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Abstract

Our current understanding of the theory of gravity is experimentally mainly based on
observations in the Solar System, where gravity is weak and motion is slow compared
to the speed of light. Apart from very few early observations of strong gravitational
fields like for instance the Hulse-Taylor binary pulsar, only in recent years experimen-
tal capabilities increased sufficiently to throughout constrain alternatives to General
Relativity. Examples include foremost the gravitational wave observations but also
upcoming results on general relativistic effects in the motion of stars orbiting the
galactic centre supermassive black hole or the observation of its shadow. So far all
experimental tests fully support General Relativity.

This thesis connects eight scientific publications that are related to relativistic
effects in strong gravitational fields, exploring both the motion of matter and time
measurements. The contained publications are discussed and related to the larger
framework of testing General Relativity in a regime where gravity is strong, as you
find it close to black holes or neutron stars. For the correct interpretation of obser-
vational data it is of high importance to model all relevant effects as accurately as
possible. Inaccurate models or small neglected effects may lead to weaker of even
wrong constraints on alternative theories of gravity. One aim of this thesis is to ex-
plore and confirm the accuracy of analytical approximation schemes. Only in very
specific situations we discovered that even higher order approximations or exact ex-
pressions should be used to accurately model general relativistic effects. Moreover,
putatively small effects within General Relativity are discussed which may lead to a
reinterpretation of current or future observational data. Specifically, the usually very
tiny electric charge of astrophysical black holes, which recently attracted renewed
interest, may have pretty large effects on the motion of orbiting charged matter.

Parallel to increasing observational capabilities, also the stability and accuracy of
atomic clocks have improved considerably. In this thesis two emerging possibilities to
use such clocks in the context of General Relativity are discussed. As the rate of clocks
depends not only on its state of motion but also on its position in a gravitational
field clocks may be used to determine heights above some reference surface. We
describe here a new definition of such a reference surface using clock readings, which
is also valid in strong gravitational fields. Moreover, a generalised frame dragging
effect acting on time, which has not been measured until now, is defined using time
measurements of space-based clocks on satellites or of astronomical clocks from pulsar
observations.
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I Scientific work by the author

I.I Analytical solutions for geodesic motion in type D spacetimes (PhD)

In my research which was part of my PhD thesis I developed a new solution scheme for the
equations of motion of test particles in the most general type D spacetime with integrable
equations of motion. Most prominently, this includes the Schwarzschild spacetime, where a
solution of the geodesic equation in terms of Weierstrass and Jacobian elliptic functions or
integrals was already developed in the 1930s. A generalisation of this method to spacetimes
which include a cosmological constant, which for instance can be used as a model of dark
energy, was however elusive until my first publication on this topic in 2008. Subsequently,
I contributed to the application of my new scheme to axially symmetric spacetimes like
Kerr-de Sitter, higher dimensional spacetimes, as for instance motivated by string theory,
and to the very general Plebański-Demiański class of spacetimes.

Publications:

• E. Hackmann and C. Lämmerzahl. Complete analytic solution of the geodesic equation
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the geodesic equation in Kerr-(anti-) de Sitter space-times. Phys. Rev. D, 81:044020,
2010

I.II Particle motion in General Relativity

As a natural generalisation of my previous work I considered more general setups of particle
motion in general relativistic spacetime. This included the extension of the newly devel-
oped mathematical scheme as well as the application to other more general spacetimes or
particles with additional structure. For instance, I contributed to the analytical solution
of the equations of motion in spacetimes with a cosmic string and in regular black hole
spacetimes. I also became interested in the interaction of charged particles with the tiny
electric charges of astrophysical black holes, and the relativistic effects due to the coupling



of the classical spin of a particle and the curvature of spacetime. The detectability of
spacetime parameters and particle structures through the observation of periastron pre-
cession or similar relativistic effects was another focus of my research. My results and the
established collaboration with colleagues in Oldenburg were of significant importance for
the successful installation of the Research Training Group (RTG) ”Models of Gravity” .

