;

end proc:
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Local procedures:

In all local procedures named solve <space-time>, the input parameters have the
same names and meanings as in the procedure solve geodesics. However, not all
procedures solve <space-time> take all inputs of solve geodesics. Therefore, the
input is enumerated for each solve <space-time> and special features are explained.
The explicit computation of orbits is carried out by the procedures invert eom and
for axially symmetric space-times additionally by solve eom, which are exported
procedures of the module SolveEOM described in the next section.

Procedure solve S: Solves geodesic equations in Schwarzschild space-time. Called
by solve geodesics.
Input: mass, particle light, energy, ang mom,
orbittype: possible types in Schwarzschild space-time are flyby, bound, terminating,
and terminating escape,
initial values: initial values in the form [initial value coordinate ϕ, initial value co-
ordinate r],
periodM.
Output: the solution function for r(ϕ).

solve_S:=proc(mass, particle_light, energy, ang_mom, orbittype,

initial_values::list, periodM)

local gtt,P,deg_P,zeros_P,types,bounds,init,P_converted,zeros_converted,

inverse_substitution,bounds_converted,init_converted:

global date, workdir:

uses UtilityRoutines, ConvertPolynomial, SolveEOM;

# check orbittype

if orbittype in ["inner bound","middle bound","crossover bound","transit",

"crossover flyby"] then

error "orbit type %1 is not possible in Schwarzschild space-time",orbittype

end if;

if particle_light=0 and orbittype="bound" then

error "orbit type %1 is not possible for null geodesics in Schwarzschild

space-time", orbittype

end if;

# ---------- define rhs of (dr/dphi)^2=P(r)

gtt:=1-2*mass/r:

P:=collect(r^4/ang_mom^2*(energy-gtt*(particle_light+ang_mom^2/r^2)),r):

deg_P:=degree(P,r):

# ---------- check orbittype

types,bounds,zeros_P:=check_orbit(unapply(P,r),deg_P,orbittype);
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# ---------- check initial values

if not (nops(initial_values)=0 or nops(initial_values)=2) then

error "invalid declaration of initial values %1",initial_values end if;

init:=check_rinitials(initial_values, orbittype, types, bounds);

# ---------- convert P to standard form

# Output convert_polynomial: [converted polynom, integrand, substitution]

P_converted:=convert_polynomial(unapply(P,r),deg_P,zeros_P,

bounds[inlist(orbittype,types)]):

zeros_converted:=sort([solve(P_converted[1](x)=0,x)],sortfkt);

# apply substitution to bounds and initial_values

inverse_substitution:=collect(solve(x=P_converted[3](y),y),x);

bounds_converted,init_converted:=convert_boundsinit(bounds,init,

inlist(orbittype,types),unapply(inverse_substitution,x),zeros_converted);

# ---------- solution function

invert_eom(P_converted[1],zeros_converted,P_converted[2],init_converted,

P_converted[3],periodM);

end proc:

Procedure solve RN: Solves geodesic equations in Reissner-Nordström space-
time. Called by solve geodesics.
Input: mass, echarge, particle light, energy, ang mom,
orbittype: possible types in Reissner-Nordström space-time are flyby and bound,
initial values: initial values in the form [initial value coordinate ϕ, initial value co-
ordinate r],
periodM.
Output: the solution function for r(ϕ).

solve_RN:=proc(mass, echarge, particle_light, energy, ang_mom, orbittype,

initial_values::list,periodM)

local gtt,P,deg_P,types,bounds,zeros_P,init,P_converted,zeros_converted,

inverse_substitution,bounds_converted,init_converted;

global date, workdir:

uses UtilityRoutines, ConvertPolynomial, SolveEOM;

# check orbittype

if orbittype in ["middle bound","terminating","terminating escape",

"crossover bound","transit","crossover flyby"] then

error "orbittype %1 is not possible in Reissner-Nordström space-time",orbittype

end if;

# ---------- define rhs of (dr/dphi)^2=P(r)

gtt:=1-2*mass/r+echarge^2/r^2:

P:=collect(r^4/ang_mom^2*(energy-gtt*(particle_light+ang_mom^2/r^2)),r):

deg_P:=degree(P,r):

# ---------- check orbittype
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types,bounds,zeros_P:=check_orbit(unapply(P,r),deg_P,orbittype);

# ---------- check initial values

if not (nops(initial_values)=0 or nops(initial_values)=2) then

error "invalid declaration of initial values %1",initial_values end if;

init:=check_rinitials(initial_values, orbittype, types, bounds);

# ---------- convert P to standard form

# Output convert_polynomial: [converted polynom, integrand, substitution]

P_converted:=convert_polynomial(unapply(P,r),deg_P,zeros_P,

bounds[inlist(orbittype,types)]):

zeros_converted:=sort([solve(P_converted[1](x)=0,x)],sortfkt);

# apply substitution to bounds and initial_values

inverse_substitution:=collect(solve(x=P_converted[3](y),y),x);

bounds_converted,init_converted:=convert_boundsinit(bounds,init,

inlist(orbittype,types),unapply(inverse_substitution,x),zeros_converted);

# ---------- determine solution function

invert_eom(P_converted[1],zeros_converted,P_converted[2],init_converted,

P_converted[3],periodM);

end proc:

Procedure solve SdS: Solves geodesic equations in Schwarzschild-de Sitter space-
time. Called by solve geodesics.
Input: mass, cosmo, particle light, energy, ang mom,
orbittype: possible types in Schwarzschild-de Sitter space-time are flyby, bound, ter-
minating, and terminating escape,
initial values: initial values in the form [initial value coordinate ϕ, initial value co-
ordinate r],
periodM.
Output: the solution procedure for r(ϕ).

solve_SdS:=proc(mass, cosmo, particle_light, energy, ang_mom, orbittype,

initial_values::list, periodM)

local gtt,P,deg_P,types,bounds,zeros_P,init,P_converted,zeros_converted,

inverse_substitution,bounds_converted,init_converted,val_phi,val_phi_bound,

actual_bounds,k,solution;

global date, workdir, periodMatrix;

uses UtilityRoutines, ConvertPolynomial, SolveEOM;

# check orbittype

if orbittype in ["middle bound","crossover bound","transit",

"crossover flyby"] then

error "orbittype %1 is not possible in Schwarzschild-de Sitter space-time",

orbittype;

end if;

# ---------- define rhs of (dr/dphi)^2=P(r)
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gtt:=1-2*mass/r-1/3*cosmo*r^2:

P:=collect(r^4/ang_mom^2*(energy-gtt*(particle_light+ang_mom^2/r^2)),r):

deg_P:=degree(P,r):

# ---------- check orbittype

types,bounds,zeros_P:=check_orbit(unapply(P,r),deg_P,orbittype);

# ---------- check initial values

if not (nops(initial_values)=0 or nops(initial_values)=2) then

error "invalid declaration of initial values %1",initial_values end if;

init:=check_rinitials(initial_values, orbittype, types, bounds);

# ---------- convert P to standard form

# Output convert_polynomial: [converted polynom, integrand, substitution]

P_converted:=convert_polynomial(unapply(P,r),deg_P,zeros_P,

bounds[inlist(orbittype,types)]):

zeros_converted:=sort(evalf([solve(P_converted[1](x)=0,x)]),sortfkt);

# apply substitution to bounds and initial_values

inverse_substitution:=collect(solve(x=P_converted[3](y),y),x);

bounds_converted,init_converted:=convert_boundsinit(bounds,init,

inlist(orbittype,types),unapply(inverse_substitution,x),zeros_converted);

# ---------- determine solution function

solution:=invert_eom(P_converted[1], zeros_converted, P_converted[2],

init_converted,P_converted[3],periodM):

# ---------- determin range of phi

# for the evaluation of the solution it is convenient to know

# the allowed values for phi if particle_light=1

if particle_light=1 then

lprint("compute boundaries for phi ...");

if orbittype="bound" then

val_phi:=[init[1],init[1]+2*Pi];

elif orbittype="flyby" or orbittype="terminating escape" then

val_phi:=[init[1],init[1]+abs(sqrt(coeff(1/P_converted[2](y),y,2))

*IntegrateHyperelliptic[int_genus2_first](zeros_converted,

init_converted[2], subs(x=infinity,inverse_substitution))[2])];

elif orbittype="terminating" then

try subs(x=0,inverse_substitution);

val_phi:=[init[1],init[1]+sqrt(coeff(1/P_converted[2](y),y,2))

*IntegrateHyperelliptic[int_genus2_first]

(zeros_converted,init_converted[2],%)[2]];

catch:

actual_bounds:=bounds_converted[inlist(orbittype,types)];

k:=inlist(infinity,actual_bounds);

if k=1 then k:=2 elif k=2 then k:=1 end if;

val_phi:=[init[1],init[1]+abs(sqrt(coeff(1/P_converted[2](y),y,2))

*(IntegrateHyperelliptic[int_genus2_first](zeros_converted,

init_converted[2], actual_bounds[k])[2]

-periodMatrix[2,1]-periodMatrix[2,2]))];

end try;
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end if;

save val_phi, cat(workdir,"temp/val_phi_",date,".mpl");

print(cat("allowed values for phi saved to ",workdir,

"/temp/val_phi_",date,".mpl"));

end if;

solution;

end proc:

Procedure solve RNdS: Solves geodesic equations in Reissner-Nordström-de Sit-
ter space-time. Called by solve geodesics.
Input: mass, echarge, cosmo, particle light, energy, ang mom,
orbittype: possible types in Reissner-Nordström-de Sitter space-time are flyby and
bound,
initial values: initial values in the form [initial value coordinate ϕ, initial value co-
ordinate r],
periodM.
Output: the solution procedure for r(ϕ).

solve_RNdS:=proc(mass, echarge, cosmo, particle_light, energy, ang_mom, orbittype,

initial_values::list, periodM)

local init,gtt,P,deg_P,types,bounds,zeros_P,P_converted,integrand,

inverse_substitution,zeros_converted,bounds_converted,init_converted,

val_phi,val_phi_bound,actual_bounds,k,solution;

global date, workdir, periodMatrix;

uses UtilityRoutines, ConvertPolynomial, SolveEOM;

# check orbittype

if orbittype in ["middle bound","terminating","terminating escape",

"crossover bound","transit","crossover flyby"] then

error "orbittype %1 is not possible in Reissner-Nordström-de Sitter space-time",

orbittype;

end if;

# ---------- define rhs of (dr/dphi)^2=P(r)

gtt:=1-2*mass/r-1/3*cosmo*r^2+echarge^2/r^2:

P:=collect(r^4/ang_mom^2*(energy-gtt*(particle_light+ang_mom^2/r^2)),r):

deg_P:=degree(P,r):

# ---------- check orbittype

types,bounds,zeros_P:=check_orbit(unapply(P,r),deg_P,orbittype);

# ---------- check initial values

if not (nops(initial_values)=0 or nops(initial_values)=2) then

error "invalid declaration of initial values %1",initial_values end if;

init:=check_rinitials(initial_values, orbittype, types, bounds);

# ---------- convert P to standard form

# Output convert_polynomial: [converted polynom, integrand, substitution]
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P_converted:=convert_polynomial(unapply(P,r),deg_P,zeros_P,

bounds[inlist(orbittype,types)]):

zeros_converted:=sort(evalf([solve(P_converted[1](x)=0,x)]),sortfkt);

# apply substitution to bounds and initial_values

inverse_substitution:=solve(x=P_converted[3](y),y);

bounds_converted,init_converted:=convert_bounds(bounds,init,

inlist(orbittype,types),unapply(inverse_substitution,x),zeros_converted);

# ---------- determine solution function

solution:=invert_eom(P_converted[1],zeros_converted,P_converted[2],

init_converted,P_converted[3],periodM):

# ---------- determine range of phi

# for the evaluation of the solution it is convenient

# to know the allowed values for phi if particle_light=1

if particle_light=1 then

lprint("compute boundaries for phi ...");

if orbittype="bound" or orbittype="inner bound" then

val_phi:=[init[1],init[1]+2*Pi];

elif orbittype="flyby" then

val_phi:=[init[1],init[1]+abs(sqrt(coeff(1/P_converted[2](y),y,2))

*IntegrateHyperelliptic[int_genus2_first](zeros_converted,init_converted[2],

subs(x=infinity,inverse_substitution))[2])];

end if;

save val_phi, cat(workdir,"temp/val_phi_",date,".mpl");

print(cat("allowed values for phi saved in ",workdir,

"/temp/val_phi_",date,".mpl"));

end if;

solution;

end proc:

Procedure solve K: Solves geodesic equations in Kerr space-time. Called by
solve geodesics.
Input: mass, rot, particle light, energy, ang mom, carter,
orbittype: possible types in Kerr space-time are flyby, crossover flyby, bound, crossover
bound, inner bound, transit,
initial values: initial values in the form [initial value affine parameter, initial value
coordinate r, initial value coordinate theta, initial value coordinate ϕ],
periodM: a list with two elements, where the first is 0 or the period matrix corre-
sponding to the r motion and the second is 0 or the period matrix corresponding to
the theta motion.
Output: list of solution functions or procedures in the form [r(λ), θ(λ), ϕ(λ)], where
r(λ) is a function, θ(λ) and ϕ(λ) are procedures, and λ is an affine parameter (the
Mino time). The procedure ϕ(λ) takes also a list of affine parameters as input (allows
faster and more accurate computation of a large number of solution points).

solve_K:=proc(mass, rot, particle_light, energy, ang_mom, carter, orbittype,
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initial_values::list, periodM)

local Delta,P,deg_P,zeros_P,types,bounds,init_r,P_converted,zeros_converted,

inverse_substitution,bounds_converted,init_converted,sol_r,phir_integrand,

allowed_theta_inits,bounds_nu,init_nu,sol_nu,NS,switch,sol_theta,sol_phir,

sol_phinu,phinu_integrand,i:

global date, workdir:

uses UtilityRoutines, ConvertPolynomial, SolveEOM;

# check orbittype

if orbittype="middle bound" then

error "orbittype %1 is not possible in Kerr space-time",orbittype:

end if;

############################# r equation ################################

# ---------- define rhs of (dr/dlambda)^2=P(r)

Delta:=r^2+rot^2-2*mass*r:

P:=collect( ((r^2+rot^2)*sqrt(energy)-rot*ang_mom)^2

-Delta*(particle_light*r^2+carter),r):

deg_P:=degree(P,r):

# ---------- check orbittype

types,bounds,zeros_P:=check_orbit(unapply(P,r),deg_P,orbittype,"true");

# ---------- check initial values

if not (nops(initial_values)=0 or nops(initial_values)=4) then

error "invalid declaration of initial values %1",initial_values:

end if;

if initial_values=[] then init_r:=[] else init_r:=initial_values[1..2] end if;

init_r:=check_rinitials(init_r,orbittype,types,bounds);

# ---------- convert P to standard form

# Output convert_polynomial: [converted polynom, integrand, substitution],

# i.e. (dr/dlambda)^2=integrand(y)*(converted polynom(y))

P_converted:=convert_polynomial(unapply(P,r),deg_P,zeros_P,

bounds[inlist(orbittype,types)]):

zeros_converted:=sort([solve(P_converted[1](x)=0,x)],sortfkt);

# apply substitution to bounds and initial_values

inverse_substitution:=collect(simplify(solve(x=P_converted[3](y),y)),x);

bounds_converted,init_converted:=convert_boundsinit(bounds,init_r,

inlist(orbittype,types),unapply(inverse_substitution,x),zeros_converted);

# ---------- solution function

sol_r:=invert_eom(P_converted[1],zeros_converted,P_converted[2],init_converted,

P_converted[3],periodM[1],cat(workdir,"temp/rdata_",date));

######################## Phi equation, r Integral #########################

# define rhs of dphi/dlambda=phir_integrand+phinu_integrand

phir_integrand:=subs(r=P_converted[3](y),rot*((r^2+rot^2)*sqrt(energy)

-rot*ang_mom)/Delta)/simplify(sqrt(P_converted[2](y))) assuming y>0;

sol_phir:=solve_eom(P_converted[1],zeros_converted,unapply(phir_integrand,y),

cat(workdir,"temp/rdata_",date)):

########################## Theta equation ##################################

# ---------- define rhs of (dnu/dlambda)^2=P(nu), nu=cos(theta)^2
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P:=collect( 4*nu*( (1-nu)*(carter-particle_light*rot^2*nu)

-(rot*sqrt(energy)*(1-nu)-ang_mom)^2 ), nu);

deg_P:=degree(P,nu);

zeros_P:=sort(evalf([solve(P=0,nu)]),sortfkt):

if not nops(zeros_P)=deg_P then

error "could not find all zeros of underlying polynomial":

end if:

# ---------- range of theta and initial values

allowed_theta_inits,init_nu,bounds_nu:=check_thetainitials(zeros_P,initial_values);

# ---------- convert P to standard form

# Output convert_polynomial: [converted polynom, integrand, substitution]

P_converted:=convert_polynomial(unapply(P,nu),deg_P,zeros_P,bounds_nu[1]):

zeros_converted:=sort([solve(P_converted[1](x)=0,x)],sortfkt);

# apply substitution to initial_values

inverse_substitution:=collect(solve(x=P_converted[3](y),y),x);

bounds_converted,init_converted:=convert_boundsinit(bounds_nu,init_nu,1,

unapply(inverse_substitution,x),zeros_converted);

# ---------- determine solution function

sol_nu:=invert_eom(P_converted[1],zeros_converted,P_converted[2],init_converted,

P_converted[3],periodM[2],cat(workdir,"temp/thetadata_",date));

# backsubstitution theta=arccos(sqrt(nu)):

if nops(allowed_theta_inits)=2 then

if nops(initial_values)>0 and initial_values[3]>evalf(Pi/2) then

sol_theta:=s->evalf(Pi-arccos(sqrt(sol_nu(s))));

else sol_theta:=s->evalf(arccos(sqrt(sol_nu(s))));

end if;

else

read cat(workdir,"temp/thetadata_",date,".mpl");

NS:=solve(P_converted[3](z)=0,z);

switch:=(find_Weierstrass_values(zeros_converted,NS,periodMatrix,g2,g3)[1]

+integrate_initial)/sqrt(P_converted[2](z))+init_converted[1];

if not Im(switch)=0 then switch:=Re(switch) end if;

sol_theta:=proc(s)

local S,k,konst:

konst:=1/sqrt(P_converted[2](x));

# change branch at the points S=switch+2*k*periodMatrix[1,1] (where sol_nu=0)

S:=evalf(s):

k:=‘if‘(nops(initial_values)>0 and evalf(initial_values[3])>evalf(Pi/2),1,0):

while not (S>=switch and S<evalf(switch+2*konst*periodMatrix[1,1])) do

k:=k+1:

if S>=evalf(switch+2*konst*periodMatrix[1,1]) then

S:=evalf(S-2*periodMatrix[1,1]) else S:=evalf(S+2*periodMatrix[1,1])

end if;

end do:

if type(k,odd) then evalf(Pi-arccos(sqrt(sol_nu(s))))

else evalf(arccos(sqrt(sol_nu(s)))) end if;
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end proc:

end if;

##################### Phi equation, theta integral #########################

# define rhs of dphi/dlambda=phir_integrand+phinu_integrand

phinu_integrand:=subs(nu=P_converted[3](y),(rot*sqrt(energy)*(1-nu)-ang_mom)

/(1-nu))/simplify(sqrt(P_converted[2](y))) assuming y>0;

sol_phinu:=solve_eom(P_converted[1],zeros_converted,unapply(phinu_integrand,y),

cat(workdir,"temp/thetadata_",date)):

[sol_r,sol_theta,sol_phir-sol_phinu];

end proc:

Procedure solve KdS: Solves geodesic equations in Kerr-de Sitter space-time.
Called by solve geodesics.
Input: mass, rot, cosmo, particle light, energy, ang mom, carter,
orbittype: possible types in Kerr-de Sitter space-time are flyby, crossover flyby,
bound, crossover bound, inner bound, middle bound, transit,
initial values: initial values in the form [initial value affine parameter, initial value
coordinate r, initial value coordinate theta, initial value coordinate ϕ],
periodM: a list with two elements, where the first is 0 or the period matrix corre-
sponding to the r motion and the second is 0 or the period matrix corresponding to
the theta motion.
Output: list of solution procedures in the form [r(λ), θ(λ), ϕ(λ)], where λ is an affine
parameter (the Mino time). The procedures r(λ) and ϕ(λ) take a list of affine pa-
rameters as input (allows faster and more accurate computation of a large number
of solution points).

solve_KdS:=proc(mass,rot,cosmo,particle_light,energy,ang_mom,carter,orbittype,

initial_values::list,periodM)

local Delta,P,deg_P,types,bounds,zeros_P,init_r,P_converted,zeros_converted,

inverse_substitution,bounds_converted,init_converted,sol_r,val_phi,actual_bounds,

k,phir_integrand,sol_phir,allowed_theta_inits,init_nu,bounds_nu,sol_nu,NS,switch,

sol_theta,phinu_integrand,sol_phinu;

global date, workdir:

uses UtilityRoutines, ConvertPolynomial, SolveEOM;

########################## r equation #############################

# ---------- define rhs of (dr/dlambda)^2=P(r)

Delta:=(1-1/3*cosmo*r^2)*(r^2+rot^2)-2*mass*r:

P:=collect( (1+rot^2*1/3*cosmo)^2*((r^2+rot^2)*sqrt(energy)-rot*ang_mom)^2

-Delta*(particle_light*r^2+carter), r):

deg_P:=degree(P,r):

# ---------- check orbittype

types,bounds,zeros_P:=check_orbit(unapply(P,r),deg_P,orbittype);

# ---------- check initial values

if not (nops(initial_values)=0 or nops(initial_values)=4) then

error "invalid declaration of initial values %1",initial_values:
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end if;

if initial_values=[] then init_r:=[] else init_r:=initial_values[1..2] end if;

init_r:=check_rinitials(init_r,orbittype,types,bounds);

# ---------- convert P to standard form

# Output convert_polynomial: [converted polynom, integrand, substitution],

# i.e. (dr/dlambda)^2=integrand(y)*(converted polynom(y))

P_converted:=convert_polynomial(unapply(P,r),deg_P,zeros_P,

bounds[inlist(orbittype,types)]):

zeros_converted:=sort([solve(P_converted[1](x)=0,x)],sortfkt);

# apply substitution to bounds and initial_values

inverse_substitution:=collect(simplify(solve(x=P_converted[3](y),y)),x);

bounds_converted,init_converted:=convert_boundsinit(bounds,init_r,

inlist(orbittype,types),unapply(inverse_substitution,x),zeros_converted);

# ---------- solution function

sol_r:=invert_eom(P_converted[1],zeros_converted,P_converted[2],init_converted,

P_converted[3],periodM[1],cat(workdir,"temp/rdata_",date));

# ---------- determin range of phi

# for the evaluation of the solution it is convenient

# to know the allowed values for phi if particle_light=1

if particle_light=1 then

lprint("compute boundaries for phi ...");

if orbittype in ["bound","inner bound","middle bound"] then

val_phi:=[init_r[1],init_r[1]+2*Pi];

elif orbittype in ["flyby","transit","crossover flyby"] then

val_phi:=[init_r[1],init_r[1]+abs(sqrt(coeff(1/P_converted[2](y),y,2))

*IntegrateHyperelliptic[int_genus2_first](zeros_converted,init_converted[2],

subs(x=infinity,inverse_substitution))[2])];

elif orbittype in ["terminating","crossover bound"] then

try subs(x=0,inverse_substitution);

val_phi:=[init_r[1],init_r[1]+sqrt(coeff(1/P_converted[2](y),y,2))

*IntegrateHyperelliptic[int_genus2_first](zeros_converted,

init_converted[2],%)[2]];

catch:

actual_bounds:=bounds_converted[inlist(orbittype,types)];

k:=inlist(infinity,actual_bounds);

if k=1 then k:=2 elif k=2 then k:=1 end if;

val_phi:=[init_r[1],init_r[1]+abs(sqrt(coeff(1/P_converted[2](y),y,2))

*(IntegrateHyperelliptic[int_genus2_first](zeros_converted,init_converted[2],

actual_bounds[k])[2]-periodMatrix[2,1]-periodMatrix[2,2]))];

end try;

end if;

save val_phi, cat(workdir,"temp/val_phi_",date,".mpl");

print(cat("allowed values for phi saved in ",

workdir,"temp/val_phi_",date,".mpl"));

end if;

###################### Phi equation, r Integral ###########################
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# define rhs of dphi/dlambda=phir_integrand+phinu_integrand

phir_integrand:=subs(r=P_converted[3](y),rot*((r^2+rot^2)*sqrt(energy)

-rot*ang_mom)/Delta)/simplify(sqrt(P_converted[2](y))) assuming y>0;

sol_phir:=solve_eom(P_converted[1],zeros_converted,unapply(phir_integrand,y),

cat(workdir,"temp/rdata_",date)):

######################### Theta equation ###################################

# ---------- define rhs of (dnu/dlambda)^2=P(nu), nu=cos(theta)^2

P:=collect( 4*nu*( (1-nu)*(1+rot^2*cosmo/3*nu)*(carter-particle_light*rot^2*nu)

-(1+rot^2*cosmo/3)^2*(rot*sqrt(energy)*(1-nu)-ang_mom)^2 ), nu);

deg_P:=degree(P,nu);

zeros_P:=sort(evalf([solve(P=0,nu)]),sortfkt):

if not nops(zeros_P)=deg_P then

error "could not find all zeros of underlying polynomial":

end if:

# ---------- range of theta and initial values

allowed_theta_inits,init_nu,bounds_nu:=check_thetainitials(zeros_P,initial_values);

# ---------- convert P to standard form

# Output convert_polynomial: [converted polynom, integrand, substitution]

P_converted:=convert_polynomial(unapply(P,nu),deg_P,zeros_P,bounds_nu[1]):

zeros_converted:=sort([solve(P_converted[1](x)=0,x)],sortfkt);

# apply substitution to initial_values

inverse_substitution:=collect(solve(x=P_converted[3](y),y),x);

bounds_converted,init_converted:=convert_boundsinit(bounds_nu,init_nu,1,

unapply(inverse_substitution,x),zeros_converted);

# ---------- determine solution function

sol_nu:=invert_eom(P_converted[1],zeros_converted,P_converted[2],init_converted,

P_converted[3],periodM[2],cat(workdir,"temp/thetadata_",date));

# backsubstitution theta=arccos(sqrt(nu)):

if nops(allowed_theta_inits)=2 then

if nops(initial_values)>0 and initial_values[3]>evalf(Pi/2) then

sol_theta:=s->evalf(Pi-arccos(sqrt(sol_nu(s))));

else sol_theta:=s->evalf(arccos(sqrt(sol_nu(s))));

end if;

else

# get periodMatrix,g2,g3,integrate_initial

read cat(workdir,"temp/thetadata_",date,".mpl");

if type(1/P_converted[3](z),polynom) then

switch:=integrate_initial/sqrt(P_converted[2](z))+init_converted[1];

else

NS:=solve(P_converted[3](z)=0,z);

switch:=(find_Weierstrass_values(zeros_converted,NS,periodMatrix,g2,g3)[1]

+integrate_initial)/sqrt(P_converted[2](z))+init_converted[1];

end if;

if not Im(switch)=0 then switch:=Re(switch) end if;

sol_theta:=proc(s)

local S,k,konst:
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konst:=1/sqrt(P_converted[2](x));

# change branch at the points S=switch+2*k*periodMatrix[1,1] (where sol_nu=0)

S:=evalf(s):

k:=‘if‘(nops(initial_values)>0 and evalf(initial_values[3])>evalf(Pi/2),1,0):

while not (S>=switch and S<evalf(switch+2*konst*periodMatrix[1,1])) do

k:=k+1:

if S>=evalf(switch+2*konst*periodMatrix[1,1]) then

S:=evalf(S-2*periodMatrix[1,1]) else S:=evalf(S+2*periodMatrix[1,1])

end if;

end do:

if type(k,odd) then evalf(Pi-arccos(sqrt(sol_nu(s))))

else evalf(arccos(sqrt(sol_nu(s)))) end if;

end proc:

end if;

################### Phi equation, theta integral #########################

# define rhs of dphi/dlambda=phir_integrand+phinu_integrand

phinu_integrand:=subs(nu=P_converted[3](y), (rot*sqrt(energy)*(1-nu)-ang_mom)

/((1+1/3*rot^2*cosmo*nu)*(1-nu)) )/simplify(sqrt(P_converted[2](y))) assuming y>0;

sol_phinu:=solve_eom(P_converted[1],zeros_converted,unapply(phinu_integrand,y),

cat(workdir,"temp/thetadata_",date)):

[sol_r,sol_theta,(1+1/3*rot^2*cosmo)^2*(sol_phir-sol_phinu)];

end proc:

Procedure check orbit: Determines the zeros of <polynomial> and checks the
result, determines possible types of orbits and the corresponding bounds, and checks
whether <orbittype> is an allowed orbit type.
Input:

polynomial: a polynomial,
deg P: degree of polynomial,
orbittype: type of orbit which shall be computed,
(optional) isnegativeallowed: if set to ”true” negative radial values are considered as
valid. This means that crossover (and transit) orbits are possible and terminating
orbits are not possible.
Output:

types: a list which contains all possible orbit types for <polynomial>,
bounds : a list which contains the associated boundaries of types, each given as a list
with two elements, where the first is the lower boundary and the second the upper.
types and bounds are connected through the position in the list,
zeros P: zeros of <polynomial>.

check_orbit:=proc(polynomial,deg,orbittype,isnegativeallowed:="false")
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local P,zeros,realNS,complexNS,pos_zeros,k,max_coeff,types,bounds,count,i;

uses UtilityRoutines;

# copy to local

P:=polynomial(x);

# zeros of P

zeros:=sort(evalf([solve(P=0,x)]),sortfkt):

print("zeros=",zeros);

if not nops(zeros)=deg then

error "could not find all zeros of underlying polynomial": end if:

realNS,complexNS:=separate_zeros(zeros):

if nops(realNS)=0 then

error "underlying polynom has only complex zeros; this case is not supported":

end if:

# ------ possible orbit types

# only consider positive zeros

pos_zeros:=[]:

for i from 1 to nops(zeros) do

if evalf(realNS[i])>0 then pos_zeros:=realNS[i..nops(realNS)]; break end if;

end do;

k:=nops(pos_zeros);

max_coeff:=coeff(P,x,deg);

types:=[]: bounds:=[]:

count:=1;

if k=0 then

if isnegativeallowed="true" then

if nops(zeros)>0 then types:=["crossover flyby"]; bounds:=[[0,infinity]];

else types:=["transit"]; bounds:=[[0,infinity]];

end if;

else types:=["terminating escape"]; bounds:=[[0,infinity]];

end if;

end if;

# ------ P to infinity for x to infinity

if evalf(max_coeff)>0 then

while k>0 do

if (k mod 2)=0 then

if isnegativeallowed="true" then

if nops(convert(zeros,set) minus convert(pos_zeros,set))>0 then

types:=[op(types),"crossover bound"];

else types:=[op(types),"crossover flyby"];

end if;

else types:=[op(types),"terminating"];

end if;

bounds:=[op(bounds),[0,pos_zeros[1]]];

k:=k-1; count:=count+1;

elif k>1 then

if k=3 then types:=[op(types),"bound"];
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else types:=[op(types),"inner bound"];

end if;

bounds:=[op(bounds),[pos_zeros[count],pos_zeros[count+1]]];

k:=k-2; count:=count+2;

elif k=1 then

types:=[op(types),"flyby"];

bounds:=[op(bounds),[pos_zeros[count],infinity]];

k:=k-1;

end if;

end do;

# ------ P to -infinity for x to infinity

else

while k>0 do

if (k mod 2)=1 then

if isnegativeallowed="true" then

if nops(convert(zeros,set) minus convert(pos_zeros,set))>0 then

types:=[op(types),"crossover bound"];

else types:=[op(types),"crossover flyby"];

end if;

else types:=[op(types),"terminating"];

end if;

bounds:=[op(bounds),[0,pos_zeros[count]]];

k:=k-1; count:=count+1;

else

if k=2 then types:=[op(types),"bound"];

elif k=4 and nops(pos_zeros)>=5 then types:=[op(types),"middle bound"];

else types:=[op(types),"inner bound"];

end if;

bounds:=[op(bounds),[pos_zeros[count],pos_zeros[count+1]]];

k:=k-2; count:=count+2;

end if;

end do;

end if;

print("possible orbittypes:", types);

if inlist(orbittype,types)=-1 then

error "orbittype %1 is not allowed",orbittype end if;

types,bounds,zeros;

end proc:

Procedure convert boundsinit: Converts a list of boundaries and initial values
with the function <substitution>. The result is compared to <zeros subs>, which
is a list of zeros of a polynomial converted by substitution before. If a converted
boundary or initial value, which was originally equal to a zero of the polynomial
later converted by <substitution>, is not equal to an entry of <zeros subs>, it is
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corrected to do so. The aim is that the connection between a boundary or initial
value and the zero of a polynomial is conserved when <substitution> is applied to
both.
Input:

bounds: a list of boundaries of orbit types, where each element is a list of the minimal
and maximal value of the corresponding orbittype,
initial values: initial values as a list with two elements, where the second corresponds
to bounds,
position: such that bounds[position][1]≤initial values[2]≤bounds[position][2],
substitution: a function which serves as substitution; created by convert polynomial,
zeros subs: zeros of a polynomial converted by the procedure convert polynomial.
Output: <list of converted boundaries>, <list of converted initial values>.

convert_boundsinit:=proc(bounds,initial_values,position,substitution,zeros_subs)

local bounds_converted,init_converted,element1,element2,i;

uses UtilityRoutines;

# apply substitution to bounds

bounds_converted:=[]:

for i from 1 to nops(bounds) do

try element1:=substitution(bounds[i][1]);

catch "numeric exception: division by zero": element1:=infinity;

end try;

if not type(element1,infinity) then

element1:=find_next(element1,zeros_subs);

end if;

try element2:=substitution(bounds[i][2]);

catch "numeric exception: division by zero": element2:=infinity;

end try;

if not type(element2,infinity) then

element2:=find_next(element2,zeros_subs);

end if;

bounds_converted:=[op(bounds_converted),[element1,element2]];

end do;

# apply substitution to initial_values

if (initial_values[2]=bounds[position][1]

or initial_values[2]=bounds[position][2]) then

try substitution(initial_values[2]);

init_converted:=[initial_values[1],find_next(%,bounds_converted[position])];

catch "numeric exception: division by zero":

init_converted:=[initial_values[1],infinity];

end try;

else

try substitution(initial_values[2]);
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init_converted:=[initial_values[1],%];

catch "numeric exception: division by zero":

init_converted:=[initial_values[1],infinity];

end try;

end if;

bounds_converted, init_converted;

end proc:

Procedure check rinitials: Tests, sets or corrects the initial values for the r
motion as necessary.
Input:

initial values: the initial values=[initial value affine parameter or ϕ coordinate, initial
value coordinate r] (or initial values=[]) which should be set or tested, dependent on
whether initial values is an empty list or not,
orbittype: the initial values must be set or tested according to the orbittype which
should be computed,
types: all possible types of orbits as a list, see procedure check orbit,
bounds: the extremal values for each of the possible orbit types <types> as a list
ordered in the same way as <types>.
Output: If initial values was not empty and correct, it is returned unchanged. Else it
was corrected/set to default values, which are: 0 for the first element, the maximal
r if the orbit does not reach infinity, else the minimal r.

check_rinitials:=proc(initial_values, orbittype, types, bounds)

uses UtilityRoutines;

if nops(initial_values)=0 then

if orbittype in ["flyby","crossover flyby","terminating escape"] then

[0,bounds[inlist(orbittype,types)][1]];

else [0,bounds[inlist(orbittype,types)][2]]; end if;

elif not (bounds[inlist(orbittype,types)][1]<=initial_values[2]

and initial_values[2]<=bounds[inlist(orbittype,types)][2]) then

WARNING("in check_rinitials: initial_value %1 is not allowed for orbittype %2;

set to default value",initial_values[2],orbittype);

if orbittype in ["flyby","crossover flyby","terminating escape"] then

[initial_values[1],bounds[inlist(orbittype,types)][1]];

else [initial_values[1],bounds[inlist(orbittype,types)][2]]; end if;

else initial_values;

end if;

end proc:
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Procedure check thetainitials: Tests, sets or corrects the initial values for the
θ motion as necessary.
Input:

zeros: all zeros of the polynomial describing the theta motion (with the substitution
nu = cos2(θ)!),
initial values: the initial values=[initial value affine parameter, initial value coordi-
nate r, initial value coordinate θ, initial value coordinate ϕ] (or initial values=[])
which should be set or tested dependent on whether initial values is an empty list or
not,
Output:

allowed inits: all zeros which could be initial values of nu = cos2(θ),
init nu: the initial values [initial value affine parameter, initial value of nu = cos2(θ)],
which are unchanged if correctly given by initial values but set or corrected to default
values else. The default values are 0 for the first element and for the second element
θ = π

2
if possible or the largest possible value of θ in the northern hemisphere,

bounds nu: the extremal nu = cos2(θ) values for the region in which init nu[2] is
located.

check_thetainitials:=proc(zeros,initial_values)

local realNS,complexNS,allowed_inits,bounds_nu,init_nu,i;

uses UtilityRoutines;

realNS,complexNS:=separate_zeros(zeros):

if nops(realNS)=0 then

error "underlying polynomial has only complex zeros; this case is not supported":

end if:

# find allowed initial values

allowed_inits:=[]:

for i from 1 to nops(realNS) do

if (realNS[i]>0 and realNS[i]<1) then

allowed_inits:=[op(allowed_inits),realNS[i]]:

end if;

end do:

if nops(allowed_inits)=0 or nops(allowed_inits)>2 then

error "bounds found for theta motion are not allowed" end if;

allowed_inits:=sort(allowed_inits);

if nops(allowed_inits)=1 then bounds_nu:=[[0,allowed_inits[1]]]

else bounds_nu:=[[allowed_inits[1],allowed_inits[2]]] end if;

print("allowed initial_values for nu=cos(theta)^2 motion: ",bounds_nu[1]);

# check initial values

if initial_values=[] then

if nops(allowed_inits)=1 then init_nu:=[0,0]

else init_nu:=[0,allowed_inits[1]] end if;
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else

if nops(allowed_inits)=1

and evalf(cos(initial_values[3])^2)>allowed_inits[1] then

WARNING("in check_thetainitials: initial_value %1 for theta motion is not

allowed; set to default value",initial_values[3]);

init_nu:=[initial_values[1],0];

elif nops(allowed_inits)=2

and (evalf(cos(initial_values[3])^2)<allowed_inits[1]

or evalf(cos(initial_values[3])^2)>allowed_inits[2]) then

WARNING("in check_thetainitials: initial_value %1 for theta motion is not

allowed; set to default value",initial_values[3]);

init_nu:=[initial_values[1],allowed_inits[1]];

else init_nu:=[0,cos(initial_values[3])^2];

end if;

end if;

allowed_inits,init_nu,bounds_nu;

end proc:

B.2 Module SolveEOM

The procedures of this module can be used to solve or invert equations of motion in
various space-times. It is assumed here that the equation of motion has a certain
standard form, which can be achieved by using the modules SolveGeodesics and
ConvertPolynomial. In general, it will be necessary to compute a period matrix for
each equation of motion using the modules PeriodsGenusOne, PeriodsGenusTwo,
and PeriodsSecondGenusTwo described in the next section.

Exported procedures

Procedure invert eom: Top-level procedure for inverting an equation of motion
of the type s− sin =

∫ x

xin
dz/(<integrand>(z)

√

<polynomial>(z)), i.e. solving such

an equation for x(s), where s is an affine parameter or a space-time coordinate.
Input:
polynomial: It is assumed that polynomial has the standard form 4z3 − g2z − g3 or
add(aiz

i, i = 0..5) for some constants g2, g3, ai,
integrand: integrand in integral above,
initial values: list of initial values [sin, xin].
substitution: the substitution which was necessary to cast the original equation of
motion in the standard form,
periodM: if the period matrix of the Riemann surface of y2 = <polynomial>(x) is
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known it can be given here (as 1x2 or 2x4 Matrix). In general this will save a lot of
computation time. If the period matrix is not known, the value 0 can be inserted,
datafile: a file name (without an ending .m or .mpl), where useful or required in-
formations like period matrices or extended informations about the computation
process may be stored. This input parameter may be omitted.
Output: solution function or procedure x(s).

invert_eom:=proc(polynomial,zeros,integrand,initial_values,substitution,

periodM,datafile)

local P,deg_P;

# copy to local

P:=polynomial(x);

# determine type of equation

deg_P:=degree(P,x);

# ----------------------- degree 5 --------------------------------

if deg_P=5 then

if type(1/integrand(x),polynom(anything,x)) then

if degree(1/integrand(x),x)=2 and coeff(1/integrand(x),x,0)=0

and coeff(1/integrand(x),x,1)=0 then

if _params[’datafile’]=NULL then

invert_hyperelliptic_first(zeros,2,initial_values,

evalf(1/coeff(1/integrand(x),x,2)),substitution, periodM);

else

invert_hyperelliptic_first(zeros, 2, initial_values,

evalf(1/coeff(1/integrand(x),x,2)), substitution, periodM, datafile);

end if;

elif degree(1/integrand(x),x)=0 then

if _params[’datafile’]=NULL then

invert_hyperelliptic_first(zeros,1,initial_values,

evalf(1/coeff(1/integrand(x),x,0)),substitution,periodM);

else

invert_hyperelliptic_first(zeros,1,initial_values,

evalf(1/coeff(1/integrand(x),x,0)), substitution, periodM, datafile);

end if;

else error "equations of motions of hyperelliptic type and second kind

are not supported";

end if;

else

error "equations of motions of hyperelliptic type and third kind

can not be inverted";

end if;

# ----------------------- degree 3 --------------------------------

elif deg_P=3 then

if type(1/integrand(x),polynom(anything,x)) then

if degree(1/integrand(x),x)=0 then

if _params[’datafile’]=NULL then
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invert_elliptic_first(polynomial,zeros,initial_values,integrand(x),

substitution, periodM);

else

invert_elliptic_first(polynomial,zeros,initial_values,integrand(x),

substitution, periodM, datafile); end if;

else error "equations of motion of elliptic type and second kind: tbd";

end if;

else

error "equations of motion of elliptic type and third kind can

not be inverted";

end if;

else

error "polynomial %1 is not of the standard form needed by invert_eom",

polynomial;

end if;

end proc:

Procedure solve eom: Top-level procedure for solves an equation of motion of

the type coord-coordin =
∫ x(s)

xin(s)
<integrand>(x)/

√

<polynomial>(x) for coord(s),

where coord and x are coordinates of the space-time, s is an affine parameter, and
coordin, xin are initial values. It is assumed here that x(s) is explicitly known in
terms of elliptic or hyperelliptic functions.
Input:
polynomial: see invert eom,
zeros: zeros of polynomial,
integrand: the integrand in the equation of motion above (note difference to in-
vert eom!),
datafile: a file name (without an ending .m or .mpl), where useful or required in-
formations like period matrices or extended informations about the computation
process are stored. Unlike invert eom, this is a parameter which must be specified
here.
Output: solution procedure for coord(s).

solve_eom:=proc(polynomial,zeros,integrand,datafile)

local deg_P,f_parfrac,poly_fracs,rat_fracs,result,eta,r1,r2,i;

deg_P:=degree(polynomial(x),x);

# partial fraction decomposition of integrand

f_parfrac:=evalf(convert(integrand(x),fullparfrac,x));

# divide in polynomial parts and parts containing 1/(x-c)

poly_fracs:=[]: rat_fracs:=[]:

for i from 1 to nops(f_parfrac) do

if type(op(i,f_parfrac),polynom(anything,x)) then

poly_fracs:=[op(poly_fracs),op(i,f_parfrac)];

else rat_fracs:=[op(rat_fracs),op(i,f_parfrac)];
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end if;

end do:

# ----------------------- degree 5 --------------------------------

if deg_P=5 then

# solve polynomial parts

result:=0:

for i from 1 to nops(poly_fracs) do

if degree(poly_fracs[i],x)>1 then

error "equations of motions of hyperelliptic type and second kind

are not supported";

elif degree(poly_fracs[i],x)=1 then

result:=result+coeff(poly_fracs[i],x,1)

*proc(s) solve_hyperelliptic_first(2,datafile): end proc:

elif degree(poly_fracs[i],x)=0 then

result:=result+poly_fracs[i]

*proc(s) solve_hyperelliptic_first(1,datafile): end proc:

end if;

end do;

# solve parts containing 1/(x-c)

if nops(rat_fracs)>0 then

# in each call of solve_hyperelliptic_third the period matrix of second kind

# is needed, but should only be computed once. Thus, do this here!

# read relevant data: contains periodMatrix,invert_data, and Eps

try read cat(datafile,".mpl");

catch: error "could not locate the datafile %1",cat(datafile,".mpl");

end try;

eta,r1,r2:=compute_secondkind_periods(zeros,Eps,periodMatrix,datafile);

end if;

for i from 1 to nops(rat_fracs) do

result:=result+op(1,rat_fracs[i])*solve_hyperelliptic_third(

zeros,r1,r2,eta,unapply(op(2,rat_fracs[i]),x),datafile);

end do;

# ----------------------- degree 3 --------------------------------

elif deg_P=3 then

# solve polynomial parts

result:=0:

for i from 1 to nops(poly_fracs) do

if degree(poly_frac[i],x)=0 then

result:=result+poly_fracs[i]*proc(s)

local S,m;

# read relevant data: periodMatrix,g2,g3,integrate_initial,initials

try read cat(datafile,".mpl");

catch: error "could not locate the datafile %1",cat(datafile,".mpl");

end try;

if type(s,list) then S:=s: else S:=[s]: end if:

[seq(S[m]-initials[1],m=1..nops(S))];
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end proc;

else error "equation of motion of elliptic type and second kind: tbd";

end if;

end do;

# solve parts containing 1/(x-c)

for i from 1 to nops(rat_fracs) do

result:=result+op(1,rat_fracs[i])

*solve_elliptic_third(zeros,unapply(op(2,rat_fracs[i]),x),datafile);

end do;

else error "polynomial %1 is not of the standard form needed by invert_eom",

polynomial(x);

end if;

end proc:

Local procedures:

The procedures invert <something> and solve <something> have the same inputs
and outputs as invert eom and solve eom, respectively.

Procedure invert elliptic first: Solves an equation of motion of elliptic type and
first kind. Called by invert eom.
Input: as invert eom.
Output: is a function.

invert_elliptic_first:=proc(polynomial,zeros,initial_values,

constant,substitution,periodM,datafile)

local P,realNS,complexNS,periodMatrix,int_initial,g2,g3,integrate_initial,

initials,k;

uses UtilityRoutines, PeriodsGenusOne;

# copy to local

P:=polynomial(x);

# --- compute periods

realNS,complexNS:=separate_zeros(zeros);

if periodM=0 then

periodMatrix:=periods_elliptic(realNS,complexNS,Digits);

else periodMatrix:=periodM;

end if;

print("periods:",periodMatrix);

# --- determine integral from initial_values[2] to infinity

if type(initial_values[2],infinity) then int_initial:=0;

elif inlist(initial_values[2],realNS)>0 then

int_initial:=eval_period(inlist(initial_values[2],realNS),infinity,

realNS,zeros,periodMatrix);
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else

k:=inlist(initial_values[2],sort([op(realNS),initial_values[2]]));

if k=nops(realNS)+1 then k:=nops(realNS) end if;

int_initial:=eval_period(k,infinity,realNS,zeros,periodMatrix)

+IntegrateEllipticFirst[int_elliptic_first](zeros,initial_values[2],realNS[k]);

end if;

# --- solution function

g2:=-coeff(P,x,1);

g3:=-coeff(P,x,0);

# save data if datafile is given

if not _params[’datafile’]=NULL then

integrate_initial:=int_initial; initials:=initial_values;

save periodMatrix,g2,g3,integrate_initial,initials, cat(datafile,".mpl");

print(cat("in invert_elliptic_first: periodMatrix saved to ",datafile,".mpl"));

end if;

unapply(substitution(Re(WeierstrassP(sqrt(constant)

*(x-initial_values[1])-int_initial,g2,g3))),x);

end proc:

Procedure invert hyperelliptic first: Solves an equation of motion of hyperel-
liptic type and first kind. The computation is mainly carried through by the proce-
dure orbitdata. Called by invert eom.
Input: as invert eom with the exception of
physical comp: the component of the theta divisor which corresponds to the physical
value s, i.e. to the component of the vector of holomorphic differentials dz=[1/sqrt(P(z)),
z/sqrt(P(z))] (P=<polynomial>) which appears in the differential equation to solve.
Output: is a procedure.

invert_hyperelliptic_first:=proc(zeros,physical_comp,initial_values,

constant,substitution,periodM,datafile)

local realNS,complexNS,periodMatrix,periods_first,periods_second,M,

Eps,initNewton,modified_init,H,invert_data,Max,k;

global periodsInverse,tau;

uses UtilityRoutines, PeriodsGenusTwo, LinearAlgebra;

# -------- compute periods

realNS,complexNS:=separate_zeros(zeros);

if periodM=0 then

lprint("computing periods ...");

periodMatrix:=periods(realNS,complexNS,Digits);

else periodMatrix:=periodM;

end if;

set_period_globals_genus2(periodMatrix);

# --------- check periods

print("periods=",periodMatrix);

periods_first:=Matrix([[periodMatrix[1,1],periodMatrix[1,2]],
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[periodMatrix[2,1],periodMatrix[2,2]]]):

periods_second:=Matrix([[periodMatrix[1,3],periodMatrix[1,4]],

[periodMatrix[2,3],periodMatrix[2,4]]]):

M:=evalm(periods_second &* Transpose(periods_first)

-periods_first &* Transpose(periods_second));

print("Legendre relation=",M);

if abs(M[1,2])>10^(-Digits) then

Eps:=abs(M[1,2])*10;

WARNING("in invert_hyperelliptic_first: accuracy reduced to %1 due to

Legendre relation",Eps);

else Eps:=10^(-Digits+1);

end if;

# --------- determine initial value for Newton method in proc solution

if physical_comp=1 then

WARNING("in invert_hyperelliptic_first:

case that physical component is the first has to be tested");

if type(initial_values[2],infinity) then

initNewton:=0; modified_init:=sqrt(constant)*initial_values[1];

elif inlist(initial_values[2],realNS)>0 then

initNewton:=-eval_period(inlist(initial_values[2],realNS),

infinity,realNS,zeros,periodMatrix,2);

modified_init:=sqrt(constant)*initial_values[1]+eval_period(

inlist(initial_values[2],realNS),infinity,realNS,zeros,periodMatrix,1);

else

k:=inlist(initial_values[2],sort([op(realNS),initial_values[2]]));

if k=nops(realNS)+1 then k:=nops(realNS) end if;

H:=IntegrateHyperelliptic[int_genus2_first](zeros,initial_values[2],realNS[k]);

initNewton:=-eval_period(k,infinity,realNS,zeros,periodMatrix,1)-H[2];

modified_init:=sqrt(constant)*initial_values[1]

+eval_period(k,infinity,realNS,zeros,periodMatrix,2)+H[1];

end if;

else

if type(initial_values[2],infinity) then

initNewton:=0; modified_init:=sqrt(constant)*initial_values[1];

elif inlist(initial_values[2],realNS)>0 then

initNewton:=-eval_period(inlist(initial_values[2],realNS),infinity,

realNS,zeros,periodMatrix,1);

modified_init:=sqrt(constant)*initial_values[1]+eval_period(

inlist(initial_values[2],realNS),infinity,realNS,zeros,periodMatrix,2);

else

k:=inlist(initial_values[2],sort([op(realNS),initial_values[2]]));

if k=nops(realNS)+1 then k:=nops(realNS) end if;