Five relevant publications:

• E. Hackmann, B. Hartmann, C. Lämmerzahl, and P. Sirimachan. Test particle motion in
the space-time of a Kerr black hole pierced by a cosmic string. Phys. Rev. D, 82:044024,
2010.

• V.Z. Enolskii, E. Hackmann, V. Kagramanova, J. Kunz, and C. Lämmerzahl. Inversion
of hyperelliptic integrals of arbitrary genus with application to particle motion in general
relativity. J. Geom. Phys., 61:899, 2011.

• E. Hackmann and C. Lämmerzahl. Observables for bound orbital motion in axially
symmetric space-times. Phys. Rev. D, 85:044049, 2012.

• E. Hackmann and H. Xu. Charged particle motion in Kerr-Newmann space-times. Phys.
Rev. D, 87:124030, 2013.

• E. Hackmann, C. Lämmerzahl, Y. N. Obukhov, D. Puetzfeld, and I. Schaffer. Motion
of spinning test bodies in Kerr spacetime. Phys. Rev. D, 90:064035, 2014.

I.III Relativistic accretion theory

Accretion is a very fundamental process in astrophysics, which gives rise to the most lumi-
nous observations in the electromagnetic spectrum. If the accreting object is very compact,
preferably a black hole, then the accreting matter probes deeply into the strong gravity
regime on horizon scales. Therefore, relativistic effects play a major role in the involved
processes. In my research in this area I focus on analytical models of accretion. This of
course requires a massive simplification of the physical system under consideration but
allows to understand specific basic processes more clearly. I am particularly interested in
the role of charge in the accretion process. Although the electric charge to mass ratio of an
astrophysical black hole will be tiny, we showed that it may nevertheless play an important
role in the accretion of plasma. We also constructed relativistic equilibrium configurations
of charged fluids in a geometrically thick accretion torus following the classical model of
Kozlowski and coworkers, which are also routinely used as initial conditions for numerical
simulations. Accretion processes are also a new topic in the established RTG ”Models of
Gravity”, where I became Principal Investigator for the ”Environment of compact objects”
project in 2016.
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Publications:

• K. Schroven, E. Hackmann, and C. Lämmerzahl. Relativistic dust accretion of charged
particles in Kerr-Newman spacetime. Phys. Rev. D, 96:063015, 2017
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• K. Schroven, A. Trova, E. Hackmann, and C. Lämmerzahl. Charged fluid structures
around a rotating compact object with a magnetic dipole field. Phys. Rev. D, 98:023017,
2018.

I.IV Redshift and timing effects

A peculiar general relativistic effect is the dependence of the proper time of a clock on its
position in a gravitational field. This can be used to design tests of General Relativity. One
example is the classical redshift test, which was recently achieved with highest accuracy
using clocks on Galileo satellites. Related to this is the delayed travel time of electro-
magnetic signals in a gravitational field as compared to Newtonian gravity. Another very
interesting example is the gravitomagnetic clock effect, which tests the spacetime dragging
of inertial frames. Finally, assuming that General Relativity holds, the redshift of clocks
can also be used to define heights in a gravitational field. As such, this has interesting
new applications in geodesy. We explored the redshift as a fundamental measurement to
define a particular reference surface in geodesy, the so-called geoid. This research is part of
the Collaborative Research Center ”Relativistic geodesy with quantum sensors (geo-Q)”.
I contributed to acquire the funding and act as Principal Investigator in geo-Q.

Publications:

• E. Hackmann and C. Lämmerzahl. Generalized gravitomagnetic clock effect. Phys. Rev.
D, 90:044059, 2014.