H:=IntegrateHyperelliptic[int_genus2_first](zeros,initial_values[2],realNS[k]);

initNewton:=-eval_period(k,infinity,realNS,zeros,periodMatrix,1)-H[1];

modified_init:=sqrt(constant)*initial_values[1]

+eval_period(k,infinity,realNS,zeros,periodMatrix,2)+H[2];
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end if;

invert_data:=[sqrt(constant)*initial_values,

[-initNewton,modified_init-sqrt(constant)*initial_values[1]],Max];

end if;

lprint("check initial value for Newton method ...");

Max:=check_initNewton(physical_comp,initNewton,[sqrt(constant)*initial_values[1],

initial_values[2]],modified_init,Eps);

# --------- save relevant data for later use in global variable

if not _params[’datafile’]=NULL then

if physical_comp=1 then

invert_data:=[sqrt(constant)*initial_values,[modified_init

-sqrt(constant)*initial_values[1],-initNewton],Max];

else invert_data:=[sqrt(constant)*initial_values,

[-initNewton,modified_init-sqrt(constant)*initial_values[1]],Max];

end if;

save periodMatrix, invert_data, Eps, cat(datafile,".mpl");

print(cat("in invert_hyperelliptic_first: periodMatrix saved to ",datafile,".mpl"));

# --------- solution function

affine_list->orbitdata(initial_values,modified_init,map(x->sqrt(constant)*x,

affine_list),substitution,initNewton,Eps,Max,physical_comp,datafile);

else

affine_list->orbitdata(initial_values,modified_init,map(x->sqrt(constant)*x,

affine_list),substitution,initNewton,Eps,Max,physical_comp);

end if;

end proc:

Procedure solve elliptic third: Solves an elliptic integral of third kind of the
form

∫ x

xin
<integrand>(z)/

√

P (z)dz, where P (z) is the Weierstrass polynomial P (x) =

4x3 − g2x − g3 and <integrand> is given by <integrand>(x) = 1/(x − c) for a con-
stant c. It is assumed that x(s) = ℘(s − sin, g2, g3) for an affine Parameter s and
that the variables sin, g2, g3 were computed by the procedure invert elliptic first.
Input: as solve eom.
Output: as solve eom.

solve_elliptic_third:=proc(zeros, integrand, datafile)

local periods,G2,G3,integrate_init,inits,pole,e,v,wppv,zetav,sigmav,m:

uses UtilityRoutines;

# read relevant data: periodMatrix,g2,g3,integrate_initial,initials

try read cat(datafile,".mpl");

catch: error "could not locate the datafile %1",cat(datafile,".mpl");

end try;

# copy to local

periods:=periodMatrix; G2:=g2; G3:=g3;

ntegrate_init:=integrate_initial; inits:=initials;
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# determine the pole

pole:=solve(1/integrand(y)=0,y):

if inlist(pole,zeros)>0 then

error "invalid use; integral is of second kind" end if:

# find the values v1, v2 in the fundamental rectangle

# such that WeierstrassP(vi)=pole

v:=find_Weierstrass_values(zeros,pole,periods,G2,G3);

# calculate WeierstrassPPrime(v), WeierstrassZeta(v),

# and WeierstrassSigma(inits[1]-integrate_init-v[i])

wppv:=map(x->WeierstrassPPrime(x,G2,G3),v);

zetav:=map(x->WeierstrassZeta(x,G2,G3),v);

sigmav:=map(x->log(WeierstrassSigma(-integrate_init-x,G2,G3)),v);

# solution is given by v->add( 1/wppv[i]*(zetav[i]*(v-v0)

# +log(WeierstrassSigma(v-v[i]))-sigmav[i]), i=1..2), where

# v0:=-integrate_init; v:=s-(s0+integrate_init);

# if WeierstrassP(v)=y=WeierstrassP(s-(s0+integrate_init)).

# Note that the branch of log has to be chosen appropiatly!

proc(s)

local eps,K,S,k,result,result_all,p,l,range,j,i,Im_NS,Re_NS,count,corr;

eps:=10^(-Digits+2);

if type(s,list) then

K:=inlist(inits[1],s);

if K=-1 then

error "initial value must be contained in the list of affine parameters";

elif K=1 then S:=[s];

else S:=[s[K..nops(s)],[seq(s[K-j],j=0..K-1)]] end if;

result_all:=[0]:

else

S:=[[inits[1],s]]; result_all:=[]:

end if;

for p from 1 to nops(S) do

result:=Array(1..nops(S[p])-1);

k:=[0,0];

for l from 1 to nops(S[p])-1 do

# ------------------- correct branch of log:

# has to be changed if imaginary part is zero and real part negative

range:=[ sort([S[p][l],S[p][l+1]]) ];

# determine the zeros of Im(WeierstrassSigma(s-integrate_init-v[j]))

# with a combination of fsolve and nested intervals

for j from 1 to 2 do

# Correction is 2*Pi*I*k[j]/wppv[j]; do not correct imaginary part:

if Im(wppv[j])<10^(-Digits+trunc(Digits/5)) then break end if;

count:=0; i:=1; Im_NS:=[];

while i<=nops(range) do

try Im_NS:=[op(Im_NS),fsolve(Im(WeierstrassSigma(x-integrate_init-v[j],

G2,G3))=0,x,x=range[i][1]..range[i][2],fulldigits)];
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catch: i:=i+1: next:

end try:

# if fsolve found a zero search for others

if type(Im_NS[-1],realcons) then

range:=[op(1..i-1,range),[range[i][1],Im_NS[-1]-eps],

[Im_NS[-1]+eps,range[i][2]],op(i+1..nops(range),range)];

count:=0;

# if fsolve failed to find a zero, remove unevaluated expression

# and check for different signs at interval bounds

else

Im_NS:=Im_NS[1..nops(Im_NS)-1];

# if signs ARE different divide interval (maximal 10 times)

# and try again fsolve (not increasing i!)

if Im(WeierstrassSigma(range[i][1]-integrate_init-v[j],G2,G3))

*Im(WeierstrassSigma(range[i][2]-integrate_init-v[j],G2,G3))<0 then

if count<10 then

range:=[op(1..i-1,range),[range[i][1],(range[i][1]+range[i][2])/2],

[(range[i][1]+range[i][2])/2,range[i][2]],op(i+1..nops(range),range)];

count:=count+1;

# if fsolve could not locate a zero (known to exist) even after nesting

# intervals issue a warning and check whether real part is negative

else

WARNING("for l=%1 and j=%2 a zero in %3 could not be found!",l,j,range[i]);

if Re(WeierstrassSigma(range[i][1]-integrate_init-v[j],G2,G3))<0

and Re(WeierstrassSigma(range[i][2]-integrate_init-v[j],G2,G3))<0 then

if sign(evalf(S[p][l+1]))*Im(WeierstrassSigma(

range[i][1]-integrate_init-v[j],G2,G3))>0 then

k[j]:=k[j]+1; else k[j]:=k[j]-1:

end if;

i:=i+1; count:=0;

elif Re(WeierstrassSigma(range[i][1]-integrate_init-v[j],G2,G3))

*Re(WeierstrassSigma(range[i][2]-integrate_init-v[j],G2,G3))<0 then

Re_NS:=fsolve(Re(WeierstrassSigma(x-integrate_init-v[j],G2,G3))=0,

x,x=range[i][1]..range[i][2],fulldigits);

if type(Re_NS,realcons) then

range:=[op(1..i-1,range),[range[i][1],zero_Re-eps],

[zero_Re+eps,range[i][2]],op(i+1..nops(range),range)];

else

range:=[op(1..i-1,range),[range[i][1],(range[i][1]+range[i][2])/2],

[(range[i][1]+range[i][2])/2,range[i][2]],op(i+1..nops(range),range)];

end if;

count:=count-1:

else i:=i+1; count:=0;

end if;

end if;

# if signs ARE NOT different there are no zeros (or an even number)
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else

i:=i+1;

end if; # signs at interval bounds

end if; # fsolve did not find a zero

end do; # i<=nops(range)

for i from 1 to nops(Im_NS) do

if Re(WeierstrassSigma(Im_NS[i]-integrate_init-v[j],G2,G3))<0 then

if sign(evalf(S[p][l+1]))*Im(WeierstrassSigma(

Im_NS[i]-eps-integrate_init-v[j],G2,G3))>0 then

k[j]:=k[j]+1; else k[j]:=k[j]-1;

end if;

end if;

end do:

end do; # j=1..2

# -------------------------------------- compute solution

result[l]:=evalf(add( 1/wppv[m]*( zetav[m]*(S[p][l+1]-inits[1])

+log(WeierstrassSigma(S[p][l+1]-inits[1]-integrate_init-v[m],G2,G3))

+evalf(2*Pi*I*k[m])-sigmav[m] ), m=1..2));

# ------- could have missed even number of zeros lying close together

if l>1 then

count:=0: corr:=abs(evalf(2*Pi*I/wppv[1]));

while ( abs(Re(result[l-1])-Re(result[l]))>9/10*corr and count<10) do

if Re(result[l])>Re(result[l-1]) then result[l]:=result[l]-corr;

else result[l]:=result[l]+corr; end if;

count:=count+1;

end do;

end if;

end do; # l=1..nops(S[p])-1

if p=1 then result_all:=[op(result_all),seq(result[j],j=1..ArrayNumElems(result))];

else result_all:=[seq(result[K-j],j=1..K-1),op(result_all)]; end if;

end do; # p=1..nops(S)

if type(s,list) then result_all; else op(result_all); end if;

end proc:

end proc:

Procedure find Weierstrass value: The procedure solve elliptic third needs to
solve some equations of the form ℘(v) = <pole> for v. This carried through by this
procedure.
Input:
zeros: the zeros of the Weierstrass polynomial P (x) = 4x3 − g2x − g3,
pole: see above,
periods: the periods of ℘,
G2,G3: the constants in P (x) = 4x3 − g2x − g3.
Output: the two values of v in the fundamental period parallelogram such that
℘(v) = <pole> as a list.
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find_Weierstrass_values:=proc(zeros,pole,Periods,G2,G3)

local e,realNS,complexNS,v1,v2,i:

uses UtilityRoutines;

e:=sort(zeros,sortfkt):

realNS,complexNS:=separate_zeros(e):

for i in [0,-1,1] do

if nops(realNS)=3 then

if pole>=e[3] then

v1:=Re(fsolve(WeierstrassP(t*Periods[1,1],G2,G3)=pole,t=0.5+i*0.4));

while not (0<=v1 and v1<=2) do v1:=v1-sign(v1)*2 end do;

v1:=v1*Periods[1,1]; v2:=2*Periods[1,1]-v1;

elif pole>=e[2] then

v1:=Re(fsolve(WeierstrassP(t*Periods[1,2]+Periods[1,1],G2,G3)=pole,t=0.5+i*0.4));

while not (0<=v1 and v1<=2) do v1:=v1-sign(v1)*2 end do;

v1:=v1*Periods[1,2]+Periods[1,1]; v2:=2*Periods[1,1]+2*Periods[1,2]-v1;

elif pole>=e[1] then

v1:=Re(fsolve(WeierstrassP(t*Periods[1,1]+Periods[1,2],G2,G3)=pole,t=0.5+i*0.4));

while not (0<=v1 and v1<=2) do v1:=v1-sign(v1)*2 end do;

v1:=v1*Periods[1,1]+Periods[1,2]; v2:=2*Periods[1,1]+2*Periods[1,2]-v1;

else

v1:=Re(fsolve(WeierstrassP(t*Periods[1,2],G2,G3)=pole,t=0.5+i*0.4));

while not (0<=v1 and v1<=2) do v1:=v1-sign(v1)*2 end do;

v1:=v1*Periods[1,2]; v2:=2*Periods[1,2]-v1;

end if;

else

if pole>realNS[1] then

v1:=Re(fsolve(WeierstrassP(t*Periods[1,1],G2,G3)=pole,t=0.5+i*0.4));

while not (0<=v1 and v1<=2) do v1:=v1-sign(v1)*2 end do;

v1:=v1*Periods[1,1]; v2:=2*Periods[1,1]-v1;

else

if Im(e[1])=0 then

v1:=fsolve(WeierstrassP(t*Periods[1,2],G2,G3)=pole,t=0.5+i*0.4);

v1:=v1*Periods[1,2]; v2:=2*Periods[1,2]-v1;

elif Im(e[3])=0 and pole>Re(e[2]) then

v1:=fsolve(WeierstrassP(t*Periods[1,2]+Periods[1,1],G2,G3)=pole,t=0.5+i*0.4);

v1:=v1*Periods[1,2]+Periods[1,1]; v2:=2*Periods[1,1]+2*Periods[1,2]-v1;

elif Im(e[3])=0 then

v1:=fsolve(WeierstrassP(t*Periods[1,2],G2,G3)=pole,t=0.5+i*0.4);

v1:=v1*Periods[1,2]; v2:=2*Periods[1,2]-v1;

end if:

end if:

end if:

if type(v1,complexcons) and abs(WeierstrassP(v1,G2,G3)-pole)>10^(-Digits+4)

and abs(WeierstrassP(v2,G2,G3)-pole)>10^(-Digits+4) then break end if;

end do;

if abs(WeierstrassP(v1,G2,G3)-pole)>10^(-Digits+4)
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or abs(WeierstrassP(v2,G2,G3)-pole)>10^(-Digits+4) then

WARNING("(in find_Weierstrass_values) could not solve within the given accuracy

for WeierstrassP(v)=%1; results were WeierstrassP(v)=%2 and WeierstrassP(v)=%3 ",

pole,WeierstrassP(v1,G2,G3),WeierstrassP(v2,G2,G3));

end if:

[v1,v2];

end proc:

Procedure solve hyperelliptic first: Solves the integral
∫ x

xin
z<component>−1dz/

√

P (z),
where P is a polynomial of degree 5 in the standard form.
Input: component, datafile
Output: solution of the integral

solve_hyperelliptic_first:=proc(component,datafile)

# read extended_orbitdata=[seq( [subs_coord[j],coordinates[j],x[j],Divisor[j],

# affine_list[j]], j=1..nops(coordinates) )];

try read cat(datafile,"_orbitdata.mpl");

catch: error "could not locate the datafile %1",cat(datafile,"_orbitdata.mpl");

end try;

# read rdata=periodMatrix,invert_data,Eps:

try read cat(datafile,".mpl");

catch: error "could not locate the datafile %1",cat(datafile,".mpl");

end try;

[seq(extended_orbitdata[j][4][component]+invert_data[2][component],

j=1..nops(extended_orbitdata))]:

end proc:

Procedure solve hyperelliptic third: Solves an hyperelliptic integral of third
kind of the form

∫ x

xin
<integrand>(z)/

√

P (z)dz, where P (z) is a polynomial of degree

5 in the standard form and <integrand> is given by <integrand>(x) = 1/(x − c)
for a constant c. It is assumed that x(s) is explicitly known in terms of hyperelliptic
functions and that certain variables (for example sin) and the periods of second kind
(see module PeriodsSecondGenusTwo) were computed before. Input:
zeros: the zeros of the polynomial P ,
r1,r2: the elements of the vector of meromorphic differentials,
eta: the matrix of periods of second kind,
integrand: <integrand>(x) = 1/(x − c) for a constant c,
datafile: see solve eom.
Output: solution of the integral.

solve_hyperelliptic_third:=proc(zeros,r1,r2,eta, integrand, datafile)

local pole,Periods,init,s0,Max,epsilon,realNS,complexNS,k,int_dz,int_2,
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int_3,inf1,inf2,int_dr1,int_dr2,xi_inf,yi_inf,R,eta1,kappa,g,h,sigma;

global periodsInverse,tau;

uses UtilityRoutines, IntegrateHyperelliptic, Thetafunctions,

PeriodsGenusTwo, LinearAlgebra;

# read relevant data: datafile contains periodMatrix,invert_data, and Eps;

# datafile_secondkindperiods contains eps, which is relevant

try read cat(datafile,".mpl");

catch: error "could not locate the datafile %1",cat(datafile,".mpl");

end try;

# copy to local

Periods:=periodMatrix; init:=invert_data[1];

s0:=invert_data[2]; Max:=invert_data[3];

# set gobals related to periodMatrix

set_period_globals_genus2(Periods);

# determine the pole

pole:=solve(1/integrand(y)=0,y):

if inlist(pole,zeros)>0 then

error "invalid use; integral is of second kind" end if:

# in the solution of an hyperelliptic integral of third kind

# appear three constants, namely: int(x^i/sqrt(P),x=(pole,+)..infinity),

# int(x^i/sqrt(P),x=(pole,-)..infinity), int(dri, x=(pole,-)..(pole,+)),

# where i=0,1, dri=dr1,dr2, and (pole,+-) is the pole located on the

# +- branch of the square root. Note that one integration of dri needs

# actually up to three integrations, one for each power of x

# the integration for x^1 (and x^0) is called int_dz, for x^2 int_2,

# and for x^3 int_3.

lprint(’‘compute constants needed for solution hyperelliptic

integral of third kind ... ‘’);

realNS,complexNS:=separate_zeros(zeros);

# sort by location of the pole

k:=inlist(pole,sort([pole,op(zeros)],sortfkt));

if k>inlist(realNS[-1],zeros) or k=5 then # pole on realNS[-1]..infinity

int_dz:=myint_genus2(zeros,pole,realNS[-1],1,Digits);

int_2:=2*myint_genus2_second(zeros,[0,0,1],pole,realNS[-1],1,Digits);

int_3:=2*myint_genus2_second(zeros,[0,0,0,1],pole,realNS[-1],1,Digits);

inf1:=eval_period(nops(realNS),infinity,realNS,zeros,Periods,1);

inf2:=eval_period(nops(realNS),infinity,realNS,zeros,Periods,2);

# in the remaining cases there is at least one real zero > pole!

elif k=4 then

if Im(zeros[4])=0 then

int_dz:=myint_genus2(zeros,pole,zeros[4],1,Digits);

int_2:=2*myint_genus2_second(zeros,[0,0,1],pole,zeros[4],1,Digits);

int_3:=2*myint_genus2_second(zeros,[0,0,0,1],pole,zeros[4],1,Digits);

inf1:=eval_period(inlist(zeros[4],realNS),infinity,realNS,zeros,Periods,1);

inf2:=eval_period(inlist(zeros[4],realNS),infinity,realNS,zeros,Periods,2);

else # cases Ima2Per3 and Ima4Per1
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error "case that the pole is located on a vertical branch cut is tbd";

end if;

elif k=3 then

if Im(zeros[2])=0 and Im(zeros[1])=0 then

int_dz:=myint_genus2(zeros,pole,zeros[2],1,Digits);

int_2:=2*myint_genus2_second(zeros,[0,0,1],pole,zeros[2],1,Digits);

int_3:=2*myint_genus2_second(zeros,[0,0,0,1],pole,zeros[2],1,Digits);

inf1:=eval_period(inlist(zeros[2],realNS),infinity,realNS,zeros,Periods,1);

inf2:=eval_period(inlist(zeros[2],realNS),infinity,realNS,zeros,Periods,2);

elif Im(zeros[3])=0 and Im(zeros[4])=0 then

int_dz:=myint_genus2(zeros,pole,zeros[3],1,Digits);

int_2:=2*myint_genus2_second(zeros,[0,0,1],pole,zeros[3],1,Digits);

int_3:=2*myint_genus2_second(zeros,[0,0,0,1],pole,zeros[3],1,Digits);

inf1:=eval_period(inlist(zeros[3],realNS),infinity,realNS,zeros,Periods,1);

inf2:=eval_period(inlist(zeros[3],realNS),infinity,realNS,zeros,Periods,2);

elif pole=Re(zeros[2]) then # Ima2Per2

int_dz:=myint_genus2(zeros,pole,realNS[1],1,Digits);

int_2:=2*myint_genus2_second(zeros,[0,0,1],pole,realNS[1],1,Digits);

int_3:=2*myint_genus2_second(zeros,[0,0,0,1],pole,realNS[1],1,Digits);

inf1:=eval_period(1,infinity,realNS,zeros,Periods,1);

inf2:=eval_period(1,infinity,realNS,zeros,Periods,2);

else # Ima4Per1 or Ima4Per3

R:=add( Re(coeffsP[i])*x^(i-1), i=1..6 );

int_dz:=Vector([I*evalf(Int(1/sqrt(-R),x=pole..Re(zeros[2]),digits=Digits)),

I*evalf(Int(x/sqrt(-R),x=pole..Re(zeros[2]),digits=Digits))]);

int_2:=2*I*evalf(Int(x^2/sqrt(-R),x=pole..Re(zeros[2]),digits=Digits));

int_3:=2*I*evalf(Int(x^3/sqrt(-R),x=pole..Re(zeros[2]),digits=Digits));

int_dz:=int_dz+int_genus2_complex(zeros,Re(zeros[2]),Im(zeros[2]),1,1,Digits);

int_2:=int_2+2*int_genus2_complex_second(e,[0,0,1],Re(e[1]),

abs(Im(e[1])),1,1,Digits);

int_3:=int_3+2*int_genus2_complex_second(e,[0,0,0,1],Re(e[1]),

abs(Im(e[1])),1,1,Digits);

inf1:=Periods[1,3]-Periods[1,1];

inf2:=Periods[2,3]-Periods[2,1];

end if;

elif k=2 then

if Im(zeros[1])=0 then

int_dz:=myint_genus2(zeros,pole,zeros[1],1,Digits);

int_2:=2*myint_genus2_second(zeros,[0,0,1],pole,zeros[1],1,Digits);

int_3:=2*myint_genus2_second(zeros,[0,0,0,1],pole,zeros[1],1,Digits);

inf1:=eval_period(inlist(zeros[1],realNS),infinity,realNS,zeros,Periods,1);

inf2:=eval_period(inlist(zeros[1],realNS),infinity,realNS,zeros,Periods,2);

else # cases Ima2Per1, Ima4Per1, and Ima4Per3

error "case that the pole is located on a vertical branch cut is tbd";

end if;

elif k=1 then
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if Im(zeros[1])=0 and Im(zeros[2])=0 then

int_dz:=myint_genus2(zeros,pole,zeros[1],1,Digits);

int_2:=2*myint_genus2_second(zeros,[0,0,1],pole,zeros[1],1,Digits);

int_3:=2*myint_genus2_second(zeros,[0,0,0,1],pole,zeros[1],1,Digits);

inf1:=eval_period(1,infinity,realNS,zeros,Periods,1);

inf2:=eval_period(1,infinity,realNS,zeros,Periods,2);

elif (not Im(zeros[1])=0) and (not Im(zeros[2])=0) then

R:=add( coeffsP[i]*x^(i-1), i=1..6 );

int_dz:=Vector([evalf(I*Int(1/sqrt(-R),x=pole..Re(zeros[1]),digits=Digits)),

evalf(I*Int(x/sqrt(-R),x=pole..Re(zeros[1]),digits=Digits))])

+int_genus2_complex(zeros,Re(zeros[1]),abs(Im(zeros[1])),1,1,Digits);

int_2:=2*evalf(I*Int(x^2/sqrt(-R),x=pole..Re(zeros[1]),digits=Digits))

+2*int_genus2_complex_second(zeros,[0,0,1],Re(zeros[1]),abs(Im(zeros[1])),

1,1,Digits);

int_3:=2*evalf(I*Int(x^3/sqrt(-R),x=pole..Re(zeros[1]),digits=Digits))

+2*int_genus2_complex_second(zeros,[0,0,0,1],Re(zeros[1]),abs(Im(zeros[1])),

1,1,Digits);

inf1:=Periods[1,3]-Periods[1,1];

inf2:=Periods[2,3]-Periods[2,1];

else

R:=add( coeffsP[i]*x^(i-1), i=1..6 );

int_dz:=Vector([evalf(I*Int(1/sqrt(-R),x=pole..zeros[1],digits=Digits)),

evalf(I*Int(x/sqrt(-R),x=pole..zeros[1],digits=Digits))])

+myint_genus2(zeros,zeros[1],Re(zeros[2]),1,Digits)

+int_genus2_complex(zeros,Re(zeros[2]),abs(Im(zeros[2])),2,1,Digits);

int_2:=2*evalf(I*Int(x^2/sqrt(-R),x=pole..zeros[1],digits=Digits))

+2*myint_genus2_second(zeros,[0,0,1],zeros[1],Re(zeros[2]),1,Digits)

+2*int_genus2_complex_second(zeros,[0,0,1],Re(zeros[2]),abs(Im(zeros[2])),

2,1,Digits);

int_3:=2*evalf(I*Int(x^3/sqrt(-R),x=pole..zeros[1],digits=Digits))

+2*myint_genus2_second(zeros,[0,0,0,1],zeros[1],Re(zeros[2]),1,Digits)

+2*int_genus2_complex_second(zeros,[0,0,0,1],Re(zeros[2]),abs(Im(zeros[2])),

2,1,Digits);

inf1:=Periods[1,3]-Periods[1,1];

inf2:=Periods[2,3]-Periods[2,1];

end if;

end if;

# put together:

int_dr1:=r1[2]*2*int_dz[2]+r1[3]*int_2+r1[4]*int_3;

int_dr2:=r2[3]*int_2;

yi_inf:=[int_dz[1]+inf1,int_dz[2]+inf2];

xi_inf:=[-int_dz[1]+inf1,-int_dz[2]+inf2];

# Kleinian sigma function:

eta1:=Matrix([[eta[1,1],eta[1,2]],[eta[2,1],eta[2,2]]]);

kappa:=1/2*(eta1.periodsInverse);
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g:=[1/2,1/2]: h:=[0,1/2]:

# As the exponential term in the definition of sigma:

# evalf( exp(add(z[i]*add(kappa[i,j]*z[j],j=1..2),i=1..2)) )

# may cause a bad accuracy it is treated separately.

sigma:= z -> evalf(Theta2ch( Vector([ 1/2*add(periodsInverse[1,i]*z[i],i=1..2),

1/2*add(periodsInverse[2,i]*z[i], i=1..2) ]),tau,Max));

proc(s)

local divisor,affinelist,pos0,const,vars,log_vars,branch,res,l;

global date, workdir;

# read extended_orbitdata=[seq( [subs_coord[j],coordinates[j],x[j],Divisor[j],

# affine_list[j]], j=1..nops(coordinates) )];

try read cat(datafile,"_orbitdata.mpl");

catch: error "could not locate the datafile %1",cat(datafile,"_orbitdata.mpl");

end try:

divisor:=[seq(extended_orbitdata[j][4], j=1..nops(extended_orbitdata))]:

affinelist:=[seq(extended_orbitdata[j][5], j=1..nops(extended_orbitdata))]:

pos0:=inlist(init[1],affinelist);

if pos0=-1 then

error "position of initial value could not be located in list of affine parameters":

end if;

lprint(’‘compute solution points ... ‘’);

const:=evalm(2*divisor[pos0]&*kappa&*(xi_inf-yi_inf))

+1/2*log(sigma([divisor[pos0][1]+2*xi_inf[1],divisor[pos0][2]+2*xi_inf[2]])

/sigma([divisor[pos0][1]+2*yi_inf[1],divisor[pos0][2]+2*yi_inf[2]]));

vars:=[seq( sigma([seq(divisor[l][j]+2*xi_inf[j],j=1..2)])

/sigma([seq(divisor[l][j]+2*yi_inf[j],j=1..2)]), l=1..nops(divisor) )];

log_vars:=[seq(evalm(2*divisor[l]&*kappa&*(xi_inf-yi_inf)),l=1..nops(divisor))];

branch:=0;

res:=[evalf( log_vars[pos0] + 1/2*log(vars[pos0]) - const - ( (divisor[pos0][1]+s0[1])

*int_dr1[i]+(divisor[pos0][2]+s0[2])*int_dr2[i] ) )];

for l from pos0+1 to nops(divisor) do

if Re(vars[l-1])<0 then

if Im(vars[l-1])>0 and Im(vars[l])<0 then branch:=branch+1;

elif Im(vars[l-1])<0 and Im(vars[l])>0 then branch:=branch-1;

end if;

end if;

res:=[op(res), evalf( log_vars[l] + 1/2*log(vars[l]) +evalf(Pi*I*branch) -const

-((divisor[l][1]+s0[1])*int_dr1+(divisor[l][2]+s0[2])*int_dr2))];

end do:

branch:=0;

for l from pos0-1 by -1 to 1 do

if Re(vars[l+1])<0 then

if ( Im(vars[l+1])>0 and Im(vars[l])<0 ) then branch:=branch+1;
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elif ( Im(vars[l+1])<0 and Im(vars[l])>0 ) then branch:=branch-1;

end if;

end if;

res:=[evalf( log_vars[l] + 1/2*log(vars[l]) +evalf(Pi*I*branch) -const

-((divisor[l][1]+s0[1])*int_dr1+(divisor[l][2]+s0[2])*int_dr2)), op(res)];

end do:

res/sqrt(Re(mul(pole-zeros[j],j=1..5)));

end proc:

end proc:

Procedure compute secondkindperiods: Computes the periods of second kind.
Input:
zeros: the zeros of the polynomial defining the Riemann surface (used to define the
vector of meromorphic differentials),
Eps: the accuracy of the period matrix of first kind,
periodMatrix: the period matrix of first kind,
datafile: see solve eom.
Output: the period matrix of second kind.

compute_secondkind_periods:=proc(zeros,Eps,periodMatrix,datafile)

local eps,periods_first,periods_second,P,coeffsP,r1,r2,realNS,

complexNS,secondkindperiods,eta1,eta2,M;

uses UtilityRoutines, PeriodsSecondGenusTwo, LinearAlgebra;

# copy to local

eps:=Eps;

periods_first:=Matrix([[periodMatrix[1,1],periodMatrix[1,2]],

[periodMatrix[2,1],periodMatrix[2,2]]]):

periods_second:=Matrix([[periodMatrix[1,3],periodMatrix[1,4]],

[periodMatrix[2,3],periodMatrix[2,4]]]):

# define differentials of 2. kind

P:=mul(x-zeros[i],i=1..5); coeffsP:=[seq(Re(coeff(P,x,i)),i=0..5)];

# dr1=add( 1/4*k*coeffsP[k+3]*x^k, k=1..3 ), dr2=1/4*coeffsP[6]*x^2;

r1:=[0,1/4*coeffsP[4],1/2*coeffsP[5],3/4*coeffsP[6]];

r2:=[0,0,1/4*coeffsP[6]];

realNS,complexNS:=separate_zeros(zeros);

# compute periods of 2. kind

lprint(’‘compute second kind periods ... ‘’);

secondkindperiods:=periods_genus2_second(r1,r2,realNS,complexNS,Digits);

# check result

eta1:=Matrix([[secondkindperiods[1,1],secondkindperiods[1,2]],

[secondkindperiods[2,1],secondkindperiods[2,2]]]);

eta2:=Matrix([[secondkindperiods[1,3],secondkindperiods[1,4]],

[secondkindperiods[2,3],secondkindperiods[2,4]]]);

M:=eta2.Transpose(eta1)-eta1.Transpose(eta2);

print("Legendre relation for periods of second kind=",M);
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if abs(M[1,2])>eps/10 then

eps:=abs(M[1,2])*10;

WARNING("in solve_hyperelliptic_third: accuracy further reduced to %1

due to Legendre relation for periods of second kind",eps);

end if;

M:=evalm(periods_second&*Transpose(eta1)-periods_first&*Transpose(eta2));

print("mixed Legendre relation=",M);

if (abs(M[1,2])>eps/10 or abs(evalf(M[1,1]-Pi/2*I))>eps/10) then

eps:=max(abs(M[1,2]),abs(evalf(M[1,1]-Pi/2*I)))*10;

WARNING("in solve_hyperelliptic_third: accuracy further reduced to %1

due to relation between for periods of first and second kind",eps);

end if;

save secondkindperiods, eps, cat(datafile,"_secondkindperiods.mpl");

print(cat("saved second kind period matrix to ",datafile,"_secondkindperiods.mpl"));

secondkindperiods,r1,r2;

end proc:

Procedure check initNewton: Determines the number of summands used to
compute the series of the theta and sigma function in the following. This is done by
checking that sigma of an element of the theta divisor, say z, is zero. If one of the
two components of z corresponds to the initial value of the affine parameter s (or the
ϕ-coordinate for spherical symmetric space-times) the other one can be computed
exactly and is given by <initNewton>. It is checked in this procedure how accurately
the sigma function (or the theta function, respectively) has to be computed to be
zero within the accuracy <Eps> if evaluated at z.
Input:
physical comp: see invert hyperelliptic first,
initNewton: the initial value for the Newton method to be used in procedure solution;
computed in invert hyperelliptic first,
initial values: the initial values [sin, xin] with s and x as in invert eom; the affine
parameter s is replaced by the ϕ-coordinate in case of spherical symmetric space-
times,
modified init: initial value[2] (for x) +

∫ ∞
xin(s)

<integrand>(x)/
√

<polynomial>(x);

the integral was computed in invert eom,
Eps: the accuracy for the Newton method.
Output: the natural number Max, where 5 ≤ Max ≤ 30.

check_initNewton:=proc(physical_comp,initNewton,initial_values,modified_init,Eps)

local g,h,z,Max,f,s1,s2,u,i,k,l,sigma,m1,m2,m;

global periodsInverse,tau;

uses Thetafunctions;

g:=[1/2,1/2]; h:=[0,1/2];

# verify Theta2ch(1/2*periodsInverse*[affineParameter-modified_init,initNewton])=0

# for affineParameter=initial_values[1] within the accuracy Eps
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if physical_comp=1 then

z:=evalm(1/2* periodsInverse &* Vector([initial_values[1]-modified_init,initNewton]));

else

z:=evalm(1/2* periodsInverse &* Vector([initNewton,initial_values[1]-modified_init]));

end if;

Max:=5;

f:=evalf(Theta2ch(z,tau,Max));

while ( (abs(Re(f))>Eps/10 or abs(Im(f))>Eps/10) and Max<30) do

for m1 from -Max-1 to Max+1 do

m:=[m1,-Max-1];

f:=f+evalf(exp(Pi*I*add((m[i]+g[i])*(add(tau[i,j]*(m[j]+g[j]),j=1..2)

+2*z[i]+2*h[i]),i=1..2)));

m:=[m1,Max+1];

f:=f+evalf(exp(Pi*I*add((m[i]+g[i])*(add( tau[i,j]*(m[j]+g[j]),j=1..2)

+2*z[i]+2*h[i]),i=1..2)));

end do;

for m2 from -Max to Max do

m:=[-Max-1,m2];

f:=f+evalf(exp(Pi*I*add((m[i]+g[i])*(add(tau[i,j]*(m[j]+g[j]),j=1..2)

+2*z[i]+2*h[i]),i=1..2)));

m:=[Max+1,m2];

f:=f+evalf(exp(Pi*I*add((m[i]+g[i])*(add(tau[i,j]*(m[j]+g[j]),j=1..2)

+2*z[i]+2*h[i]),i=1..2)));

end do;

Max:=Max+1;

end do;

# Compute corresponding solution of hyperelliptic problem

s1:=evalf(sigma1(z,tau,Max));

s2:=evalf(sigma2(z,tau,Max));

u:=-evalf((s1*periodsInverse[1,1]+s2*periodsInverse[2,1])

/(s1*periodsInverse[1,2]+s2*periodsInverse[2,2]));

# correct value?

if ((initial_values[2]=infinity and abs(u)<1/Eps*10^(-4))

or (initial_values[2]<infinity and abs(u-initial_values[2])>Eps*10^4)) then

Max:=Max+1:

s1:=evalf(sigma1(z,tau,Max));

s2:=evalf(sigma2(z,tau,Max));

u:=-evalf((s1*periodsInverse[1,1]+s2*periodsInverse[2,1])

/(s1*periodsInverse[1,2]+s2*periodsInverse[2,2]));

if ((initial_values[2]=infinity and abs(u)<1/Eps)

or (initial_values[2]<infinity and abs(u-initial_values[2])>Eps*10^4)) then

error "u(%1) not close enough to u0=%2 for x0=%3",

initial_values[1],initial_values[2],initNewton;

end if:

end if;

print(cat("maximal summation index for Kleinian sigma function set to",Max));
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Max;

end proc:

Procedure orbitdata: For a list of values of s, orbitdata organizes the calcula-
tion of the solution x(s) described in invert eom and invert hyperelliptic first. The
calculation itself is done by the procedure solution.
Input: see check initNewton and
affine list: list of values of s,
substitution: the substitution used to convert the differential equation to the stan-
dard form,
MinMax: the extremal values for the summation indices of the theta function,
physical comp: see invert hyperelliptic first,
datafile: see invert eom.
Output: list of solutions x(s).

orbitdata:=proc(initial_values,modified_init,affine_list,substitution,initNewton,

Eps,MinMax,physical_comp,datafile)

local init_coord,pos0,x,coordinates,Divisor,coord,subs_coord,count,i,

extended_orbitdata;

global periodsInverse,tau;

uses UtilityRoutines, Thetafunctions;

#copy to local

init_coord:=initial_values[2];

# determine position of initial_values[1] in affine_list

pos0:=inlist(initial_values[1],affine_list);

if pos0=-1 then

error "initial value %1 is not contained in list of affine parameters",

initial_values[1]:

end if;

# -------- initial values

x:=[initNewton]; coordinates:=[init_coord]; subs_coord:=[substitution(init_coord)];

# (2*omega)^(-1).(f(-phi0),-phi0)) = (2*omega)^(-1).(x0,-phi0)

if physical_comp=1 then Divisor:=[Vector([-modified_init,initNewton])];

else Divisor:=[Vector([initNewton,-modified_init])];

end if;

# -------- compute solution points

print(cat("computing ",convert(nops(affine_list)-pos0,string)," solution points

from i=",convert(pos0+1,string)," to ",convert(nops(affine_list),string)," ..."));

# points from pos0+1

for i from pos0+1 to nops(affine_list) do

coord:=solution(affine_list[i]-modified_init,x[-1],Eps,MinMax,physical_comp);

count:=1;

while (nops(coord)=2 and Re(op(2,coord))<1 and Im(op(2,coord))<1 and count<3) do

print(’‘Try more iterations ...‘’);

coord:=solution(affine_list[i]-modified_init,op(1,coord)[-1],
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Eps,MinMax,physical_comp);

count:=count+1;

end do;

if ( nops(coord)=3 and Im(op(1,coord))<100*Eps ) then

coordinates:=[op(coordinates),Re(op(1,coord))];

subs_coord:=[op(subs_coord),substitution(Re(op(1,coord)))];

x:=[op(x),op(2,coord)];

Divisor:=[op(Divisor),op(3,coord)];

else

WARNING("in orbitdata: solution point for %1 (%2. element)

could not be computed; result was %3",affine_list[i],i,op(1,coord));

break;

end if;

if type(i/10,integer) then print(’‘ ... ‘’); end if;

end do:

# points to pos0:

print(cat("computing ",convert(pos0-1,string),

" solution points from i=",convert(pos0-1,string)," to 1 ..."));

for i from pos0-1 by -1 to 1 do

coord:=solution(affine_list[i]-modified_init,x[1],Eps,MinMax,physical_comp);

count:=1;

while (nops(coord)=2 and Re(op(2,coord))<1 and Im(op(2,coord))<1 and count<3) do

print(’‘Try more iterations ...‘’);

coord:=solution(affine_list[i]-modified_init,op(1,coord)[-1],Eps,

MinMax,physical_comp);

count:=count+1;

end do;

if ( nops(coord)=3 and Im(op(1,coord))<100*Eps ) then

coordinates:=[Re(op(1,coord)),op(coordinates)];

subs_coord:=[substitution(Re(op(1,coord))),op(subs_coord)];

x:=[op(2,coord),op(x)];

Divisor:=[op(3,coord),op(Divisor)];

else

WARNING("in orbitdata: solution point for %1 (%2. element)

could not be computed", affine_list[i],i);

break:

end if;

if type(i/10,integer) then print(’‘ ... ‘’); end if;

end do:

if not _params[’datafile’]=NULL then

extended_orbitdata:=[seq( [subs_coord[j],coordinates[j],x[j],Divisor[j],

affine_list[j]], j=1..nops(coordinates) )];

save extended_orbitdata, cat(datafile,"_orbitdata.mpl");

print(cat("extended orbitdata saved in ",datafile,"_orbitdata.mpl"));

end if;

subs_coord;
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end proc:

Procedure solution: This procedure calls solution first or solution second depen-
dent on <physical comp>.
Input:
affineParameter: the affine parameter s for which the solution of the hyperelliptic
differential equation should be computed,
initNewton: the initial value for the Newton method,
Eps: the accuracy for the Newton method,
MinMax: the extremal values for the summation indices of the theta function,
physical comp: see invert hyperelliptic first.
Output: a list with two or three elements: If the iteration process was not successful
the list has two elements, where the first is a list of the steps taken by the iteration
and the second the value of the theta function at the last iteration. If the iteration
process was successful the list has three elements, where the first is the solution of
the hyperelliptic differential equation at <affineParameter>, the second the redun-
dant unphysical component of the theta divisor used to compute the first element,
and the third (2*omega)*(the element of the thetadivisor used to compute the first
element), where omega is the first 2x2 part of the period matrix of first kind.

solution:=proc(affineParameter,initNewton,Eps,MinMax,physical_comp)

if physical_comp=1 then solution_first(affineParameter,initNewton,Eps,MinMax);

else solution_second(affineParameter,initNewton,Eps,MinMax);

end if;

end proc:

Procedures solution first and solution second: These procedures are used to
calculate the unphysical component of the theta divisor. This redundant parameter
has no physical interpretation and depends on the affine parameter s (or the physical
angle ϕ in the case of spherically symmetric space-times), the initial values of the
differential equation sin and xin (compare invert eom) and the normalized period
matrix τ . The calculation can be done by applying a Newton method to the function
f = g ◦ h : C → C2 → C,

w
h7→ z

g7→ ϑ
[(

1/2
1/2

)

,
(

0
1/2

)

]

(z; τ) , (B.2.1)

where z = (2ω)−1 ( s−sin
w ) in solution first, z = (2ω)−1 ( w

s−sin ) in solution second,
and ω is the period matrix. Since f is a complex function it has to be interpreted
as a mapping from R2 → R4 → R2 for the purpose of computing w. For each
iteration the Jacobi matrix J(f) = J(g) ·J(h) and, hence, the derivatives of Re(g) =
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Re
(

ϑ
[(

1/2
1/2

)

,
(

0
1/2

)

])

and Im(g) is needed. They are given by

∂Re(g)

∂Re(zi)
= − 2π

∞
∑

|m|=−∞
e

π

„

m+

„

1/2
1/2

««t»

Re(iτ)(m+

„

1/2
1/2

«

)−2Im(z)

–

(

mi +
(

1/2
1/2

))

sin

(

π
(

m +
(

1/2
1/2

))t [

Im(iτ)
(

m +
(

1/2
1/2

))

+ 2Re(z) + 2
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(B.2.2)
The derivatives with respect to Im(zi) can be derived from the Cauchy-Riemann
differential equation and need not to be computed. To compute x(s) for a list
s = [s[1], . . . , s[m]] the starting value <initNewton> for the Newton iteration wn+1 =
wn − J(f(wn))−1f(wn) to compute w corresponding to s[i], is chosen to be w corre-
sponding to s[i − 1]. Once the Newton iteration successfully found a zero of f , this
zero is inserted in the formula of the solution of the geodesic equation.
Input: as solution.
Output: as solution.

solution_first:=proc(affineparameter,initNewton,Eps,MinMax)

local zeroR,zeroI,zero,affR,affI,perR,perI,P1,P2,P3,P4,z,f,af,

zfirstR,zfirstI,zsecondR,zsecondI,a,b,c,d,det,sol,count,x,s1,s2;

global periodsInverse, tau;

uses Thetafunctions, LinearAlgebra;

# Initialise

x:=[initNewton];

zeroR:=Re(initNewton);

zeroI:=Im(initNewton);

affR:=Re(affineparameter);

affI:=Im(affineparameter);

perR:=map(Re,omega1inv);

perI:=map(Im,omega1inv);

P1:=perR[1,1]*affR-perI[1,1]*affI;

P2:=perR[1,1]*affI+perI[1,1]*affR;

P3:=perR[2,1]*affR-perI[2,1]*affI;

P4:=perR[2,1]*affI+perI[2,1]*affR;

zfirstR:=1/2*(perR[1,2]*zeroR-perI[1,2]*zeroI+P1);

zfirstI:=1/2*(perR[1,2]*zeroI+perI[1,2]*zeroR+P2);

zsecondR:=1/2*(perR[2,2]*zeroR-perI[2,2]*zeroI+P3);

zsecondI:=1/2*(perR[2,2]*zeroI+perI[2,2]*zeroR+P4);
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z:=Vector([zfirstR+I*zfirstI,zsecondR+I*zsecondI]);

f:=evalf(Theta2ch(z,tau,MinMax));

af:=evalf(abs( f ));

count:=0;

# Newton Iteration

while (af > Eps and count < 30) do

# find inverse Jacobi Matrix

# M=Matrix([[a,b],[c,d]]) => M^(-1)=1/(a*d-b*c)*Matrix([[d,-b],[-c,a]])

a:=1/2*( perR[1,2]*Th2chRR(zfirstR,zfirstI,zsecondR,zsecondI,1,tau,MinMax)

-perI[1,2]*Th2chIR(zfirstR,zfirstI,zsecondR,zsecondI,1,tau,MinMax)

+ perR[2,2]*Th2chRR(zfirstR,zfirstI,zsecondR,zsecondI,2,tau,MinMax)

- perI[2,2]*Th2chIR(zfirstR,zfirstI,zsecondR,zsecondI,2,tau,MinMax) );

c:=1/2*( perR[1,2]*Th2chIR(zfirstR,zfirstI,zsecondR,zsecondI,1,tau,MinMax)

+ perI[1,2]*Th2chRR(zfirstR,zfirstI,zsecondR,zsecondI,1,tau,MinMax)

+ perR[2,2]*Th2chIR(zfirstR,zfirstI,zsecondR,zsecondI,2,tau,MinMax)

+ perI[2,2]*Th2chRR(zfirstR,zfirstI,zsecondR,zsecondI,2,tau,MinMax) );

b:=-c; d:=a;

det:=a*d-b*c;

# take a step

zeroR:=zeroR-1/det*(d*Re(f)-b*Im(f));

zeroI:=zeroI-1/det*(-c*Re(f)+a*Im(f));

zero:=zeroR+I*zeroI;

x:=[op(x),zero];

# update z and f

zfirstR:=1/2*(perR[1,2]*zeroR-perI[1,2]*zeroI+P1);

zfirstI:=1/2*(perR[1,2]*zeroI+perI[1,2]*zeroR+P2);

zsecondR:=1/2*(perR[2,2]*zeroR-perI[2,2]*zeroI+P3);

zsecondI:=1/2*(perR[2,2]*zeroI+perI[2,2]*zeroR+P4);

z:=Vector([zfirstR+I*zfirstI,zsecondR+I*zsecondI]);

f:=evalf(Theta2ch(z,tau,MinMax));

af:=evalf(abs( f ));

count:=count+1;

end do;

# if Newton method failed to find a zero within the given accuracy Eps

if (af>Eps) then

print(’‘in solution: Iteration process stopped after 30 iterations.‘’);

print(’‘Theta2ch( 1/2*omega1inv*(phi,initNewton)^t ) = ‘’,f);

return [x,f];

end if;

# else compute solution

s1:=evalf(sigma1(z,tau,MinMax));

s2:=evalf(sigma2(z,tau,MinMax));

sol:= -evalf((s1*omega1inv[1,1]+s2*omega1inv[2,1])

/(s1*omega1inv[1,2]+s2*omega1inv[2,2]));

[evalf(sol),x[-1],Vector([affineParameter,x[-1]])];

end proc:
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solution_second:=proc(affineParameter,initNewton,Eps,MinMax)

local x,zeroR,zeroI,affR,affI,perR,perI,P1,P2,P3,P4,z,f,absf,zfirstR,

zfirstI,zsecondR,zsecondI,zero,a,b,c,d,det,sol,count,s1,s2;

global periodsInverse, tau;

uses Thetafunctions, LinearAlgebra;

# Initialise

x:=[initNewton];

zeroR:=Re(initNewton);

zeroI:=Im(initNewton);

affR:=Re(affineParameter);

affI:=Im(affineParameter);

perR:=map(Re,periodsInverse);

perI:=map(Im,periodsInverse);

P1:=perR[1,2]*affR-perI[1,2]*affI;

P2:=perR[1,2]*affI+perI[1,2]*affR;

P3:=perR[2,2]*affR-perI[2,2]*affI;

P4:=perR[2,2]*affI+perI[2,2]*affR;

zfirstR:=1/2*(perR[1,1]*zeroR-perI[1,1]*zeroI+P1);

zfirstI:=1/2*(perR[1,1]*zeroI+perI[1,1]*zeroR+P2);

zsecondR:=1/2*(perR[2,1]*zeroR-perI[2,1]*zeroI+P3);

zsecondI:=1/2*(perR[2,1]*zeroI+perI[2,1]*zeroR+P4);

z:=Vector([zfirstR+I*zfirstI,zsecondR+I*zsecondI]);

f:=evalf(Theta2ch(z,tau,MinMax));

absf:=evalf(abs( f ));

count:=0;

# Newton iteration

while (absf > Eps and count < 30) do

# find inverse Jacobi Matrix

# M=Matrix([[a,b],[c,d]]) => M^(-1)=1/(a*d-b*c)*Matrix([[d,-b],[-c,a]])

a:=1/2*( perR[1,1]*Th2chRR(zfirstR,zfirstI,zsecondR,zsecondI,1,tau,MinMax)

- perI[1,1]*Th2chIR(zfirstR,zfirstI,zsecondR,zsecondI,1,tau,MinMax)

+ perR[2,1]*Th2chRR(zfirstR,zfirstI,zsecondR,zsecondI,2,tau,MinMax)

- perI[2,1]*Th2chIR(zfirstR,zfirstI,zsecondR,zsecondI,2,tau,MinMax) );

c:=1/2*( perR[1,1]*Th2chIR(zfirstR,zfirstI,zsecondR,zsecondI,1,tau,MinMax)

+ perI[1,1]*Th2chRR(zfirstR,zfirstI,zsecondR,zsecondI,1,tau,MinMax)

+ perR[2,1]*Th2chIR(zfirstR,zfirstI,zsecondR,zsecondI,2,tau,MinMax)

+ perI[2,1]*Th2chRR(zfirstR,zfirstI,zsecondR,zsecondI,2,tau,MinMax) );

b:=-c; d:=a;

det:=a*d-b*c;

# take a step

zeroR:=zeroR-1/det*(d*Re(f)-b*Im(f));;

zeroI:=zeroI-1/det*(-c*Re(f)+a*Im(f));;

zero:=zeroR+I*zeroI;

x:=[op(x),zero];

# update z and f

zfirstR:=1/2*(perR[1,1]*zeroR-perI[1,1]*zeroI+P1);
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zfirstI:=1/2*(perR[1,1]*zeroI+perI[1,1]*zeroR+P2);

zsecondR:=1/2*(perR[2,1]*zeroR-perI[2,1]*zeroI+P3);

zsecondI:=1/2*(perR[2,1]*zeroI+perI[2,1]*zeroR+P4);

z:=Vector([zfirstR+I*zfirstI,zsecondR+I*zsecondI]);

f:=evalf(Theta2ch(z,tau,MinMax));

absf:=evalf(abs( f ));

count:=count+1;

end do;

# if Newton method failed to find a zero within the given accuracy Eps

if (absf>Eps) then

print(’‘in solution: Iteration process stopped after 30 iterations.‘’);

print(’‘Theta2ch( 1/2*periodsInverse*(zero,affineParameter)^t ) = ‘’,f);

return [x,f];

end if;

# else compute solution

s1:=evalf(sigma1(z,tau,MinMax));

s2:=evalf(sigma2(z,tau,MinMax));

sol:= -evalf((s1*periodsInverse[1,1]+s2*periodsInverse[2,1])

/(s1*periodsInverse[1,2]+s2*periodsInverse[2,2]));

[evalf(sol),x[-1],Vector([x[-1],affineParameter])];

end proc:

B.3 Calculation of periods

The procedures of the module SolveEOM need the period matrix corresponding to
the polynomial appearing in the differential equation which has to be solved. In
principle, three different types of period matrices are needed: the period matrix of
first kind for a Riemann surface of genus one, the period matrix of first kind for a
Riemann surface of genus two, and the period matrix of second kind for a Riemann
surface of genus two. The period matrices of first kind are computed integrating
the vector of holomorphic differentials d~z = (zi−1/

√

P (z))i=1,...,g, where g is the
genus, along the integration paths given by the homology basis of the Riemann
surface, whereas the periods of second kind are computed integrating the vector of
meromorphic differentials along the same paths (see also [63]).