• D. Philipp, V. Perlick, D. Puetzfeld, E. Hackmann, and C. Lämmerzahl. Definition of
the relativistic geoid in terms of isochronometric surfaces. Phys. Rev. D, 95:104037,
May 2017.
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1 Introduction

1.1 Einstein’s equation and its solutions

General Relativity (GR) is presently the best available theory of gravitation, which has
passed every test it was confronted with. It was developed in the beginning of the 20th
century, where a critical problem emerged from the incompatibility of Special Relativity
with Newtonian gravity. The latter explains gravitation as a force which acts over a dis-
tance. As such it is immediately clear that it violates the necessity for a finite propagation
speed of information in order to retain causality. A more formal argument arises from the
fact that Newton’s field equation is not Lorentz invariant.

At the heart of General Relativity is the equivalence principle. In its weak version it is
also called the Universality of Free Fall, stating that all pointlike material bodies will follow
the same free fall trajectory in a homogeneous gravitational field (assuming identical initial
conditions), regardless of their internal composition. The Einstein equivalence principle
adds local Lorentz and local position invariance. Based on this principle, gravitation can
be identified with geometry.

If we assume that the equivalence principle holds, in every small enough region of
spacetime the gravitational field can be considered as homogeneous and we may ”transform
away” gravity by switching to a frame of reference with constant acceleration. In this way
we recover the spacetime of Special Relativity. Accordingly, gravitation can be modelled
as a metric theory. By choosing the unique metric and torsionless Levi-Civita connection,
it was shown by Lovelock [1] that Einstein’s field equation [2],

Rµν −
1

2
Rgµν = κTµν (1)

is unique (in four dimensions), if we assume (i) in analogy to the Newtonian field equation
the form Dg = T , for a differential operator D with no higher than second derivatives,
the metric g, and the energy-momentum tensor T , and (ii) impose conservation of energy-
momentum. Here Rµν is the Ricci tensor, R the curvature scalar, and κ is Einstein’s
gravitational constant. In this sense, Einstein’s theory is the most simple one, and sensible
alternatives will have to add some degree of freedom.

The construction of exact solutions to Einstein’s field equation (1) is a highly non-
trivial task, which in general can only be solved analytically by assuming highly symmetric
configurations. The most simple non-trivial example is the Schwarzschild spacetime, which
was already derived in 1916 shortly after the publication of the equations [3]. The Schwarz-
schild metric is a spherically symmetric, static, and asymptotically flat vacuum solution.
It describes the gravitational field outside of a corresponding object of mass M . The gen-
eralisation to the Einstein–Maxwell system of equations was accomplished a bit later by
Reissner and Nordström [4, 5]. Their electrovacuum solution has an additional parame-
ter Q related to the electric charge, and a parameter P related to a speculative magnetic
monopole.
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The derivation of a stationary and axially symmetric vacuum solution was much more
complicated. In 1963, Kerr [6] found its famous solution, and not much later Newman
generalised the Kerr solution to the Einstein–Maxwell system [7], resulting in the Kerr-
Newman spacetime

g =
sin2 θ

ρ2

[
(r2 + a2)dϕ− ad(x0)

]2 − ∆

ρ2

[
a sin2(θ)dϕ− d(x0)

]2
+
ρ2

∆
dr2 + ρ2dθ2 , (2)

where

∆ = r2 + a2 +Q2 + P 2 − 2mr , (3)

ρ2 = r2 + a2 cos2 θ . (4)

Here m = GM
c2

is related to the mass M of the body, a = J/(mc) is the angular momentum

per unit mass J in geometrised units, Q =
√
G√

4πε0c2
QSI is given by the electric charge

QSI of the black hole, and P is a parameter related to a speculative magnetic monopole.
The coordinate x0 = ct is timelike outside the ergosphere given by g00 = 0. Finally, G
is the gravitational constant, c the speed of light, and ε0 is the electric constant. The
electromagnetic potential is

A =
Qr

ρ2
(d(x0)− a sin2 θdϕ) +

1

ρ2
P cos θ

(
ad(x0)− (r2 + a2)dϕ

)
, (5)

which defines the electromagnetic tensor via Fµν = ∂µAν − ∂νAµ. The Kerr-Newman
solution reduces to all the mentioned metrics (Schwarzschild, Reissner–Nordström, Kerr)
by setting the appropriate parameters to zero.