Therefore, the actual computation of a period matrix directly depends on the
integration paths which in turn depend on the branch cuts. The paths around a
branch cut are called a-paths and the paths from one branch cut to another and
way back on the other sheet are called b-paths. A canonical choice is one where
the paths ai are disjoint to each other as are the paths bi, and ai and bj have one
common point if i = j and else are also disjoint. For the case of only real zeros
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Figure B.1: Branch cuts and homology basis of paths for all arrangements of zeros
e1, . . . , e5 of a polynomial of degree 5. The b-paths are completed on the other sheet.

of the polynomial P defining the Riemann surface y2 = P (x) a canonical choice of
branch cuts and paths is shown in Fig. 2.1. In all modules described in this section,
the computation of the period matrix is passed for every arrangement of zeros of P
to one of 8 different procedures called Rea<something> for only real zeros or else
ImaxPerk<something>, where x = 2, 4 is the number of complex zeros and k is a
numbering. The branch cuts and paths we chose for all possible arrangements of
zeros of P for the case of genus two together with the appropriate sign of the square
root on one sheet (the sign is reversed on the other sheet) are shown in figure B.1.
For the case of genus one, there are only three cases ReaPer, Ima2Per3, Ima2Per4
corresponding to simply neglecting e1 and e2 in Figs.B.1(a), (d), and (e). So far, the
periods are calculated by numerical integration. However, it may also be possible to
express them in terms of zeros of the theta function, cf. [91].

Once a choice of branch cuts and paths is done, we can integrate the holomorphic
and meromorphic differentials. For paths which go around real zeros ei, ei+1 of P ,
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this integral can be computed as two times the integral from ei to ei+1 along the real
axis, because the integration back from ei+1 to ei yields just the same value due to
the changed sign of the square root. For paths which go around one or two complex
zeros, the integral can be computed along a path running from the complex zero
to its real part and onward to the other zero. Note that this path is of course not
allowed to cross another branch cut. This means that for example in the case of
Ima2Per2 the period corresponding to the a1-path is computed along a path starting
from e3 running to the real part of e3 onward to e1 and back to the real part of e3

- this does not cancel due to changed signs of the square root - and then finishing
at e2. The resulting period matrix can be checked by the Legendre relation (2.2.5)
and by the properties of the Riemann matrix τ , i.e. symmetry and positive definite
imaginary part. The actual computation of the integrals are carried through by the
module described in the next section.

In the following, the three modules for computing the three different kinds of
period matrix explained above are presented.

B.3.1 Module PeriodsGenusOne

Collection of procedures used for or connected to the computation of a period matrix
of genus one.

Exported procedures

Procedure periods elliptic: Computes the periods of a Riemann surface of genus
one given by y2 = 4(

∏

i(x − <realNS>[i]))(
∏

i(x − <complexNS>[i])).
Input:
realNS: real zeros of the polynomial describing the Riemann surface. As this poly-
nomial is of degree 3, there are 3 or 1 real zeros,
complexNS: complex zeros of the polynomial describing the Riemann surface. As
this polynomial is of degree 3, there are 2 or 0 complex zeros,
digInt: the digits used for the numerical integrations.
Output: the 1x2 period matrix.

periods_elliptic:=proc(realNS,complexNS,digInt)

if nops(complexNS)=0 then ReaPer(sort(realNS),digInt)

else ImaPer(sort(realNS),complexNS,digInt) end if;

end proc:
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Procedure branch list elliptic: Determines from a given list of zeros the branch
chosen in the computation of the period matrix adjacent to any zero.
Input:
e: list of 3 zeros defining a Riemann surface of genus 1,
number realNS: number of real zeros in e, which may be 3 or 1.
Output:
Each element of the returned list consists of three parts. The first is the branch left
of the zero, the second is the zero, and the third is the branch right of the zero. In
the case that the second part is a complex zero the entries depends on the sign of
the imaginary part. If it is negative, the first entry is the branch left of the branch
cut on the real axis and the third the branch on the branch cut. If it is positive,
the first entry is the branch on the branch cut and the third the branch right of the
branch cut on the real axis.

branch_list_elliptic:=proc(e,number_realNS)

if number_realNS=3 then

[[0,e[1],0],[0,e[2],1],[1,e[3],1]];

elif number_realNS=1 then

if Im(e[1])=0 then [["tbd",e[1],1],[0,e[2],0],[0,e[3],1]];

else [[0,e[1],1],[1,e[2],1],[1,e[3],1]];

end if;

else

error "wrong number of real zeros";

end if;

end proc:

Procedure eval period: Computes the period from one real zero of the set of
zeros defining a Riemann surface of genus 1 or 2 to another or to infinity.
Input:

m,n: the period is computed from realNS[m] to realNS[n] (realNS[n]=infinity possi-
ble),
realNS: the real zeros defining the Riemann surface,
e: all zeros defining the Riemann surface,
omega: the period matrix,
(optional) component: the row of the period matrix omega which should be used
for the computation of the period. For genus=1 only component=1 is possible, for
genus=2 component=1,2 is possible. Other values are neglected and component=1
is used instead.
Output: the period.
For the source code see Sec. B.3.2.
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Local procedures

Procedure ReaPer: Computes the periods of a Riemann surface of genus one
given by y2 = 4(

∏

i(x − <realNS>[i]))(
∏

i(x − <complexNS>[i])) in the case that
all zeros are real. In- and outputs as in periods elliptic.

ReaPer:=proc(realNS,digInt)

local R;

uses IntegrateEllipticFirst;

R:=Matrix(1,2);

# A: realNS[1]..realNS[2]: pos. branch

R[1,1]:=int_elliptic_first(realNS,realNS[1],realNS[2],digInt);

# B: realNS[2]..realNS[3]: neg. branch

R[1,2]:=int_elliptic_first(realNS,realNS[2],realNS[3],digInt);

R;

end proc:

Procedure ImaPer: Computes the periods of a Riemann surface of genus one
given by y2 = 4(

∏

i(x − <realNS>[i]))(
∏

i(x − <complexNS>[i])) in the case that
two zeros are complex. Dependent on the arrangement of the complex zeros relative
to the real zero the computation is passed to Ima2Per3 or Ima2Per4. In- and outputs
as in periods elliptic.

ImaPer:=proc(realNS,complexNS,digInt)

if Re(complexNS[1])<realNS[1] then Ima2Per3(realNS,complexNS,digInt);

else Ima2Per4(realNS,complexNS,digInt);

end if;

end proc:

Procedure Ima2Per3: Computes the periods of a Riemann surface of genus one
given by y2 = 4(

∏

i(x−<realNS>[i]))(
∏

i(x−<complexNS>[i])) in the case of two
complex zeros whose real parts are smaller then the real zero. In- and outputs as in
periods elliptic.

Ima2Per3:=proc(realNS,complexNS,digInt)

local R,A,e,rea,ima;

uses IntegrateEllipticFirst;

R:=Matrix(1,2);

rea:=Re(op(1,complexNS));

ima:=abs(Im(op(1,complexNS)));

e:=[rea-I*ima,rea+I*ima,realNS[1]];

# vertical branch cut, pos. branch
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A:=complex_int_elliptic(e,rea,ima,0,digInt);

R[1,1]:=2*Re(A);

# B: rea..e[3], neg. branch

R[1,2]:=myint_elliptic(e,rea,e[3],1,digInt)+A;

R;

end proc:

Procedure Ima2Per4: Computes the periods of a Riemann surface of genus one
given by y2 = 4(

∏

i(x−<realNS>[i]))(
∏

i(x−<complexNS>[i])) in the case of two
complex zeros whose real parts are larger then the real zero. In- and outputs as in
periods elliptic.

Ima2Per4:=proc(realNS, complexNS, digInt)

local R,H,A,e,rea,ima;

uses IntegrateEllipticFirst;

R:=Matrix(1,2);

rea:=Re(op(1,complexNS));

ima:=abs(Im(op(1,complexNS)));

e:=[op(1,realNS),rea-I*ima,rea+I*ima];

# vertical branch cut, pos. branch

A:=complex_int_elliptic(e,rea,ima,0,digInt);

H:=myint_elliptic(e,e[1],rea,0,digInt);

R[1,1]:=2*H+2*Re(A);

R[1,2]:=H+A;

R;

end proc:

B.3.2 Module PeriodsGenusTwo

Collection of procedures for or connected to the calculation of period matrices of first
kind of a Riemann surfaces of genus 2.

Exported procedures

Procedure periods: Computes the periods of first kind for the vector of canonical
holomorphic differentials of genus 2, dz = [1/

√

P (z), z/
√

P (z)].
Input:
realNS, complexNS: the real and complex zeros of the polynomial P , which has a
total of 5 zeros,
digInt: the digits used for the numerical integrations.
Output: the 2x4 period matrix.
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periods:=proc(realNS,complexNS,digInt)

if nops(complexNS)=0 then ReaPer(sort(realNS),digInt);

else ImaPer(sort(realNS),complexNS,digInt); end if;

end proc:

Procedure branch list genus2: Determines from a given list of zeros the branch
adjacent to any zero.
Input :
e: list of 5 zeros defining a Riemann surface of genus 2,
number realNS: number of real zeros in e, which may be 5, 3, or 1.
Output:
Each element of the returned list consists of three parts. The first is the branch left
of the zero, the second is the zero, and the third is the branch right of the zero. In
the case that the second part is a complex zero the entries depends on the sign of
the imaginary part. If it is negative, the first entry is the branch left of the branch
cut on the real axis and the third the branch on the branch cut. If it is positive,
the first entry is the branch on the branch cut and the third the branch right of the
branch cut on the real axis.

branch_list_genus2:=proc(e,number_realNS)

local rea1,rea2,ima1,erg;

if number_realNS=5 then

erg:=[[1,e[1],1],[1,e[2],0],[0,e[3],0],[0,e[4],1],[1,e[5],1]];

elif number_realNS=3 then

if Im(e[1])<>0 then # Ima2Per1

erg:=[[1,e[1],1],[1,e[2],0],[0,e[3],0],[0,e[4],1],[1,e[5],1]];

elif Im(e[2])<>0 then # Ima2Per2

erg:=[["tbd",e[1],0],[1,e[2],"tbd"],["tbd",e[3],0],[0,e[4],1],[1,e[5],1]];

elif Im(e[3])<>0 then # Ima2Per3

rea1:=Re(e[3]);

if evalf((rea1-e[1])*(rea1-e[2])+(rea1-e[2])

*(rea1-e[5])+(rea1-e[5])*(rea1-e[1]))<0 then

erg:=[[1,e[1],1],[1,e[2],0],[0,e[3],1],[1,e[4],1],[1,e[5],1]];

else

erg:=[[1,e[1],1],[1,e[2],0],[0,e[3],0],[0,e[4],1],[1,e[5],1]];

end if;

elif Im(e[4])<>0 then # Ima2Per4

erg:=[[1,e[1],1],[1,e[2],0],["tbd",e[3],1],[1,e[4],"tbd"],["tbd",e[5],1]];

end if;

elif number_realNS=1 then

if Im(e[5])=0 then # Ima4Per1

rea1:=Re(e[1]); rea2:=Re(e[3]);

ima1:=abs(Im(e[1]));

if evalf((rea2-rea1)^2+ima1^2+2*(rea2-rea1)*(rea2-e[5]))<0 then

erg:=[[1,e[1],1],[1,e[2],0],[0,e[3],1],[1,e[4],1],[1,e[5],1]];
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else

erg:=[[1,e[1],1],[1,e[2],0],[0,e[3],0],[0,e[4],1],[1,e[5],1]];

end if;

elif Im(e[1])=0 then #Ima4Per2

erg:=[["tbd",e[1],1],[1,e[2],"tbd"],["tbd",e[3],1],

[1,e[4],"tbd"],["tbd",e[5],1]];

elif Im(e[3])=0 then #Ima4Per3

erg:=[[1,e[1],1],[1,e[2],0],["tbd",e[3],1],[1,e[4],"tbd"],["tbd",e[5],1]];

end if;

else

error "wrong number of real zeros";

end if;

erg;

end proc:

Procedure eval period: Computes the period from one real zero of the set of
zeros defining a Riemann surace of genus 1 or 2 to another or to infinity.
Input:
m,n: the period is computed from realNS[m] to realNS[n] (realNS[n]=infinity possi-
ble),
realNS: the real zeros in e,
e: the 5 zeros defining the Riemann surface,
omega: the period matrix,
(optional) component: the row of the period matrix omega which should be used
for the computation of the period. For genus=1 only component=1 is possible, for
genus=2 component=1,2 is possible. Other values are neglected and component=1
is used instead.
Output: the period.

eval_period:=proc(m,n,realNS,e,omega,component:=1)

local lange,E,k,l,Sign,K,L,periodlist,result,i;

if m=n then return 0 end if;

# --- sort e by periodloops

lange:=nops(e);

if lange=5 then

if nops(realNS)=3 then

if (Im(e[2])<>0 and Im(e[3])<>0) then E:=[e[2],e[3],e[1],e[4],e[5]];

elif (Im(e[4])<>0 and Im(e[5])<>0) then E:=[e[1],e[2],e[4],e[5],e[3]];

else E:=e; end if;

elif nops(realNS)=1 then

if Im(e[1])=0 then E:=[e[2],e[3],e[4],e[5],e[1]];

elif Im(e[3])=0 then E:=[e[1],e[2],e[4],e[5],e[3]];

else E:=e; end if;

else E:=e;

end if;
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elif lange=3 then

if Im(e[3])<>0 then E:=[e[3],e[2],e[1]];

else E:=e;

end if:

else

error "illegal length of list of zeros %1",e

end if;

# --- sort by m<n

if m>n then k:=n: l:=m: Sign:=-1: else k:=m: l:=n: Sign:=1: end if;

if k=-infinity then k:=l; l:=infinity; Sign:=-Sign; end if;

# --- location of m,n in E

K:=UtilityRoutines[inlist](realNS[k],E);

if l<=nops(realNS) then

L:=UtilityRoutines[inlist](realNS[l],E) else L:=lange+1

end if:

if lange=5 then

if not (component=1 or component=2) then

WARNING("in eval_period: illegal component %1 changed to 1",component);

component:=1;

end if:

periodlist:=[omega[component,1],omega[component,3]-omega[component,4],

omega[component,2],omega[component,4],-omega[component,1]-omega[component,2]];

else

if not (component=1) then

WARNING("in eval_period: illegal component %1 changed to 1",component);

end if:

periodlist:=[omega[1,1],omega[1,2],-omega[1,1]];

end if;

# --- compute period

result:=0;

for i from K to L-1 do

result:=result+periodlist[i];

end do:

result:=Sign*result;

end proc:

Procedure set period globals genus2: Sets the global variables <periodsIn-
verse> and <tau>. The local variables <periods first> and <periods second> are
2x2 matrices such that <periodMatrix>=[<periods first>,<periods second>]. The
variable <periodsInverse> is the inverse Matrix of <periods first>, and <tau> is
the Riemann matrix <periodsInverse>*<periods second>.
Input: periodMatrix.

set_period_globals_genus2:=proc(periodMatrix)

local periods_first,periods_second,M;
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global periodsInverse,tau;

uses LinearAlgebra;

periods_first:=Matrix([[periodMatrix[1,1],periodMatrix[1,2]],

[periodMatrix[2,1],periodMatrix[2,2]]]):

periods_second:=Matrix([[periodMatrix[1,3],periodMatrix[1,4]],

[periodMatrix[2,3],periodMatrix[2,4]]]):

periodsInverse:=MatrixInverse(periods_first):

tau:=periodsInverse.periods_second;

tau[1,2]:=1/2*(tau[1,2]+tau[2,1]);

tau[2,1]:=tau[1,2];

M:=Eigenvalues(map(Im,tau)):

if not (Im(M[1])=0 and Im(M[2])=0 and Re(M[1])>0 and Re(M[2])>0) then

error"imaginary part of Riemann matrix is not positive definite" end if;

end proc:

Local procedures

Procedure ReaPer: Computes the periods of first kind for the vector of canonical
holomorphic differentials of genus 2, dz = [1/

√

P (z), z/
√

P (z)] for the case that all
zeros of P are real. In- and outputs as in periods.

ReaPer:=proc(realNS,digInt)

local R,H;

uses IntegrateHyperelliptic;

R:=Matrix(2,4);

# path A1: realNS[1]..realNS[2], negative branch

H:=myint_genus2(realNS,realNS[1],realNS[2],1,digInt);

R[1,1]:=H[1];

R[2,1]:=H[2];

# path A2: realNS[3]..realNS[4], positive branch

H:=myint_genus2(realNS,realNS[3],realNS[4],0,digInt);

R[1,2]:=H[1];

R[2,2]:=H[2];

# path B2: realNS[4]..realNS[5], negative branch

H:=myint_genus2(realNS,realNS[4],realNS[5],1,digInt);

R[1,4]:=H[1];

R[2,4]:=H[2];

# path B1=B2+B3, path B3: realNS[2]..realNS[3], positive branch

H:=myint_genus2(realNS,realNS[2],realNS[3],0,digInt);

R[1,3]:=H[1]+R[1,4];

R[2,3]:=H[2]+R[2,4];

R;

end proc:
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Procedure ImaPer: Computes the periods of first kind for the vector of canonical
holomorphic differentials of genus 2, dz = [1/

√

P (z), z/
√

P (z)] for the case that P
has complex zeros. If P has 2 complex zeros Ima2Per is called, if P has 4 complex
zeros Ima4Per, and else an error is returned. In- and outputs as in periods.

ImaPer:=proc(realNS,complexNS,digInt)

if nops(complexNS)=2 then Ima2Per(realNS,complexNS,digInt);

elif nops(complexNS)=4 then Ima4Per(realNS,complexNS,digInt);

else error "number of complex roots is not 0, 2 or 4";

end if;

end proc:

Procedure Ima2Per: Computes the periods of first kind for the vector of canoni-
cal holomorphic differentials of genus 2, dz = [1/

√

P (z), z/
√

P (z)] for the case that
P has 2 complex zeros. There are 4 subcases related to different arrangements of 2
the complex zeros: Ima2Perj, where j=1,..,4. In- and outputs as in periods.

Ima2Per:=proc(realNS, complexNS, digInt)

local k;

k:=UtilityRoutines[inlist](Re(complexNS[1]),sort([op(realNS),Re(complexNS[1])]));

if k=1 then Ima2Per1(realNS,complexNS,digInt);

elif k=2 then Ima2Per2(realNS,complexNS,digInt);

elif k=3 then Ima2Per3(realNS,complexNS,digInt);

elif k=4 then Ima2Per4(realNS,complexNS,digInt);

end if;

end proc:

Procedure Ima4Per: Computes the periods of first kind for the vector of canoni-
cal holomorphic differentials of genus 2, dz = [1/

√

P (z), z/
√

P (z)] for the case that
P has 4 complex zeros. There are 3 subcases related to different arrangements of 4
the complex zeros: Ima4Perk, where k=1,..,3. In- and outputs as in periods.

Ima4Per:=proc(realNS,complexNS,digInt)

local rea,g,i,R,ima1,ima2;

uses UtilityRoutines;

rea:=sort(map(Re,complexNS));

ima1:=abs(Im( complexNS[inlist(rea[1],map(Re,complexNS))] ));

ima2:=abs(Im( complexNS[inlist(rea[3],map(Re,complexNS))] ));

g:=realNS[1];

if op(4,rea)<g then Ima4Per1(realNS,op(1,rea),ima1,op(3,rea),ima2,digInt);

elif op(4,rea)>g and op(2,rea)<g then

Ima4Per3(realNS,op(1,rea),ima1,op(3,rea),ima2,digInt);
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elif op(4,rea)>g and op(2,rea)>g then

Ima4Per2(realNS,op(1,rea),ima1,op(3,rea),ima2,digInt);

end if;

end proc:

Procedures Ima2Perj, j=1,..,4: Computes the periods of first kind for the vector
of canonical holomorphic differentials of genus 2, dz = [1/

√

P (z), z/
√

P (z)] for the
case that P has 2 complex zeros. For the definition of the subcases see Fig. B.1. For
all j it is necessary to compute integrals along branch cuts perpendicular to the real
axis. For the calculation it has to be taken into account that the real part of the
integrals computed along such branch cuts is symmetrical with respect to the real
axis but that the imaginary part is antisymmetric. Therefore, the whole integral will
be real. In- and outputs as in periods.

Ima2Per1:=proc(realNS, complexNS, digInt)

local R,H,A,e,rea,ima;

uses IntegrateHyperelliptic;

R:=Matrix(2,4);

rea:=Re(op(1,complexNS));

ima:=abs(Im(op(1,complexNS)));

e:=sort([op(realNS),op(complexNS)],UtilityRoutines[sortfkt]);

#=[rea-I*ima,rea+I*ima,op(realNS)];

# A2: e3..e4, pos. branch

H:=myint_genus2(e,e[3],e[4],0,digInt);

R[1,2]:=H[1];

R[2,2]:=H[2];

# B_2: e4..e5, neg. branch

H:=myint_genus2(e,e[4],e[5],1,digInt);

R[1,4]:=H[1];

R[2,4]:=H[2];

# A1: e2..e1, neg. branch

A:=int_genus2_complex(e,rea,ima,1,-1,digInt);

R[1,1]:=2*Re(A[1]);

R[2,1]:=2*Re(A[2]);

# B_1=B_2+B_3: B_3: e2..e3, pos. branch

H:=myint_genus2(e,rea,e[3],0,digInt);

R[1,3]:=R[1,4]+H[1]+A[1];

R[2,3]:=R[2,4]+H[2]+A[2];

R;

end proc:

Ima2Per2:=proc(realNS, complexNS, digInt)

local R,H,A,V,e,rea,ima;

uses IntegrateHyperelliptic;
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R:=Matrix(2,4);

rea:=Re(op(1,complexNS));

ima:=abs(Im(op(1,complexNS)));

e:=sort([op(realNS),op(complexNS)],UtilityRoutines[sortfkt]);

#=[op(1,realNS),rea-I*ima,rea+I*ima,op(2..3,realNS)];

# B2: e4..e5, neg. branch

H:=myint_genus2(e,e[4],e[5],1,digInt);

R[1,4]:=H[1];

R[2,4]:=H[2];

# A2: (e1..rea)^+ + (rea..e4)^+

V:=myint_genus2(e,e[1],rea,0,digInt);

H:=myint_genus2(e,rea,e[4],0,digInt);

R[1,2]:=V[1]+H[1];

R[2,2]:=V[2]+H[2];

# Berechnung von int_genus2_complex: neg. zweig

A:=int_genus2_complex(e,rea,ima,2,-1,digInt);

# A1: (ima..0)^+ + (rea..e1)^+ + (e1..rea)^- + (0..-ima)^+

R[1,1]:=2*Re(A[1])-2*V[1];

R[2,1]:=2*Re(A[2])-2*V[2];

# B1=B2+B3, B3: (ima..0)^+ + (rea..e1)^+

R[1,3]:=R[1,4]-V[1]+A[1];

R[2,3]:=R[2,4]-V[2]+A[2];

R;

end proc:

Ima2Per3:=proc(realNS, complexNS, digInt)

local R,H,A,e,rea,ima;

uses IntegrateHyperelliptic;

R:=Matrix(2,4);

rea:=Re(op(1,complexNS));

ima:=abs(Im(op(1,complexNS)));

e:=sort([op(realNS),op(complexNS)],UtilityRoutines[sortfkt]);

#=[op(1..2,realNS),rea-I*ima,rea+I*ima,op(3,realNS)];

# For the calculation of the pathes A2 and B2

# an integration rea..rea+I*ima is needed.

# The branch for this calculation depends

if evalf((rea-e[1])*(rea-e[2])

+(rea-e[2])*(rea-e[5])+(rea-e[5])*(rea-e[1])) < 0 then

A:=int_genus2_complex(e,rea,ima,3,-1,digInt);

else

A:=int_genus2_complex(e,rea,ima,3,0,digInt);

end if;

R[1,2]:=2*Re(A[1]);

R[2,2]:=2*Re(A[2]);

# A1: e1..e2, neg. branch

H:=myint_genus2(e,e[1],e[2],1,digInt);
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R[1,1]:=H[1];

R[2,1]:=H[2];

# B2: rea..e5, neg. branch

H:=myint_genus2(e,rea,e[5],1,digInt);

# Integration rea..rea+I*ima on "back side"

R[1,4]:=H[1]+A[1];

R[2,4]:=H[2]+A[2];

# B1=B3+B2, B3: e2..rea, pos. branch

# B3 = integration e[2]..rea + integration rea..rea-I*ima

# integration rea..rea-I*ima = - Re(A) + I*Im(A),

# as Re(int(rea..rea+I*ima))=Re(int(rea..rea-I*ima)),

# Im(int(rea..rea+I*ima))=-Im(int(rea..rea-I*ima))

# and the branch on rea-I*t is not the same as on rea+I*t

H:=myint_genus2(e,e[2],rea,0,digInt);

R[1,3]:=R[1,4]+H[1]-Re(A[1])+I*Im(A[1]);

R[2,3]:=R[2,4]+H[2]-Re(A[2])+I*Im(A[2]);

R;

end proc:

Ima2Per4:=proc(realNS,complexNS,digInt)

local R,H,A,V,e,rea,ima;

uses IntegrateHyperelliptic;

R:=Matrix(2,4);

rea:=Re(op(1,complexNS));

ima:=abs(Im(op(1,complexNS)));

e:=sort([op(realNS),op(complexNS)],UtilityRoutines[sortfkt]);

#=[op(realNS),rea-I*ima,rea+I*ima];

# A1: e1..e2, neg branch

H:=myint_genus2(e,e[1],e[2],1,digInt);

R[1,1]:=H[1];

R[2,1]:=H[2];

# int_genus2_complex: pos. branch

A:=int_genus2_complex(e,rea,ima,4,0,digInt);

# A2 (=e4..e5 on neg. side):

# (ima..0)^- + (rea..e3)^- + (e3..rea)^+ + (0..-ima)^-

V:=myint_genus2(e,e[3],rea,0,digInt);

R[1,2]:=2*V[1]+2*Re(A[1]);

R[2,2]:=2*V[2]+2*Re(A[2]);

# B2: (ima..0)^- + (rea..e3)^-

R[1,4]:=V[1]+A[1];

R[2,4]:=V[2]+A[2];

# B1=B2+B3: [(ima..0)^- + (rea..e3)^-]

# + [(e2..e3)^+ + (e3..rea)^+ + (0..-ima)^+]

H:=myint_genus2(e,e[2],e[3],0,digInt);

R[1,3]:=H[1]+A[1]-Re(A[1])+I*Im(A[1]);

R[2,3]:=H[2]+A[2]-Re(A[2])+I*Im(A[2]);
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R;

end proc:

Procedures Ima4Perk, k=1,..,3: Computes the periods of first kind for the
vector of canonical holomorphic differentials of genus 2, dz = [1/

√

P (z), z/
√

P (z)]
for the case that P has 4 complex zeros z1, z2, z3, z4, where Re(z1) = Re(z2), Re(z3) =
Re(z4) and Re(z1) < Re(z3). For the definition of the subcases see Fig. B.1. For all k
it is necessary to compute integrals along branch cuts perpendicular to the real axis.
For the calculation it has to be taken into account that the real part of the integrals
computed along such branch cuts is symmetrical with respect to the real axis but
that the imaginary part is antisymmetric. Therefore, the whole integral will be real.
In- and outputs as in periods.