A particularly interesting feature of the family of solutions (2) is the appearance of
a curvature singularity. Imagine a usual star collapsing under its own gravitational field.
If the collapse will proceed up to a certain point, a trapped surface will form and all
the trapped matter will irresistibly be compressed to a point (or one-dimensional circle),
forming a singularity. This behaviour is enforced by the singularity theorems, which state
that under certain regularity conditions on the spacetime singularities have to emerge. See
for instance [8, 9] for a review. So it seems that in General Relativity (coupled to Maxwell’s
equations) the appearance of singularities cannot be avoided.

For the Kerr-Newman family of solutions the curvature singularity is located at ρ2 = 0,
i.e. for simultaneously r = 0 and θ = π/2. Although this looks like a single point in the
chosen Boyer-Lindquist coordinates, this is actually a circle of radius a in the equatorial
plane. The singularity ∆ = 0 is a mere coordinate singularity; however, it marks up to
two horizons of the spacetime. If present, the outer one is an event horizon and the inner
a Cauchy horizon. See for instance [10] for more detailed information about the Kerr-
Newman spacetime. A singularity hidden behind an event horizon is called a black hole,
see the recent article [11] for the heritage of the name.
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The general appearance of curvature singularities is quite unsatisfactory, as it means
that General Relativity inevitably predicts its own failure to determine the future of the
singularities. As a way out of this, it was postulated that curvature singularities should
always be inaccessible to observers to retain determinism of the theory. This postulate
is known as the cosmic censorship conjecture, stating that singularities should be hidden
behind event horizons, see [12] for a review. The Kerr-Newman metric (2) can be easily
tuned to violate cosmic censorship: by increasing the rotation a or the charges Q, P
sufficiently, the event horizon will first merge with the inner horizon, called an extremal
Kerr-Newman spacetime, and then disappear. Such a spacetime is commonly called a naked
singularity. However, it seems that it is impossible to overspin or overcharge an already
existing Kerr-Newman black hole by throwing spinning or charged particles on it, see [13].
A naked singularity could in principle also directly be formed in a gravitational collapse
process. Let me emphasize here that a mathematical rigorous formulation of the cosmic
censorship conjecture is still missing. It was shown that in general naked singularities can
form in some models of gravitational collapse [14]. Therefore, it is necessary to formulate
appropriate assumptions to enforce a somehow physically realistic scenario. Numerical
studies of gravitational collapse indicate that under such conditions naked singularities can
not be formed. For a recent review on gravitational collapse and cosmic censorship see
[15].

The Kerr–Newman solution (2) is of particular importance for the description of black
hole solutions. This is due to the so-called no–hair theorem. Roughly said, it states
that under certain regularity assumptions on the spacetime and the event horizon, usually
analyticity and non-degeneracy, every stationary four-dimensional electrovacuum solution
is isometric to the Kerr-Newman spacetime. Therefore, any such spacetime is completely
characterised by the four parameters mass, rotation, electric and magnetic charge of the
metric (2). For a review of the various forms of the no-hair theorem see [16]. The no-hair
theorem is a result which holds in General Relativity, but in general it will be violated in
alternative gravity theories. For instance, in the Einstein-Yang-Mills framework a family of
static black hole solutions with nonvanishing global Yang-Mills charges can be constructed
[17]. In this sense, General Relativity can be tested by experimental verification of the
no-hair theorem. In an astrophysical context, the no-hair theorem is also known as the
Kerr black hole hypothesis, as the magnetic monopole charge is highly speculative and the
net electric charge is usually assumed to vanish in an astrophysical environment. For a
discussion of the latter see section 2.2.