Ima4Per1:=proc(realNS,rea1,ima1,rea2,ima2,digInt)

local R,T,P,H1,H2,A,V,e;

uses IntegrateHyperelliptic;

R:=Matrix(2,4);

e:=[rea1-I*ima1,rea1+I*ima1,rea2-I*ima2,rea2+I*ima2,op(1,realNS)];

T:=mul(x-e[i],i=1..5);

P:=add( Re(coeff(T,x,i))*x^i, i=0..5);

# A1: e2..e1 bzw. -ima1..ima1, neg. branch

H1:=int_genus2_complex(e,rea1,ima1,1,1,digInt);

R[1,1]:=2*Re(H1[1]);

R[2,1]:=2*Re(H1[2]);

# A2: e4..e3 or -ima2..ima2, branch depends

if evalf((rea2-rea1)^2+ima1^2+2*(rea2-rea1)*(rea2-e[5]))<0 then

H2:=int_genus2_complex(e,rea2,ima2,3,1,digInt);

else

H2:=int_genus2_complex(e,rea2,ima2,3,0,digInt);

end if;

R[1,2]:=2*Re(H2[1]);

R[2,2]:=2*Re(H2[2]);

# B2: e3..rea2 (pos.branch) + rea2..e5 (neg. branch)

A:=myint_genus2(e,rea2,e[5],1,digInt);

R[1,4]:=A[1]+H2[1];

R[2,4]:=A[2]+H2[2];

# B1=B2+B3, B3: e1..rea1 (pos. branch) + rea1..rea2 (pos. branch)

# + rea2..e4 (neg. branch)

R[1,3]:=R[1,4]+H1[1]

-I*evalf(Int(1/sqrt(-P),x=rea1..rea2,digits=digInt))-Re(H2[1])+I*Im(H2[1]);

R[2,3]:=R[2,4]+H1[2]

-I*evalf(Int(x/sqrt(-P),x=rea1..rea2,digits=digInt))-Re(H2[2])+I*Im(H2[2]);

R;

end proc:
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Ima4Per2:=proc(realNS,rea1,ima1,rea2,ima2,digInt)

local R,e,T,P,A1,A2,W,U,Z,methods,dig,i;

uses IntegrateHyperelliptic;

R:=Matrix(2,4);

e:=[op(1,realNS),rea1-I*ima1,rea1+I*ima1,rea2-I*ima2,rea2+I*ima2];

T:=mul(x-e[i],i=1..5);

P:=add( Re(coeff(T,x,i))*x^i, i=0..5);

# path rea1..rae1+I*ima1, negative branch

A1:=int_genus2_complex(e,rea1,ima1,2,1,digInt);

# path rea2..rea2+I*ima2, positive branch

A2:=int_genus2_complex(e,rea2,ima2,4,0,digInt);

# path A1: e2..rea1 + rea1..e1, positive branch

# + e1..rea1, negative branch + rea1..e3

W:=myint_genus2(e,e[1],rea1,0,digInt);

R[1,1]:=2*Re(A1[1])-2*W[1];

R[2,1]:=2*Re(A1[2])-2*W[2];

# path A2: e4..rea2 + rea2..e1, negative branch

# + e1..rea2, positive branch + rea2..e5

U:=myint_genus2(e,e[1],rea2,0,digInt);

R[1,2]:=2*Re(A2[1])+2*U[1];

R[2,2]:=2*Re(A2[2])+2*U[2];

# path B2:

R[1,4]:=A2[1]+U[1];

R[2,4]:=A2[2]+U[2];

# path B1=B2+B3, path B3:

R[1,3]:=R[1,4]+A1[1]-W[1]-U[1]-Re(A2[1])+I*Im(A2[1]);

R[2,3]:=R[2,4]+A1[2]-W[2]-U[2]-Re(A2[2])+I*Im(A2[2]);

R;

end proc:

Ima4Per3:=proc(realNS,rea1,ima1,rea2,ima2,digInt)

local T,R,H1,H2,H,e,P,V,A1,A2;

uses IntegrateHyperelliptic;

R:=Matrix(2,4);

e:=[rea1-I*ima1,rea1+I*ima1,op(1,realNS),rea2-I*ima2,rea2+I*ima2];

# vertical branch cut e1..e2 , neg. branch:

H1:=int_genus2_complex(e,rea1,ima1,1,1,digInt);

R[1,1]:=2*Re(H1[1]);

R[2,1]:=2*Re(H1[2]);

# vertical branch e4..e5, pos. branch

H2:=int_genus2_complex(e,rea2,ima2,4,0,digInt);

# A2: e3..rea2, pos + rea2..e4

V:=myint_genus2(e,e[3],rea2,0,digInt);

R[1,2]:=2*V[1]+2*Re(H2[1]);

R[2,2]:=2*V[2]+2*Re(H2[2]);

# B2: e4..e3
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R[1,4]:=V[1]+H2[1];

R[2,4]:=V[2]+H2[2];

# B1=B2+B3, B3: e1..rea1 + rea1..e3

H:=myint_genus2(e,rea1,e[3],0,digInt);

R[1,3]:=R[1,4]+H1[1]+H[1]+V[1]+H2[1]-R[2,1];

R[2,3]:=R[2,4]+H1[2]+H[2]+V[2]+H2[2]-R[2,2];

R;

end proc:

B.3.3 Module PeriodsSecondGenusTwo

Collection of procedures used to compute the periods of second kind of a Riemann
surface of genus 2.

Exported procedures

Procedure periods genus2 second: Computes the periods of second kind for
the vector of canonical meromorphic differentials of genus 2, dr = [dr1, dr2]. If all
zeros of P are real, the procedure Rea second is called, else Ima second.
Input:

dr1,dr2: the two differentials to be integrated in the form
∑

i drj[i]x(i−1)/
√

P (x) for
j=1,2,
realNS, complexNS: the real and complex zeros of the polynomial P, which has a
total of 5 zeros,
digInt: the digits used for the numerical integrations.
Output: the 2x4 period matrix of second kind.

periods_genus2_second:=proc(dr1,dr2,realNS,complexNS,digInt)

if not nops(realNS)+nops(complexNS)=5 then

error "invalid use: nops(%1)+nops(%2) has to be five", realNS,complexNS

end if;

if nops(complexNS)=0 then -Rea_second(dr1,dr2,sort(realNS),digInt);

else -Ima_second(dr1,dr2,sort(realNS),complexNS,digInt); end if;

end proc:

Local procedures

Procedure Rea second: Computes the periods of second kind for the vector of
canonical meromorphic differentials of genus 2, dr = [dr1, dr2], for the case that all
zeros of P are real. In- and outputs as in periods genus2 second.
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Rea_second:=proc(dr1,dr2,realNS,digInt)

local eta;

uses IntegrateHyperelliptic;

eta:=Matrix(2,4);

# path A1: realNS[1]..realNS[2], negative branch

eta[1,1]:=myint_genus2_second(realNS,dr1,realNS[1],realNS[2],1,digInt);

eta[2,1]:=myint_genus2_second(realNS,dr2,realNS[1],realNS[2],1,digInt);

# path A2: realNS[3]..realNS[4], positive branch

eta[1,2]:=myint_genus2_second(realNS,dr1,realNS[3],realNS[4],0,digInt);

eta[2,2]:=myint_genus2_second(realNS,dr2,realNS[3],realNS[4],0,digInt);

# path B2: realNS[4]..realNS[5], negative branch

eta[1,4]:=myint_genus2_second(realNS,dr1,realNS[4],realNS[5],1,digInt);

eta[2,4]:=myint_genus2_second(realNS,dr2,realNS[4],realNS[5],1,digInt);

# path B1=B2+B3, path B3: realNS[2]..realNS[3], positive branch

eta[1,3]:=myint_genus2_second(realNS,dr1,realNS[2],realNS[3],0,digInt)

+eta[1,4];

eta[2,3]:=myint_genus2_second(realNS,dr2,realNS[2],realNS[3],0,digInt)

+eta[2,4];

eta;

end proc:

Procedure Ima second: Computes the periods of second kind for the vector of
canonical meromorphic differentials of genus 2, dr = [dr1, dr2], for the case that
P has complex zeros. If P has 2 complex zeros Ima2 second is called, if P has 4
complex zeros Ima4 second, and else an error is returned. In- and outputs as in
periods genus2 second.

Ima_second:=proc(dr1,dr2,realNS,complexNS,digInt)

if nops(complexNS)=2 then Ima2_second(dr1,dr2,realNS,complexNS,digInt);

elif nops(complexNS)=4 then Ima4_second(dr1,dr2,realNS,complexNS,digInt);

else error "number of complex roots is not 0, 2 or 4";

end if;

end proc:

Procedure Ima2 second: Computes the periods of second kind for the vector
of canonical meromorphic differentials of genus 2, dr = [dr1, dr2], for the case that
P has 2 complex zeros. There are 4 subcases related to different arrangements
of 2 the complex zeros: Ima2Perj second, where j=1,..,4. In- and outputs as in
periods genus2 second.

Ima2_second:=proc(dr1,dr2,realNS,complexNS,digInt)

local k;

k:=UtilityRoutines[inlist](Re(complexNS[1]),sort([op(realNS),Re(complexNS[1])]));
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if k=1 then Ima2Per1_second(dr1,dr2,realNS,complexNS,digInt);

elif k=2 then Ima2Per2_second(dr1,dr2,realNS,complexNS,digInt);

elif k=3 then Ima2Per3_second(dr1,dr2,realNS,complexNS,digInt);

elif k=4 then Ima2Per4_second(dr1,dr2,realNS,complexNS,digInt);

end if;

end proc:

Procedure Ima4 second: Computes the periods of first kind for the vector of
canonical holomorphic differentials of genus 2, dr = [dr1, dr2], for the case that
P has 4 complex zeros. There are 3 subcases related to different arrangements
of 4 the complex zeros: Ima4Perk second, where k=1,..,3. In- and outputs as in
periods genus2 second.

Ima4_second:=proc(dr1,dr2,realNS,complexNS,digInt)

local rea,g,i,ima1,ima2;

uses UtilityRoutines;

rea:=sort(map(Re,complexNS));

ima1:=abs(Im( complexNS[inlist(rea[1],map(Re,complexNS))] ));

ima2:=abs(Im( complexNS[inlist(rea[3],map(Re,complexNS))] ));

g:=realNS[1];

if rea[4]<g then

Ima4Per1_second(dr1,dr2,realNS,rea[1],ima1,rea[3],ima2,digInt);

elif rea[4]>g and rea[2]<g then

Ima4Per3_second(dr1,dr2,realNS,rea[1],ima1,op(3,rea),ima2,digInt);

elif rea[2]>g then

Ima4Per2_second(dr1,dr2,realNS,rea[1],ima1,rea[3],ima2,digInt);

end if;

end proc:

Procedures Ima2Perj second, j=1,..,4: Computes the periods of second kind
for the vector of canonical meromorphic differentials of genus 2, dr = [dr1, dr2], for
the case that P has 2 complex zeros z1,z2. For the definition of the subcases see
Fig. B.1. For all j it is necessary to compute integrals along branch cuts perpendicular
to the real axis. For the calculation it has to be taken into account that the real
part of the integrals computed along such branch cuts is symmetrical with respect
to the real axis but that the imaginary part is antisymmetric. Therefore, the whole
integral will be real. In- and outputs as in periods genus2 second.

Ima2Per1_second:=proc(dr1,dr2,realNS,complexNS,digInt)

local eta,rea,ima,e,H1,H2,V1,V2;

uses IntegrateHyperelliptic;

eta:=Matrix(2,4);

rea:=Re(complexNS[1]);
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ima:=abs(Im(complexNS[1]));

e:=[rea-I*ima,rea+I*ima,op(realNS)];

# path A2: e3..e4, pos. branch

eta[1,2]:=myint_genus2_second(e,dr1,e[3],e[4],0,digInt);

eta[2,2]:=myint_genus2_second(e,dr2,e[3],e[4],0,digInt);

# path B2: e4..e5, neg.

eta[1,4]:=myint_genus2_second(e,dr1,e[3],e[4],1,digInt);

eta[2,4]:=myint_genus2_second(e,dr2,e[3],e[4],1,digInt);

# vertical branch cut: e1..e2, neg. branch

H1:=int_genus2_complex_second(e,dr1,rea,ima,1,1,digInt);

H2:=int_genus2_complex_second(e,dr2,rea,ima,1,1,digInt);

# path A1:

eta[1,1]:=2*Re(H1);

eta[2,1]:=2*Re(H2);

# path B1=B2+B3, path B3: e1..rea + rea..e3, pos. branch

eta[1,3]:=eta[1,4]+H1+myint_genus2_second(e,dr1,rea,e[3],0,digInt);

eta[2,3]:=eta[2,4]+H2+myint_genus2_second(e,dr2,rea,e[3],0,digInt);

eta;

end proc:

Ima2Per2_second:=proc(dr1,dr2,realNS,complexNS,digInt)

local eta,rea,ima,e,A1,A2,H1,H2;

uses IntegrateHyperelliptic;

eta:=Matrix(2,4);

rea:=Re(complexNS[1]);

ima:=abs(Im(complexNS[1]));

e:=[realNS[1],rea-I*ima,rea+I*ima,realNS[2],realNS[3]];

# vertical branch cut: neg. branch

A1:=int_genus2_complex_second(e,dr1,rea,ima,2,1,digInt);

A2:=int_genus2_complex_second(e,dr2,rea,ima,2,1,digInt);

# path A2: (e1..rea) + (rea..e4), pos. branch

H1:=myint_genus2_second(e,dr1,e[1],rea,0,digInt);

H2:=myint_genus2_second(e,dr2,e[1],rea,0,digInt);

eta[1,2]:=H1+myint_genus2_second(e,dr1,rea,e[4],0,digInt);

eta[2,2]:=H2+myint_genus2_second(e,dr2,rea,e[4],0,digInt);

# path A1: e3..e2

eta[1,1]:=-2*H1+2*Re(A1);

eta[2,1]:=-2*H2+2*Re(A2);

# path B2: e4..e5, neg.

eta[1,4]:=myint_genus2_second(e,dr1,e[4],e[5],1,digInt);

eta[2,4]:=myint_genus2_second(e,dr2,e[4],e[5],1,digInt);

# path B1=B2+B3, path B3: e1..rea, pos. branch + (-ima..0)

eta[1,3]:=eta[1,4]-H1+A1;

eta[2,3]:=eta[2,4]-H2+A2;

eta;

end proc:
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Ima2Per3_second:=proc(dr1,dr2,realNS,complexNS,digInt)

local eta,H1,H2,e,rea,ima;

uses IntegrateHyperelliptic;

eta:=Matrix(2,4);

rea:=Re(op(1,complexNS));

ima:=abs(Im(op(1,complexNS)));

e:=[realNS[1],realNS[2],rea-I*ima,rea+I*ima,realNS[3]];

# path A1: e1..e2, neg. branch

eta[1,1]:=myint_genus2_second(e,dr1,e[1],e[2],1,digInt);

eta[2,1]:=myint_genus2_second(e,dr2,e[1],e[2],1,digInt);

# vertica branch cut: branch depends on the following value

if evalf((rea-e[1])*(rea-e[2])+(rea-e[2])

*(rea-e[5])+(rea-e[5])*(rea-e[1])) < 0 then

H1:=int_genus2_complex_second(e,dr1,rea,ima,3,1,digInt);

H2:=int_genus2_complex_second(e,dr2,rea,ima,3,1,digInt);

else

H1:=int_genus2_complex_second(e,dr1,rea,ima,3,0,digInt);

H2:=int_genus2_complex_second(e,dr2,rea,ima,3,0,digInt);

end if;

# path A2: e4..e3

eta[1,2]:=2*Re(H1);

eta[2,2]:=2*Re(H2);

# path B2: e3..rea + rea..e5

eta[1,4]:=H1+myint_genus2_second(e,dr1,rea,e[5],1,digInt);

eta[2,4]:=H2+myint_genus2_second(e,dr2,rea,e[5],1,digInt);

# path B1=B2+B3, path B3: e2..rea + rea..e4

eta[1,3]:=eta[1,4]+myint_genus2_second(e,dr1,e[2],rea,0,digInt)

-Re(H1)+I*Im(H1);

eta[2,3]:=eta[2,4]+myint_genus2_second(e,dr2,e[2],rea,0,digInt)

-Re(H2)+I*Im(H2);

eta;

end proc:

Ima2Per4_second:=proc(dr1,dr2,realNS,complexNS,digInt)

local eta,H1,H2,V1,V2,e,rea,ima;

uses IntegrateHyperelliptic;

eta:=Matrix(2,4);

rea:=Re(op(1,complexNS));

ima:=abs(Im(op(1,complexNS)));

e:=[op(realNS),rea-I*ima,rea+I*ima];

# path A1: e1..e2, neg. branch

eta[1,1]:=myint_genus2_second(e,dr1,e[1],e[2],1,digInt);

eta[2,1]:=myint_genus2_second(e,dr2,e[1],e[2],1,digInt);

# Berechnung von IntAdd:

H1:=int_genus2_complex_second(e,dr1,rea,ima,4,0,digInt);

H2:=int_genus2_complex_second(e,dr2,rea,ima,4,0,digInt);
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# path A2: (ima..0) + (rea..e3)^- + (e3..rea)^+ + (0..-ima)

V1:=myint_genus2_second(e,dr1,e[3],rea,0,digInt);

V2:=myint_genus2_second(e,dr2,e[3],rea,0,digInt);

eta[1,2]:=2*V1+2*Re(H1);

eta[2,2]:=2*V2+2*Re(H2);

# path B2: (rea..e3)^+ + (-ima..0)

eta[1,4]:=V1+H1;

eta[2,4]:=V2+H2;

# path B1=B2+B3: [(e3..rea)^- + Re(0..ima) - I*Im(0..ima)]

+ [(e2..e3)^+ + (e3..rea)^+ - (0..ima)]

eta[1,3]:=2*I*Im(H1)+myint_genus2_second(e,dr1,e[2],e[3],0,digInt);

eta[2,3]:=2*I*Im(H2)+myint_genus2_second(e,dr2,e[2],e[3],0,digInt);

eta;

end proc:

Procedures Ima4Perk second, k=1,..,3: Computes the periods of second kind
for the vector of canonical meromorphic differentials of genus 2, dr = [dr1, dr2], for the
case that P has 4 complex zeros z1,z2,z3,z4, where Re(z1)=Re(z2), Re(z3)=Re(z4)
and Re(z1)<Re(z3). For the definition of the subcases see Fig. B.1. For all k it is
necessary to compute integrals along branch cuts perpendicular to the real axis. For
the calculation it has to be taken into account that the real part of the integrals
computed along such branch cuts is symmetrical with respect to the real axis but
that the imaginary part is antisymmetric. Therefore, the whole integral will be real.
In- and outputs as in periods genus2 second.

Ima4Per1_second:=proc(dr1,dr2,realNS,rea1,ima1,rea2,ima2,digInt)

local eta,R,P,e,H1,H2,X1,X2;

uses IntegrateHyperelliptic;

eta:=Matrix(2,4);

H1:=Vector(2);

H2:=Vector(2);

e:=[rea1-I*ima1,rea1+I*ima1,rea2-I*ima2,rea2+I*ima2,realNS[1]];

R:=mul(x-e[i],i=1..5);

P:=add( Re(coeff(R,x,i))*x^i, i=0..5);

# first vertical branch cut

H1[1]:=int_genus2_complex_second(e,dr1,rea1,ima1,1,1,digInt);

H1[2]:=int_genus2_complex_second(e,dr2,rea1,ima1,1,1,digInt);

# path A1: e2..e1;

eta[1,1]:=2*Re(H1[1]);

eta[2,1]:=2*Re(H1[2]);

# second vertical branch cut, branch depends on the following value

if evalf((rea2-rea1)^2+ima1^2+2*(rea2-rea1)*(rea2-e[5]))<0 then

H2[1]:=int_genus2_complex_second(e,dr1,rea2,ima2,3,1,digInt);

H2[2]:=int_genus2_complex_second(e,dr2,rea2,ima2,3,1,digInt);

else
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H2[1]:=int_genus2_complex_second(e,dr1,rea2,ima2,3,1,digInt);

H2[2]:=int_genus2_complex_second(e,dr2,rea2,ima2,3,1,digInt);

end if;

# path A2: e4..e3

eta[1,2]:=2*Re(H2[1]);

eta[2,2]:=2*Re(H2[2]);

# path B2: e3..rea2 + rea2..e5 (neg. branch)

eta[1,4]:=myint_genus2_second(e,dr1,rea2,e[5],1,digInt)+H2[1];

eta[2,4]:=myint_genus2_second(e,dr2,rea2,e[5],1,digInt)+H2[2];

# path B1=B2+B3, path B3: e1..rea1+rea1..rea2(pos. branch)+rea2..e4

X1:=x->add( dr1[i]*x^(i-1) ,i=1..nops(dr1) );

X2:=x->add( dr2[i]*x^(i-1) ,i=1..nops(dr2) );

eta[1,3]:=eta[1,4]+H1[1]

-I*evalf(Int(X1(x)/sqrt(-P),x=rea1..rea2,digits=digInt))

-Re(H2[1])+I*Im(H2[1]);

eta[2,3]:=eta[2,4]+H1[2]

-I*evalf(Int(X2(x)/sqrt(-P),x=rea1..rea2,digits=digInt))

-Re(H2[2])+I*Im(H2[2]);

eta;

end proc:

Ima4Per2_second:=proc(dr1,dr2,realNS,rea1,ima1,rea2,ima2,digInt)

local eta,e,P,R,H1,H2,X1,X2,W1,W2,V1,V2;

uses IntegrateHyperelliptic;

eta:=Matrix(2,4);

H1:=Vector(2);

H2:=Vector(2);

e:=[realNS[1],rea1-I*ima1,rea1+I*ima1,rea2-I*ima2,rea2+I*ima2];

R:=mul(x-e[i],i=1..5);

P:=add( Re(coeff(R,x,i))*x^i, i=0..5);

# first vertical branch cut

H1[1]:=int_genus2_complex_second(e,dr1,rea1,ima1,2,1,digInt);

H1[2]:=int_genus2_complex_second(e,dr2,rea1,ima1,2,1,digInt);

# second vertical branch cut

H2[1]:=int_genus2_complex_second(e,dr1,rea2,ima2,4,0,digInt);

H2[2]:=int_genus2_complex_second(e,dr2,rea2,ima2,4,0,digInt);

W1:=myint_genus2_second(e,dr1,e[1],rea1,0,digInt);

W2:=myint_genus2_second(e,dr2,e[1],rea1,0,digInt);

# A1= e3..e2

eta[1,1]:=2*Re(H1[1])-2*W1;

eta[2,1]:=2*Re(H1[2])-2*W2;

# A2: e4..e5

V1:=myint_genus2_second(e,dr1,e[1],rea2,0,digInt);

V2:=myint_genus2_second(e,dr2,e[1],rea2,0,digInt);

eta[1,2]:=2*Re(H2[1])+2*V1;

eta[2,2]:=2*Re(H2[2])+2*V2;
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# B2: e2..rea1 + rea1..rea2 (pos.branch) + rea2..e5

eta[1,4]:=H2[1]+V1;

eta[2,4]:=H2[2]+V2;

# B1=B2+B3; B3: e1..rea1 (neg. branch) + rea1..e3

eta[1,3]:=eta[1,4]+H1[1]-W1-V1-Re(H2[1])+I*Im(H2[1]);

eta[2,3]:=eta[2,4]+H1[2]-W2-V2-Re(H2[2])+I*Im(H2[2]);

eta;

end proc:

Ima4Per3_second:=proc(dr1,dr2,realNS,rea1,ima1,rea2,ima2,digInt)

local eta,e,H1,H2,V1,V2;

uses IntegrateHyperelliptic;

eta:=Matrix(2,4);

H1:=Vector(2);

H2:=Vector(2);

e:=[rea1-I*ima1,rea1+I*ima1,realNS[1],rea2-I*ima2,rea2+I*ima2];

# first vertical branch cut

H1[1]:=int_genus2_complex_second(e,dr1,rea1,ima1,1,1,digInt);

H1[2]:=int_genus2_complex_second(e,dr2,rea1,ima1,1,1,digInt);

# second vertical branch cut

H2[1]:=int_genus2_complex_second(e,dr1,rea2,ima2,4,0,digInt);

H2[2]:=int_genus2_complex_second(e,dr2,rea2,ima2,4,0,digInt);

# A1: e2..e1, neg

eta[1,1]:=2*Re(H1[1]);

eta[2,1]:=2*Re(H1[2]);

# A2: e3..rea2 + rea2..ima2

V1:=myint_genus2_second(e,dr1,e[3],rea2,0,digInt);

V2:=myint_genus2_second(e,dr2,e[3],rea2,0,digInt);

eta[1,2]:=2*V1+2*Re(H2[1]);

eta[2,2]:=2*V2+2*Re(H2[2]);

# B2: e4..e5

eta[1,4]:=-V1+H2[1];

eta[2,4]:=-V2+H2[2];

# B1=B2+B3, B3: e1..rea1 + rea1..e3

eta[1,3]:=eta[1,4]+myint_genus2_second(e,dr1,rea1,e[3],0,digInt)

+H1[1]-Re(H2[1])+I*Im(H2[1]);

eta[2,3]:=eta[2,4]+myint_genus2_second(e,dr2,rea1,e[3],0,digInt)

+H1[2]-Re(H2[2])+I*Im(H2[2]);

eta;

end proc:
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B.4 Integration routines

The two modules presented in this section deal with the numerical calculation of
integrals of the type

∫ x2

x1

dx
q

Ql
j=1(x−ej)

, where l = 3 (module IntegrateEllipticFirst)

or l = 5 (module IntegrateHyperelliptic). If one of the real zeros, say ei, of P =
∏l

j=1(x− ej) is equal to x1 or x2 this singularity can be eliminated by an integration
by parts

∫ p

ei

dx
√

∏5
j=1(x − ej)

=

(

2
√

x − ei
√

Q(x)

)p

ei

−
∫ p

ei

√
x − ei

√

Q(x)
3Q′(x)dx (B.4.1)

where Q(x) =
∏

j 6=i(x−ej) and p is some point on the integration path. If one or more
zeros of P are located on the real integration path, this case can always be reduced
to a single singularity at x1 or x2 by splitting the integration path appropriately.
In a similar way the case of x2 being a complex zero of P and x1 = Re(x2) can be
handled. Here the integration by parts is done by parameterization of the integration
path by t = x1 + It, t ∈ [0, Im(x2)], and

P (x1 + It) = (Im(x2) − t)(t + Im(x2))Q(t) (B.4.2)

using the fact that Re(x2) − IIm(x2) is also a zero of P .

B.4.1 Module IntegrateEllipticFirst

Collection of procedures for numerically integrating elliptic integrals
∫ x2

x1

dx√
4

Q3
j=1(x−ej)

.

Exported procedures

Procedure int elliptic first: Numerically integrates an elliptic integral
∫ <ub>

<lb>
dx√

4
Q3

j=1(x−<zeros>[j])
, where <lb> and <ub> are real and no real zero <ze-

ros>[i] is located between them. The following cases are treated:

1. <lb> and <ub> are adjacent real zeros. In this case two calls of myint elliptic
are used to compute the result.
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2. Exactly one of <lb> and <ub> is a real zero. A call of myint elliptic is used to
compute the result.

3. None of <lb> and <ub> is a real zero. If <ub>= ∞ it is assumed that the
period matrix of the Riemann surface y2 = 4

∏3
i=1(x − <zeros>[i]) is known.

Input:

zeros: the zeros of 4
∏3

i=1(x − ei),
lowerbound, upperbound: the lower and upper integration bounds,
(optional) digInt: the digits used for the numerical integration; the default is the
global variable Digits.
Output: the result of the integration.

int_elliptic_first:=proc(zeros,lowerbound,upperbound,digInt:=Digits)

local e,realNS,complexNS,lb,ub,Sign,tags,branch_list,P;

global periodMatrix;

uses UtilityRoutines, PeriodsGenusOne;

e:=sort(zeros,sortfkt);

realNS,complexNS:=separate_zeros(e);

if not (Im(lowerbound)=0 and Im(upperbound)=0) then

error "invalid use; only real integration bounds are allowed"; end if;

if lowerbound=upperbound then return 0;

elif lowerbound>upperbound then Sign:=-1; lb:=upperbound; ub:=lowerbound;

else Sign:=1; lb:=lowerbound; ub:=upperbound;

end if;

# ------------------ case 1: lb and ub are adjacent real zeros

if inlist(lb,realNS)+1=inlist(ub,realNS) then

if inlist(lb,e)+1=inlist(ub,e) then tags:=(lb+ub)/2;

else tags:=Re(e[inlist(lb,e)+1]);

end if;

branch_list:=branch_list_elliptic(e,nops(realNS));

Sign*(myint_elliptic(e,lb,tags,branch_list[inlist(lb,e)][3],digInt)

+myint_elliptic(e,tags,ub,branch_list[inlist(ub,e)][1],digInt));

# ------------------ case 2: only one of lb and ub is a real zero

elif inlist(lb,realNS)>0 or inlist(ub,realNS)>0 then

# - case 2a: ub is a real zero

if inlist(lb,realNS)=-1 then

# no real zeros between lb and ub

if inlist(lb,sort([op(realNS),lb]))=inlist(ub,realNS) then

Sign*(myint_elliptic(e,lb,ub,branch_list_elliptic(e,nops(realNS))

[inlist(ub,e)][1],digInt));

else error "invalid bounds";

end if;

# - case 2b: lb is a real zero

elif inlist(ub,realNS)=-1 then
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# no real zeros between lb and ub

if inlist(ub,sort([op(realNS),ub]))=inlist(lb,realNS)+1 then

Sign*(myint_elliptic(e,lb,ub,branch_list_elliptic(e,nops(realNS))

[inlist(lb,e)][3],digInt));

else error "invalid bounds";

end if;

else error "invalid bounds";

end if;

# ---------------- case 3: none of lb or ub is a real zero

else

if inlist(lb,sort([op(realNS),lb]))=inlist(ub,sort([op(realNS),ub])) then

if ub=infinity then

Sign*(myint_elliptic(e,lb,realNS[-1],

branch_list_elliptic(e,nops(realNS))[inlist(realNS[-1],e)][3],digInt)

+Vector([eval_period(nops(realNS),infinity,realNS,e,periodMatrix,1),

eval_period(nops(realNS),infinity,realNS,e,periodMatrix,2)]));

else

P:=collect(mul(x-e[i],i=1..3),x);

Sign:=Sign*exp(Pi*I*(branch_list_elliptic(e,nops(realNS))

[inlist(lb,sort([op(e),lb]))][3]));

[Sign*evalf(Int(1/sqrt(P),x=lb..ub)),Sign*evalf(Int(x/sqrt(P),x=lb..ub))];

end if;

else error "invalid bounds";

end if;

end if:

end proc:

Procedure myint elliptic: Numerically integrates an elliptic integral
∫ <ub>

<lb>
dx√

4
Q3

j=1(x−<e>[j])
where either <lb> or <ub> is identical to an <e>[i].

Input:

e: the zeros of 4
∏3

i=1(x − ei),
lb, ub: the lower and upper integration bounds,

branch: the branch of
√

4
∏3

i=1(x − ei) given as an integer: 0 mod 2 means the

principal branch, 1 mod 2 the other,
digInt: the digits used for the numerical integration.
Output: the result of the integration.

myint_elliptic:=proc(e,lb,ub,branch,digInt)

local l,k,u,g,eval_branch,Q,Qstr,v,vstr,partInt,h,zeit,methods,dig,i;

k:=UtilityRoutines[inlist](lb,e);

l:=UtilityRoutines[inlist](ub,e);

if k=-1 and l>0 then

# integration from lb to e[l]
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# g is real and positive for real x

g:=collect(mul(x-e[i],i=1..l-1)*mul(e[i]-x,i=l+1..3),x);

u:=x->-2*sqrt(e[l]-x);

if type(l,odd) then

eval_branch:=exp(-Pi*I*(branch+1/2))

else eval_branch:=exp(-Pi*I*branch) end if;

elif l=-1 and k>0 then

# integration from e[k] to ub

# g is real and positive for real x

g:=collect(mul(x-e[i],i=1..k-1)*mul(e[i]-x,i=k+1..3),x);

u:=unapply(2*sqrt(x-e[k]),x);

if type(k+1,odd) then

eval_branch:=exp(-Pi*I*(branch+1/2))

else eval_branch:=exp(-Pi*I*branch) end if;

else error "invalid use";

end if;

# g=(x-rea)^2+ima^2=x^2-2*x*rea+rea^2+ima^2

Q:=add( Re(coeff(g,x,i))*x^i, i=0..degree(g,x));

Qstr:=add( i*Re(coeff(g,x,i))*x^(i-1), i=1..degree(g,x));

v:=unapply(1/sqrt(Q),x);

vstr:=unapply(-1/2*Qstr/sqrt(Q)^3,x);

partInt:=evalf( u(ub)*v(ub)-u(lb)*v(lb) );

methods:=[_DEFAULT,_CCquad,_Dexp,_Gquad,_Sinc];

zeit:=[seq(4*digInt,i=1..5)];

dig:=digInt;

i:=1;

h:=-1*timeint(lb,ub,vstr(x)*u(x),op(i,zeit),op(i,methods),dig);

while (type(h,complexcons)=false and dig>digInt-5) do

while (type(h,complexcons)=false and i<5) do

i:=i+1;

#print("Warning: (in myint_elliptic) method changed to ",op(i,methods));

h:=-1*timeint(lb,ub,vstr(x)*u(x),op(i,zeit),op(i,methods),dig);

end do;

dig:=dig-1;

i:=0;

end do;

if type(h,complexcons)=false then error "integration failed"; end if;

if dig<digInt-1 then

WARNING("in myint_elliptic: digits for integration reduced to %1",dig+1);

end if;

dig:=digInt;

1/2*eval_branch*evalf(partInt+h);

end proc:
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Procedure complex int elliptic: Numerically integrates an elliptic integral
∫ <realpart+I*imapart>

<realpart>
dx√

4
Q3

j=1(x−<e>[j])
, where <realpart+I*imapart> is a complex zero

of 4
∏3

j=1(x − <e>[j]). The evaluation of the square root is explicitly controlled by
using the arctan function.
Input:

e: the zeros of 4
∏3

i=1(x − ei),
realpart, impart: define the integration bounds,

branch: the branch of
√

4
∏3

i=1(x − ei) given as an integer: 0 mod 2 means the

principal branch, 1 mod 2 the other,
digInt: the digits used for the numerical integration.
Output:the result of the integration.

complex_int_elliptic:=proc(e,realpart,imapart,branch,digInt)

local n,k,partInt,aRe,aIm,bRe,bIm;

n:=UtilityRoutines[inlist](realpart-I*imapart,e);

if n=1 then k:=3 else k:=1; end if;

# Maple always chooses the principal branch for computing the square root,i.e.:

# 1/sqrt(Q(t)) = exp(-1/2*ln(Q(t))) with ln(x) = ln(abs(x))+I*arg(x),

# where -Pi<arg(x)<=Pi. Explicit control of the branch can be achieved by using

# 1/sqrt(Q(t)) = exp(-1/2*ln(Q(t))-Pi*I*k), where k is an integer,

# k=0 -> principal branch, k=1 -> other branch

partInt:=2/sqrt(realpart-e[k]); # =2/sqrt(Q(0))

aRe:=-1*evalf(Int(sqrt(imapart-t)/sqrt(t+imapart)^3

*((realpart-e[k])^2+t^2)^(-1/4)

*cos(-1/2*arctan(t,realpart-e[k])) ,t=0..imapart,digits=digInt));

aIm:=-I*evalf(Int(sqrt(imapart-t)/sqrt(t+imapart)^3

*((realpart-e[k])^2+t^2)^(-1/4)

*sin(-1/2*arctan(t,realpart-e[k])) ,t=0..imapart,digits=digInt));

# I=dQ/dt

bRe:=-1*I*evalf(Int(sqrt(imapart-t)/sqrt(t+imapart)

*((realpart-e[k])^2+t^2)^(-3/4)

*cos(-3/2*arctan(t,realpart-e[k])) ,t=0..imapart,digits=digInt));

bIm:=evalf(Int(sqrt(imapart-t)/sqrt(t+imapart)

*((realpart-e[k])^2+t^2)^(-3/4)

*sin(-3/2*arctan(t,realpart-e[k])) ,t=0..imapart,digits=digInt));

# 1/2 because of standard form P(x) = 4x^3+..

1/2*I*exp(-Pi*I*branch)*evalf(partInt+aRe+aIm+bRe+bIm);

end proc:
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Local procedures

Procedure timeint: Integrates a function <fct> of x from <lowerbound> to
<upperbound> using the integration method <meth>, the number of digits <dig>.
If the integration is not successful within <time> in seconds, FAIL is returned. This
procedure is used to switch to different integration methods or digits for integration
in the procedure myint elliptic.

timeint:=proc(lowerbound,upperbound,fct,zeit,meth,dig)

# Assumption: fct is a function in x!

try

timelimit(zeit,evalf(Int(fct,x=lowerbound..upperbound,method=meth,digits=dig)));

catch "time expired": return FAIL;

end try:

end proc:

B.4.2 Module IntegrateHyperellitptic

Collection of procedures for integrations of the type
∫ x2

x1

dx√
Q5

j=1(x−ej)
.

Exported procedures

Procedure int genus2 first: Integrates the vector of canonical holomorphic dif-
ferentials dz = [1/

√

P (z), z/
√

P (z)] from <lowerbound> to <upperbound>. Here
the same three cases as in int elliptic first from the module IntegrateEllipticFirst are
treated.
Input:
zeros: list of the 5 zeros of the polynomial P ,
lowerbound, upperbound: define the integration bounds,
(optional) digInt: digits used for the integration.
Output: values of the two integrals as a vector.

int_genus2_first:=proc(zeros,lowerbound,upperbound,digInt:=Digits)

local e,realNS,complexNS,lb,ub,Sign,tags,branch_list,P;

uses UtilityRoutines,PeriodsGenusTwo;

if not nops(zeros)=5 then

error "invalid use; number of zeros has to be 5" end if;

e:=sort(zeros,sortfkt);

realNS,complexNS:=separate_zeros(e);

if not (Im(lowerbound)=0 and Im(upperbound)=0) then

error "invalid use; only real integration bounds are feasible" end if;
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if lowerbound=upperbound then return 0;

elif lowerbound>upperbound then Sign:=-1; lb:=upperbound; ub:=lowerbound;

else Sign:=1; lb:=lowerbound; ub:=upperbound;

end if;

# ------------------ case 1: lb and ub are adjacent real zeros

if inlist(lb,realNS)+1=inlist(ub,realNS) then

if inlist(lb,e)+1=inlist(ub,e) then tags:=(lb+ub)/2;

else tags:=Re(e[inlist(lb,e)+1]);

end if;

branch_list:=branch_list_genus2(e,nops(realNS));

Sign*(myint_genus2(e,lb,tags,branch_list[inlist(lb,e)][3],digInt)

+myint_genus2(e,tags,ub,branch_list[inlist(ub,e)][1],digInt));

# ------------------ case 2: only one of lb and ub is a real zero

elif inlist(lb,realNS)>0 or inlist(ub,realNS)>0 then

# - case 2a: ub is a real zero

if inlist(lb,realNS)=-1 then

# no real zeros between lb and ub

if inlist(lb,sort([op(realNS),lb]))=inlist(ub,realNS) then

Sign*myint_genus2(e,lb,ub,branch_list_genus2(e,nops(realNS))

[inlist(ub,e)][1],digInt);

else error "invalid bounds";

end if;

# - case 2b: lb is a real zero

elif inlist(ub,realNS)=-1 then

# no real zeros between lb and ub

if inlist(ub,sort([op(realNS),ub]))=inlist(lb,realNS)+1 then

Sign*myint_genus2(e,lb,ub,branch_list_genus2(e,nops(realNS))

[inlist(lb,e)][3],digInt);

else error "invalid bounds";

end if;

else error "invalid bounds";

end if;

# ---------------- case 3: none of lb or ub is a real zero

else

if inlist(lb,sort([op(realNS),lb]))=inlist(ub,sort([op(realNS),ub])) then

if ub=infinity then

Sign*(myint_genus2(e,lb,realNS[-1],branch_list_genus2(e,nops(realNS))

[inlist(realNS[-1],e)][3],digInt)

+Vector([eval_period(nops(realNS),infinity,realNS,e,periodMatrix,1),

eval_period(nops(realNS),infinity,realNS,e,periodMatrix,2)]));

else

P:=collect(mul(x-e[i],i=1..5),x);

Sign:=Sign*exp(Pi*I*(branch_list_genus2(e,nops(realNS))

[inlist(lb,sort([op(e),lb]))][3]));

[Sign*evalf(Int(1/sqrt(P),x=lb..ub)),Sign*evalf(Int(x/sqrt(P),x=lb..ub))];

end if;
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else error "invalid bounds";

end if;

end if:

end proc:

Procedure myint genus2: Integrates the vector of canonical holomorphic differ-
entials dz = [1/

√

P (z), z/
√

P (z)] from <lowerbound> to <upperbound>, where at
least one of these has to be a real zero of the polynomial P .
Input:
e: list of the 5 zeros of P sorted by the procedure sortfkt in module UtilityRoutines,
lowerbound, upperbound: define the integration bounds,
branch: branch of the square root of P ,
digInt: digits used for the integration.
Output: values of the two integrals as a vector.

myint_genus2:=proc(e,lowerbound,upperbound,branch,digInt)

Vector([int_genus2_real_exp(e,lowerbound,upperbound,0,branch,digInt),

int_genus2_real_exp(e,lowerbound,upperbound,1,branch,digInt)]);

end proc:

Procedure int genus2 complex: Integrates the vector of canonical holomorphic
differentials dz = [1/

√

P (z), z/
√

P (z)] from the real part <realpart> of a complex
zero of the polynomial P to the complex zero <realpart>+I*<imapart> of P .
Input:
e: list of the 5 zeros of P sorted by the procedure sortfkt in module UtilityRoutines,
realpart, imapart: define the integration bounds; here imapart is assumed to be
positive,
position: position of realpart-I*imapart in e,
branch: branch of the square root of P ,
digInt: digits used for the integration.
Output: value of the integral as a vector.

int_genus2_complex:=proc(e,realpart,imapart,position,branch,digInt)

local A,B;

A:=int_genus2_complex_exp(e,realpart,imapart,position,0,branch,digInt);

B:=int_genus2_complex_exp(e,realpart,imapart,position,1,branch,digInt);

Vector([A,realpart*A+I*B]);

end proc:

Procedure myint genus2 second: Integrates a differential of first or second
kind dr =

∑

j <differential>[j]rj−1/
√

P (r) from <lowerbound> to <upperbound>,

233



B. Maple program

where at least one of these has to be a real zero of the polynomial P .
Input:
e: list of the 5 zeros of P sorted by the procedure sortfkt in module UtilityRoutines,
differential: the coefficients of the meromorphic differential,
lowerbound, upperbound: define the integration bounds,
branch: branch of the square root of P ,
digInt: digits used for the integration.
Output: value of the integral.

myint_genus2_second:=proc(e,differential,lowerbound,upperbound,branch,digInt)

local result,j;

result:=0:

for j from 1 to nops(differential) do

result:=result+differential[j]

*int_genus2_real_exp(e,lowerbound,upperbound,j-1,branch,digInt);

end do:

end proc:

Procedure int genus2 complex second: Integrates a differential of first or sec-
ond kind dr =

∑

j <differential>[j]rj−1/
√

P (r) from the real part <realpart> of a

complex zero of the polynomial P to the complex zero <realpart>+I*<imapart> of
P .
Input:
e: list of the 5 zeros of P sorted by the procedure sortfkt in module UtilityRoutines,
differential: the coefficients of the meromorphic differential,
realpart, imapart: define the integration bounds; here imapart is assumed to be pos-
itive,
position: position of realpart-I*imapart in e,
branch: branch of the square root of P ,
digInt: digits used for the integration.
Output: value of the integral.

int_genus2_complex_second:=proc(e,differential,realpart,imapart,position,

branch,digInt)

local results,j,k;

results:=[]:

for j from 1 to nops(differential) do

results:=[op(results),int_genus2_complex_exp(e,realpart,imapart,

position,j-1,branch,digInt)];

end do:

add(differential[j]*add(binomial(j-1,k)*realpart^k*I^(j-1-k)*results[j-k],

k=0..(j-1)),j=1..nops(differential));

end proc:
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Local procedures:

Procedure int genus2 real exp: Integrates the differential of first or second kind
zjdz/

√

P (z) from <lowerbound> to <upperbound>, where at least one of these has
to be a real zero of the polynomial P .
Input:
e: list of the 5 zeros of P sorted by the procedure sortfkt in module UtilityRoutines,
lowerbound, upperbound: define the integration bounds,
exponent: the exponent j in zj/

√

P (z),
branch: branch of the square root of P ,
digInt: digits used for the integration.
Output: value of the integral.

int_genus2_real_exp:=proc(e,lowerbound,upperbound,exponent,branch,digInt)

local lb,ub,Sign,l,k,realNS,complexNS,tag,eval_branch,g,u,v,vprime,

Q,Qprime,dig,methods,zeit,partInt,h,i;

uses UtilityRoutines;

if lowerbound=upperbound then return 0;

elif lowerbound>upperbound then lb:=upperbound; ub:=lowerbound; Sign:=-1;

else lb:=lowerbound; ub:=upperbound; Sign:=1;

end if;

k:=inlist(lb,e); l:=inlist(ub,e);

if (k>0 and l>0) then

realNS,complexNS:=separate_zeros(e);

if inlist(lb,realNS)+1=inlist(ub,realNS) then

if inlist(lb,e)+1=inlist(ub,e) then

tag:=(lb+ub)/2 else tag:=Re(e[inlist(lb,e)+1]) end if;

return Sign*(int_genus2_real_exp(e,lb,tag,exponent,branch,digInt)

+int_genus2_real_exp(e,tag,ub,exponent,branch,digInt));

else error "invalid use";

end if;

end if;

if k=-1 and l>0 then

# integration from lb to e[l]

# g is real and positive for real x in (e[l-1],e[l]]

g:=collect(mul(x-e[i],i=1..l-1)*mul(e[i]-x,i=l+1..5),x);

u:=x->-2*sqrt(ub-x);

if type(l,odd) then

eval_branch:=exp(-Pi*I*(branch+1/2))

else eval_branch:=exp(-Pi*I*branch) end if;

elif l=-1 and k>0 then

# integration from e[k] to ub

# g is real and positive for real x in [e[k],e[k+1])

g:=collect(mul(x-e[i],i=1..k-1)*mul(e[i]-x,i=k+1..5),x);

u:=x->2*sqrt(x-lb);
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if type(k+1,odd) then eval_branch:=exp(-Pi*I*(branch+1/2))

else eval_branch:=exp(-Pi*I*branch) end if;

else error "invalid use";

end if;

Q:=add( Re(coeff(g,x,i))*x^i, i=0..degree(g,x));

Qprime:=add( i*Re(coeff(g,x,i))*x^(i-1), i=1..degree(g,x));

v:=unapply(x^(exponent)/sqrt(Q),x);

vprime:=unapply(-x^(exponent)/(2*sqrt(Q)^3)*Qprime

+exponent*x^(exponent-1)/sqrt(Q),x);

partInt:=evalf( u(ub)*v(ub)-u(lb)*v(lb) );

methods:=[_DEFAULT,_CCquad,_Dexp,_Gquad,_Sinc];

zeit:=[seq(2*digInt,i=1..5)];

dig:=digInt;

i:=1;

h:=-1*timeint(lb,ub,vprime(x)*u(x),op(i,zeit),op(i,methods),dig);

while (type(h,complexcons)=false and dig>digInt-5) do

while (type(h,complexcons)=false and i<5) do

i:=i+1;

h:=-1*timeint(lb,ub,vprime(x)*u(x),op(i,zeit),op(i,methods),dig);

end do;

dig:=dig-1;

i:=0;

end do;

if type(h,complexcons)=false then error "integration failed" end if;

if dig<digInt-1 then

WARNING("in int_genus2_real_exp: digits for integration reduced to %1",dig+1)

end if;

Sign*eval_branch*(partInt+h);

end proc:

Procedure int genus2 complex exp: Integrates a differential of the form
Itjdt/

√

P (<realpart> + It) from t = 0 to t = <imapart>. This is needed to inte-
grate canonical differentials of first and second kind, see procedures
int genus2 complex first and int genus2 complex second.
Input:
e: list of the 5 zeros of P sorted by the procedure sortfkt in module UtilityRoutines,
realpart, imapart: define the integration bounds; here imapart is assumed to be pos-
itive,
position: position of realpart-I*imapart in e,
exponent: the exponent j in Itj/