1.2 General Relativity put to the test

As explained in the forgoing section the equivalence principle is the foundation of the idea
that gravity is geometry. Due to this central role in the formulation of geometric theories
of gravity, the equivalence principle has been thoroughly tested, see the living review [18].
Very recently, the most stringent test of the weak equivalence principle was achieved with
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the Microscope satellite mission in 2017 [19], and the most stringent test of the gravitational
redshift (see chapter 3) using a Galileo satellite was published in 2018 [20, 21].

Einstein suggested three classical tests of his theory of gravity [22]: the gravitational
redshift, the deflection of light, and the periapsis precession. Actually, the gravitational
redshift in an homogeneous gravitational field is common to all gravity theories which
obey the equivalence principle and, therefore, is not a genuine test of General Relativity.
The deflection of light in the inhomogeneous gravitational field of the Sun was (not very
precisely) measured in 1919 [23], and the ”anomolous” perihelion precession of Mercury was
already known and correctly explained by GR [24]. These two experimental confirmations
constituted the breakthrough of GR. The gravitational redshift was measured only much
later with sufficient accuracy by Pound and Rebka [25, 26]. All these tests have been
repeated over time with increasing accuracy [18].

A fourth classical test of GR was suggested in 1964 by Shapiro [27]. He noted that the
proper velocity of light in a gravitational field as measured by a distant observer will in
general not be equal to the vacuum speed of light c. Consequently, the travel time of an
electromagnetic signal from an observer on Earth to an inner planet and back will be larger
than the traveled distance divided by c. A first experiment to measure this Shapiro delay
was accomplished shortly after its theoretical prediction in 1968 [28] by Shapiro himself.
For more accurate tests done later see [18]. The best result is from 2003 by using the
Cassini satellite [29].

Another peculiar aspect of GR which can be used to test the theory is the so called
frame dragging or gravitomagnetism. The rotation of a massive body has an influence on
the spacetime metric, as can be seen in equation (2), which is not the case in Newtonian
gravity: the rotation drags the spacetime along. As first noticed by Lense and Thirring in
addition to a modification of the classical effect of periastron precession the frame dragging
causes a shift of the ascending node of the orbital plane of a test particle around a rotating
central object [30]. This Lense-Thirring effect was measured by the LAGEOS and LARES
satellite missions, see [31, 32] for recent results. The latest data analysis from 2016 indicates
an accuracy of about 5% in the validation of GR [32]. Another observational effect due to
frame dragging was noted by Schiff [33]: the spin of a test gyroscope will couple to the spin
of the central object and therefore also show a precession. This effect was measured by
the Gravity Probe B mission. According to the latest report on the mission the accuracy
of the frame-dragging test is about 19% [34]. Note that LAGEOS/LARES and Gravity
Probe B only test the same feature of gravity if GR is assumed. In alternative theories of
gravity the two effects are generally different [31, 35–37]. Moreover, frame dragging also
acts on clocks, which was first discussed by Cohen and Mashhoon [38]. They showed that
two clocks on counterrevolving equatorial circular orbits will show a proper time difference,
which becomes pretty large if compared at a fixed angle of revolution. This gravitomagnetic
clock effect has not been measured until now.

The four classical tests of GR as well as the frame dragging tests are all related to the
observation of the motion of massive particles or light on Earth or in the Solar System.
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These experiments are therefore testing GR in a regime where gravity is weak in the sense
that m/r � 1, where m = GM/c2 is the mass of the gravitating object in geometrised units
and r is the distance. For the case that gravity is weak and the involved velocities are small
compared to c, GR can be approximated by Newtonian gravity plus small corrections. The
resulting equations are summarised as the post-Newtonian framework. For the purpose of
testing GR, a Parametrized Post-Newtonian framework was developed, which introduces
a set of ten free parameters into the metric to account for possible deviations from GR
[39, 40]. This framework is then able to account for a large variety of alternative theories
of gravity. In the weak field regime experiments have placed very stringent constraints on
the deviation of these parameters from their GR-values. See [18] for a list of results.