√

P (<realpart> + It),
branch: branch of the square root of P ,
digInt: digits used for the integration.
Output: value of the integral.

int_genus2_complex_exp:=proc(e,realpart,imapart,position,exponent,branch,digInt)
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local T,g,coeffsg,RQ,IQ,RQprime,IQprime,zeit,methods,partInt,dig,

a,a1,a2,b,b1,b2,c,c1,c2,i;

uses UtilityRoutines;

T:={1,2,3,4,5} minus {position,position+1};

g:=collect(mul((x-e[k]),k=T),x);

# g has real coefficients: remove +0*I

coeffsg:=[seq(Re(coeff(g,x,i)),i=0..3)];

# separate real and imaginary parts of g und derivative of g

IQ:=t->-coeffsg[4]*t^3+t*(3*coeffsg[4]*realpart^2+2*coeffsg[3]*realpart

+coeffsg[2]);

RQ:=t->-t^2*(3*coeffsg[4]*realpart+coeffsg[3])+coeffsg[4]*realpart^3

+coeffsg[3]*realpart^2+coeffsg[2]*realpart+coeffsg[1];

IQprime:=t->-3*coeffsg[4]*t^2+(3*coeffsg[4]*realpart^2

+2*coeffsg[3]*realpart+coeffsg[2]);

RQprime:=t->-2*t*(3*coeffsg[4]*realpart+coeffsg[3]);

# Maple always chooses the principal branch for computing the square root,i.e.:

# 1/sqrt(Q(t)) = exp(-1/2*ln(Q(t))) with ln(x) = ln(abs(x))+I*arg(x),

# where -Pi<arg(x)<=Pi. Explicit control of the branch can be achieved by using

# 1/sqrt(Q(t)) = exp(-1/2*ln(Q(t))-Pi*I*k), where k is an integer,

# k=0 -> principal branch, k=1 -> other branch

methods:=[_DEFAULT,_CCquad,_Dexp,_Gquad,_Sinc];

zeit:=[seq(1*digInt,i=1..5)];

if exponent=0 then

# For the computation of partInt you need to be careful for negative RQ(0):

# the arctan function is discontinuous if IO(t) is negative for small t:

# it jumps from Pi for t=0 to -Pi+eps for t>0.

# Therefore, arctan(IQ(0),RQ(0)) has to be set to -Pi if IQ(t)<0 for small t.

# (This is not a problem for the integration as the discontinuity is a null set.)

if RQ(0)>0 then

partInt:=evalf(2/sqrt(RQ(0))); # IQ(0)=0

else

if IQ(imapart/100)<0 then

partInt:=evalf(2/sqrt(-RQ(0))*I);

else

partInt:=evalf(2/sqrt(-RQ(0))*(-I));

end if;

end if;

else partInt:=0;

end if;

# first real part

dig:=digInt;
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i:=1;

a1:=-1*timeint(0,imapart,x^(exponent)*sqrt(imapart-x)/sqrt(x+imapart)^3

*((RQ(x))^2+(IQ(x))^2)^(-1/4)

*cos(-1/2*arctan(IQ(x),RQ(x))),zeit[i],methods[i],dig);

while ( type(a1,complexcons) = false and dig>digInt-5) do

while (type(a1,complexcons)=false and i<5) do

i:=i+1;

a1:=-1*timeint(0,imapart,x^(exponent)*sqrt(imapart-x)/sqrt(x+imapart)^3

*((RQ(x))^2+(IQ(x))^2)^(-1/4)

*cos(-1/2*arctan(IQ(x),RQ(x))),zeit[i],methods[i],dig);

end do;

i:=0;

dig:=dig-1;

end do;

if type(a1,complexcons)=false then error "first integration failed"; end if;

if dig<digInt-1 then

WARNING("in int_genus2_complex_exp: digits for 1. integration reduced to %1",

dig+1);

end if;

# first imaginary part

dig:=digInt;

i:=1;

a2:=-I*timeint(0,imapart,x^(exponent)*sqrt(imapart-x)/sqrt(x+imapart)^3

*((RQ(x))^2+(IQ(x))^2)^(-1/4)

*sin(-1/2*arctan(IQ(x),RQ(x))),zeit[i],methods[i],dig);

while ( type(a2,complexcons) = false and dig>digInt-5) do

while (type(a2,complexcons)=false and i<5) do

i:=i+1;

a2:=-I*timeint(0,imapart,x^(exponent)*sqrt(imapart-x)/sqrt(x+imapart)^3

*((RQ(x))^2+(IQ(x))^2)^(-1/4)

*sin(-1/2*arctan(IQ(x),RQ(x))),zeit[i],methods[i],dig);

end do;

i:=0;

dig:=dig-1;

end do;

if type(a2,complexcons)=false then error "second integration failed"; end if;

if dig<digInt-1 then

WARNING("in int_genus2_complex_exp: digits for 2. integration reduced to %1",

dig+1);

end if;

a:=a1+a2;

# second real part

dig:=digInt;
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i:=1;

b1:=-1*timeint(0,imapart,x^(exponent)*sqrt(imapart-x)/sqrt(x+imapart)

*((RQ(x))^2+(IQ(x))^2)^(-3/4)

*(cos(-3/2*arctan(IQ(x),RQ(x)))*RQprime(x)

-sin(-3/2*arctan(IQ(x),RQ(x)))*IQprime(x)),zeit[i],methods[i],dig);

while ( type(b1,complexcons) = false and dig>digInt-5 ) do

while (type(b1,complexcons)=false and i<5) do

i:=i+1;

b1:=-1*timeint(0,imapart,x^(exponent)*sqrt(imapart-x)/sqrt(x+imapart)

*((RQ(x))^2+(IQ(x))^2)^(-3/4)

*(cos(-3/2*arctan(IQ(x),RQ(x)))*RQprime(x)

-sin(-3/2*arctan(IQ(x),RQ(x)))*IQprime(x) ),zeit[i],methods[i],dig);

end do;

dig:=dig-1;

i:=0;

end do;

if type(b1,complexcons)=false then error "third integration failed"; end if;

if dig<digInt-1 then

WARNING("in int_genus2_complex_exp: digits for 3. integration reduced to %1",

dig+1);

end if;

# second imaginary part

dig:=digInt;

i:=1;

b2:=-I*timeint(0,imapart,x^(exponent)*sqrt(imapart-x)/sqrt(x+imapart)

*((RQ(x))^2+(IQ(x))^2)^(-3/4)

*(sin(-3/2*arctan(IQ(x),RQ(x)))*RQprime(x)

+cos(-3/2*arctan(IQ(x),RQ(x)))*IQprime(x) ),zeit[i],methods[i],dig);

while ( type(b2,complexcons) = false and dig>digInt-5 ) do

while (type(b2,complexcons)=false and i<5) do

i:=i+1;

b2:=-I*timeint(0,imapart,x^(exponent)*sqrt(imapart-x)/sqrt(x+imapart)

*((RQ(x))^2+(IQ(x))^2)^(-3/4)

*(sin(-3/2*arctan(IQ(x),RQ(x)))*RQprime(x)

+cos(-3/2*arctan(IQ(x),RQ(x)))*IQprime(x) ),zeit[i],methods[i],dig);

end do;

dig:=dig-1;

i:=0;

end do;

if type(b2,complexcons)=false then error "fourth integration failed"; end if;

if dig<digInt-1 then

WARNING("in int_genus2_complex_exp: digits for 4. integration reduced to %1",

dig+1);

end if;
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b:=b1+b2;

if exponent=0 then c:=0:

else

# third real part

dig:=digInt;

i:=1;

c1:=2*exponent

*timeint(0,imapart,x^(exponent-1)*sqrt(imapart-x)/sqrt(x+imapart)

*((RQ(x))^2+(IQ(x))^2)^(-1/4)

*cos(-1/2*arctan(IQ(x),RQ(x))),zeit[i],methods[i],dig);

while (type(c1,complexcons)=false and dig>digInt-5) do

while (type(c1,complexcons)=false and i<5) do

i:=i+1;

c1:=2*exponent

*timeint(0,imapart,x^(exponent-1)*sqrt(imapart-x)/sqrt(x+imapart)

*((RQ(x))^2+(IQ(x))^2)^(-1/4)

*cos(-1/2*arctan(IQ(x),RQ(x))),zeit[i],methods[i],dig);

end do;

dig:=dig-1;

i:=0;

end do;

if type(c1,complexcons)=false then "5th integration failed"; end if;

if dig<digInt-1 then

WARNING("in int_genus2_complex_exp:

digits for 5. integration reduced to %1", dig+1);

end if;

# third imaginary part

dig:=digInt;

i:=1;

c2:=2*exponent*I

*timeint(0,imapart,x^(exponent-1)*sqrt(imapart-x)/sqrt(x+imapart)

*((RQ(x))^2+(IQ(x))^2)^(-1/4)

*sin(-1/2*arctan(IQ(x),RQ(x))),zeit[i],methods[i],dig);

while (type(c2,complexcons)=false and dig>digInt-5) do

while (type(c2,complexcons)=false and i<5) do

i:=i+1;

c2:=2*exponent*I

*timeint(0,imapart,x^(exponent-1)*sqrt(imapart-x)/sqrt(x+imapart)

*((RQ(x))^2+(IQ(x))^2)^(-1/4)

*sin(-1/2*arctan(IQ(x),RQ(x))),zeit[i],methods[i],dig);

end do;

dig:=dig-1;

i:=0;

end do;
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if type(c2,complexcons)=false then "6th integration failed"; end if;

if dig<digInt-1 then

WARNING("in int_genus2_complex_exp:

digits for 6. integration reduced to %1", dig+1);

end if;

c:=c1+c2;

end if;

exp(-Pi*I*branch)*I*(partInt+a+b+c);

end proc:

Procedure timeint: Integrates a function <fct> of x from <lowerbound> to <up-
perbound> using the integration method <meth>, and the number of digits <dig>.
If the integration is not successful within <time> seconds, FAIL is returned. This
procedure is used to switch to different integration methods or digits for integration
in the procedures int genus2 real exp and int genus2 complex exp.

timeint:=proc(lowerbound, upperbound, fct, time, meth, dig)

try

timelimit(time,evalf(Int(fct,x=lowerbound..upperbound,method=meth,digits=dig)));

catch "time expired": return FAIL;

end try:

end proc:

B.5 Basic procedures

In this section three modules which contain the most basic procedures are presented.
This are the modules ConvertPolynomial, Thetafunctions, and UtilityRoutines. Most
of the procedures in these three modules are can be explained with a single sentence
or are self-explanatory.

B.5.1 Module ConvertPolynomial

Collection of procedures used to convert a differential equation of the form (dy/dx)2 =
P (y) to a standard form. Here P is a polynomial of a degree lower or equal to 6. For
a degree of 3 or 4 the standard form is (dy/dx)2 = 4y3 − g2y − g3 for two constants
g2, g3, for a degree of 5 or 6 the standard form is (dy/dx)2 = y5 +

∑4
i=0 aiy

i for some
constants ai. If P has a degree lower than 3 the polynomial is not changed.
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Exported procedures

Procedure convert polynomial: Sorts the polynomial P by its degree and calls
the appropriate local procedure.
Input:
polynomial: the polynomial P of degree lower or equal to 6,
degree: the degree of P ,
zeros: the zeros of P ,
(optional) badzeros: a list of zeros of P which should not be used for the conversion
of the polynomial; is only used if P has a degree of 4 or 6.
Output: a list with elements
1) the converted polynomial in standard form,
2) the prefactor f(z) on the right hand side of the converted differential equation
(dz/dx)2 = f(z)P (z); in most cases f(z) is constant, but f(z) = z2 is also possible,
3) the substitution used to convert the polynomial.

convert_polynomial:=proc(polynomial,degree,zeros,badzeros)

if degree>6 then error "degree larger then 6 is not supported":

elif degree=6 or degree=4 then convert_degeven(polynomial,zeros,badzeros):

elif degree=5 then convert_deg5(polynomial,zeros):

elif degree=3 then convert_deg3(polynomial,zeros):

elif degree<3 then return [polynomial,1,x->x]:

end if:

end proc:

Local procedures

Procedure convert deg5: Applies the substitution y = −z or y = z such that
the leading coefficient of P (z) becomes positive. This coefficient is then factored out.

convert_deg5:=proc(polynomial,zeros)

local P,zeros_list,mult_zeros,P_standard,constant,substitution:

# copy to local

P:=polynomial(y):

# check for multiple zeros

zeros_list,mult_zeros:=UtilityRoutines[extract_multiple_elems](zeros):

if nops(mult_zeros)>0 then

error "multiple zeros in polynomial, to be done";

end if:

# determine standard form

if coeff(P,y,5)<0 then

P:=collect(subs(y=-z,P),z):

constant:=coeff(P,z,5):
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P_standard:=add(Re(coeff(P,z,i)/constant)*z^i,i=0..5):

substitution:=-z:

else

constant:=coeff(P,y,5):

P_standard:=add(Re(coeff(P,y,i)/constant)*z^i,i=0..5):

substitution:=z:

end if:

# the left hand side (dy/dx)^2 is not changed by the substitution

[unapply(P_standard,z),constant,unapply(substitution,z)]:

end proc:

Procedure convert deg3: Applies the substitution y = 1
b3

(

4z − b2
3

)

, where P (y) =
∑3

i=0 biy
i.

convert_deg3:=proc(polynomial,zeros)

local P,zeros_list,mult_zeros,P_standard,a3,a2,substitution:

# copy to local

P:=polynomial(y):

# check for multiple zeros

zeros_list,mult_zeros:=UtilityRoutines[extract_multiple_elems](zeros):

if nops(mult_zeros)>0 then

error "multiple zeros in polynomial, to be done";

end if:

# determine standard form

a3:=coeff(P,y,3):

a2:=coeff(P,y,2):

substitution:=evalf(1/a3*(4*z-a2/3)):

P_standard:=collect(a3^2/4^2*subs(y=substitution,P),z):

if not abs(coeff(P_standard,z,2))=0 then

P_standard:=4*z^3+coeff(P_standard,z,1)*z+coeff(P_standard,z,0);

end if;

# left hand side: with y=substitution it follows dz/dy=a3/4 and

# (dz/dx)^2=(dz/dy)^2*(dy/dx)^2=a3^2/4^2*P(y)=a3^2/4^2*4^2/a3^2*P_standard(z)

[unapply(P_standard,z),1,unapply(substitution,z)]:

end proc:

Procedure convert degeven: Applies the substitution y = 1/z + ei, where ei is
a zero of P (y), which reduces the degree of P (z) to the degree of P (y) minus one.
If the degree of P (y) was 6, the prefactor is then given by f(z) = z2. Then P (z) is
passed to one of the procedures convert deg5 or convert deg3.

convert_degeven:=proc(polynomial,zeros,badzeros)

local P,zeros_list,mult_zeros,substitution,initial_coords,realNS,complexNS,
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realz,P_degodd,zeros_degodd,integrand,data_degodd,i:

uses UtilityRoutines;

# copy to local

P:=polynomial(y):

# check for multiple zeros

zeros_list,mult_zeros:=extract_multiple_elems(zeros):

if nops(mult_zeros)>0 then

error "multiple zeros in polynomial, to be done";

end if:

# determine appropiate zero for conversion to odd degree

if inlist(0,zeros_list)>0 then substitution:=1/z;

else

realNS,complexNS:=separate_zeros(zeros_list);

# sort real zeros such that numbers near 1 or -1 comes first

realz:=sort(realNS,proc(x,y) evalb(abs(abs(x)-1)<abs(abs(y)-1)) end proc);

for i from 1 to nops(realz) do

if inlist(realz[i],badzeros)=-1 then

substitution:=1/z+realz[i]; break;

end if;

end do;

# if all realz[i]’s are badzeros

if type(substitution,symbol) then

substitution:=1/z+realz[1];

end if;

end if:

# determine standard form

# left hand side: with y=substitution it follows dz/dy=-(y-realz[i])^(-2)=-z^2

# and (dz/dy)^2=(dz/dy)^2*(dy/dx)^2=z^4*P(y)=z^4/z^4*P_degodd or z^4/z^6*P_degodd

if degree(P,y)=4 then

P_degodd:=collect(z^4*subs(y=substitution,P),z);

integrand:=1:

zeros_degodd:=solve(P_degodd=0,z);

data_degodd:=convert_deg3(unapply(P_degodd,z),zeros_degodd);

elif degree(P,y)=6 then

P_degodd:=collect(z^6*subs(y=substitution,P),z);

integrand:=1/z^2:

zeros_degodd:=solve(P_degodd=0,z);

data_degodd:=convert_deg5(unapply(P_degodd,z),zeros_degodd);

end if;

[data_degodd[1],unapply(data_degodd[2]*subs(z=data_degodd[3](x),integrand),x),

unapply(subs(z=data_degodd[3](x),substitution),x)];

end proc:

244



B.5. Basic procedures

B.5.2 Module Thetafunctions

Here the theta function with characteristics
(

1/2
1/2

)

,
(

0
1/2

)

together with its derivatives

on the theta divisor as well as the Kleinian sigma functions are defined. They are
computed using the formulas (2.3.4), (B.2.2), and (2.4.5).

General theta function in two variables: Here the input z ∈ C is the point
where to evaluate the theta function, R is the Riemann matrix, and the optional
parameter MinMax determines the extremal values of the summation parameters.

Theta2ch:=proc(z,R,MinMax:=5)

local g,h,m1,m2,result,m;

g:=[1/2,1/2]; h:=[0,1/2];

result:=0;

for m1 from -MinMax to MinMax do

for m2 from -MinMax to MinMax do

m:=[m1,m2];

result:=result+evalf(exp( Pi*I*add( (m[i]+g[i])*

( add( R[i,j]*(m[j]+g[j]),j=1..2 )+2*z[i]+2*h[i] ),i=1..2)));

end do;

end do;

end proc:

Derivatives of theta functions on the theta-divisor: The procedures Th2chRR
and Th2chIR compute the derivatives of the real part (Th2chRR) and the imaginary
part (Th2chIR) of z 7→ Theta2ch(z, R), where z = [xR + I · xI, wR + I · wI]. For
l = 1, the derivative with respect to xR and for l = 2 the derivative with respect to
wR is computed. The two equations (B.2.2) are the formulas corresponding to these
two procedures.

Th2chRR:=proc(xR,xI,wR,wI,l,tau,MinMax:=5)

local g,h,result,varR,varI,tauR,tauI,m1,m2,m;

# characteristics:

g:=[1/2,1/2]; h:=[0,1/2];

varR:=[xR,wR];

varI:=[xI,wI];

tauR:=map(Re,tau);

tauI:=map(Im,tau);

result:=0;

for m1 from -MinMax to MinMax do

for m2 from -MinMax to MinMax do

m:=[m1,m2];

245



B. Maple program

result:=result-evalf(exp(Pi*add((m[i]+g[i])*(add(-tauI[i,j]*(m[j]+g[j]),j=1..2)

-2*varI[i]),i=1..2))*sin(Pi*add((m[i]+g[i])*(add(tauR[i,j]*(m[j]+g[j]),j=1..2)

+2*varR[i]+2*h[i]),i=1..2))*2*Pi*(m[l]+g[l]));

end do;

end do;

end proc:

Th2chIR:=proc(xR,xI,wR,wI,l,tau,MinMax:=5)

local g,h,result,varR,varI,tauR,tauI,m1,m2,m;

# characteristics:

g:=[1/2,1/2]; h:=[0,1/2];

varR:=[xR,wR];

varI:=[xI,wI];

tauR:=map(Re,tau);

tauI:=map(Im,tau);

result:=0;

for m1 from -MinMax to MinMax do

for m2 from -MinMax to MinMax do

m:=[m1,m2];

result:=result+evalf(exp(Pi*add( (m[i]+g[i])*(add(-tauI[i,j]*(m[j]+g[j]),j=1..2)

-2*varI[i]),i=1..2) )*cos( Pi*add((m[i]+g[i])*(add(tauR[i,j]*(m[j]+g[j]),j=1..2)

+2*varR[i]+2*h[i]),i=1..2))*2*Pi*(m[l]+g[l]));

end do;

end do;

end proc:

Derivatives of the Kleinian sigma function on the theta divisor: Here the
constant factor in the definition of the sigma function is neglected. The procedure
sigma1 is the derivative with respect to z1, sigma2 is the derivative with respect to
z2.

sigma1:=proc(z,tau,MinMax:=5)

local g,h,m1,m2,m,result;

# characteristics:

g:=[1/2,1/2]; h:=[0,1/2];

result:=0;

for m1 from -MinMax to MinMax do

for m2 from -MinMax to MinMax do

m:=[m1,m2];

result:=result+(exp(Pi*I*add((m[i]+g[i])*(add(tau[i,j]*(m[j]+g[j]),j=1..2)

+2*z[i]+2*h[i]),i=1..2)) *2*Pi*I*(m1+g[1]));

end do;

end do;

end proc:
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sigma2:=proc(z,tau,MinMax:=5)

local g,h,m1,m2,m,result;

# characteristics:

g:=[1/2,1/2]; h:=[0,1/2];

result:=0;

for m1 from -MinMax to MinMax do

for m2 from -MinMax to MinMax do

m:=[m1,m2];

result:=result+(exp(Pi*I*add((m[i]+g[i])*(add(tau[i,j]*(m[j]+g[j]),j=1..2)

+2*z[i]+2*h[i]),i=1..2)) *2*Pi*I*(m2+g[2]));

end do;

end do;

end proc:

B.5.3 Module UtilityRoutines

This module is a collection of very small utility procedures. It includes 5 exported
procedures frequently used in the other modules.

Procedure sortfkt: A function which can be used as second argument for the
inbuilt Maple function sort, e.g. sort(list,sortfkt). Using sortfkt, the elements of a
list are first sorted by increasing real parts and for the case of equal real parts by
increasing imaginary parts.

sortfkt:=proc(a,b)

if (Re(evalf(a))=Re(evalf(b))) then evalb(Im(evalf(a))<Im(evalf(b)));

else evalb(Re(evalf(a))<Re(evalf(b)));

end if;

end proc:

Procedure inlist: Returns the position of an element in a list (using the statement
inlist(element,list)). For the case that element is not in the list at all -1 is returned.

inlist := proc( element, list)

local i;

for i from 1 to nops(list) do

if (element = list[i]) then return i; end if;

end do;

return -1;

end proc:
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Procedure separate zeros: Separates the real and complex elements of a given
list and sorts the results using the procedure sortfkt.

separate_zeros:=proc(zeros)

local i,realNS,complexNS;

realNS:=[]: complexNS:=[]:

for i from 1 to nops(zeros) do

if Im(zeros[i])=0 then realNS:=[op(realNS),zeros[i]];

else complexNS:=[op(complexNS),zeros[i]]; end if;

end do;

sort(realNS),sort(complexNS,sortfkt);

end proc:

Procedure extract multiple elems: If a list has two or more identical elements,
these elements are removed from the list and stored in <mult elems>. The output
is then the ’cleaned’ list and <mult elems>.

extract_multiple_elems:=proc(list)

local L,mult_elems,i:

L:=sort(list,sortfkt);

mult_elems:=[]: i:=1:

while i<nops(L) do

if L[i]=L[i+1] then

mult_elems:=[op(mult_elems),L[i]]:

L:=[op(L[1..i-1]),op(L[i+2..nops(L)])]:

else i:=i+1:

end if:

end do:

L,mult_elems;

end proc:

Procedure find next: For a given <expression>, find next returns that element
of a given <list> which has the smallest distance to <expression>.

find_next:=proc(expression,list)

local d,j,i;

d:=abs(expression-list[1]);

j:=1;

for i from 2 to nops(list) do

if abs(expression-list[i])<d then d:=abs(expression-list[i]); j:=i; end if;

end do;

list[j];

end proc:
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[15] G. Slezáková. Geodesic geometry of black holes. Phd thesis, University of
Waikato, Waikato, New Zealand, 2006.

[16] A. Einstein. Cosmological observations on the general theory of relativity.
Sitzungsber. Preuss. Akad. Wiss., (Part 1):142–152, 1917.

[17] A.G. Riess et al. Observational Evidence from Supernovae for an Accelerating
Universe and a Cosmological Constant. Astronom. J., 116:1009, 1998.

[18] S. Perlmutter et al. Measurements of omega and lambda from 42 high-redshift
supernovae. Astrophys. J., 517:565, 1999.

[19] C. L. Bennett et al. First-year Wilkinson Microwave Anisotropy Probe
(WMAP) observations: Preliminary maps and basic results. Astrophys. J.

Suppl. Ser., 148:1, 2003.

[20] D. N. Spergel et al. First-year Wilkinson Microwave Anisotropy Probe
(WMAP) observations: Determination of cosmological parameters. Astrophys.

J. Suppl. Ser., 148:175, 2003.

250



Bibliography

[21] I. Zlatev, L. Wang, and Steinhardt P.J. Quintessence, cosmic coincidence, and
the cosmological constant. Phys. Rev. Lett., 82(5):896, 1999.

[22] P. J. Steinhardt, L. Wang, and I. Zlatev. Cosmological tracking solutions.
Phys. Rev. D, 59:123504, 1999.

[23] V. Kagramanova, J. Kunz, and C. Lämmerzahl. Solar system effects in
Schwarzschild–de Sitter space–time. Phys. Lett., B 634:465, 2006.

[24] P. Jetzer and M. Sereno. Two-body problem with the cosmological constant
and observational constraints. Phys. Rev., D 73:044015, 2006.

[25] A.W. Kerr, J.C. Hauck, and B. Mashhoon. Standard clocks, orbital precession
and the cosmological constant. Class. Qauntum Grav., 20:2727, 2003.

[26] J.D. Anderson et al. Study of the anomalous acceleration of Pioneer 10 and
11. Phys. Rev., D 65:082004, 2002.
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