The (first order) Parametrized Post-Newtonian framework is however not sufficient if
gravity becomes strong. This comprises systems with very compact objects like black holes
or neutron stars, systems where gravitational radiation cannot be neglected, or where the
orbital motion is highly dynamical as for binary mergers. In some of these settings high
order post-Newtonian approximations can be used, whereas other require a solution of the
full non-linear equations.

In the strongly gravitating and dynamical regime there is no established formalism
comparable to the Parametrized Post-Newtonian framework to test deviations from GR.
Notable approaches developed from the so-called bumpy black holes [41] and quasi-Kerr
spacetimes [42] to their generalisations in alternative theories of gravity by Vigeland, Yunes,
and Stein [43]. The latter are however based on the existence of an approximate Carter-like
constant. In parallel, Johannsen and Psaltis [44] introduced a parametrised metric which
is regular everywhere outside the horizon also for rapidly rotating black holes, without the
need for an approximate Carter constant. However, as was shown in [45], in the strong field
regime all of the infinitely many parameters in the model are of roughly equal importance,
which is quite problematic from an observational point of view. Moreover, known spinning
black hole metrics in modified theories of gravity can not be described by the metric in
[44] or its extension in [45]. Another approach is due to Konoplya, Rezzolla, and Zhidenko
[46], generalising the result in [47]. Their parametrisation is based on a continued fraction
expansion, which enables to work with only a few parameters, and was checked to reproduce
a number of solutions in modified theories of gravity.

The first observable system where strong gravity effects played a role was the Hulse–
Taylor binary pulsar (also known as PSR J1915+1606 or PSR B1913+16) discovered 1974.
Pulsars are rotating neutron stars whose emission along their magnetic field axis can be
observed on Earth, very much like a lighthouse. Because their rotation is very stable, they
can act as astronomical clocks. The Hulse–Taylor binary pulsar system consists of a pulsar
and a companion which is also a neutron star but whose emission can not be observed
on Earth. Due to the energy loss related to gravitational radiation, the orbital separation
of the two neutron stars gradually decreases. The observation of the orbital parameters
and the implied indirect verification of the existence of gravitational radiation was the
first genuine strong field effect ever measured [48]. Recently, the indirect measurement
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of gravitational radiation from a binary system of a very massive neutron star of about
two solar masses and a white dwarf adds further confidence to the validity of GR also in
strongly self-gravitating systems [49].

A direct detection of gravitational waves is much more difficult and was achieved only
about three years ago by the LIGO collaboration [50]. The gravitational waves of this
first detection originated from the merger of a binary of two black holes of around 29
and 36 solar masses. In the merger process the energy corresponding to about three solar
masses have been emitted in the form of gravitational waves, which makes this the most
energetic event ever observed. This amazing observation and the up to now in total eleven
gravitational wave detections herald a new era of astronomical observations. In particular,
the double neutron star merger GW170817 was the first multi-messenger observation with
electromagnetic counterparts [51], and provided a first link between neutron star mergers
and short gamma-ray bursts. From this single observation, already a tremendous amount
of new insights emerged, massively constraining the difference between the speed of gravity
and the speed of light [52], and alternative theories of gravity, see e.g. [53–55].

Besides gravitational radiation also other aspects of GR have been tested in the strong
field regime. The double pulsar system PSR J0737-3039, where both neutron stars are
observable as pulsars, is an excellent example. From the available data four independent
tests of GR in the strong field regime could be derived. The most stringent test from this
system involves the shape parameter of the Shapiro delay, which confirms the GR prediction
to 0.05% [56]. Very recently, two new experiments have been reported. The triple system
PSR J0337+1715 consists of a pulsar in a tight binary with a white dwarf, which together
form a wide binary with another white dwarf. A test of the strong equivalence principle
became possible by observing the free fall motion of the compact highly self-gravitating
neutron star and its white dwarf companion in the gravitational field of the outer white
dwarf [57]. A first detection of the gravitational redshift for a star orbiting a supermassive
black hole has been reported in [58].

Another very interesting possibility to probe the strong gravity regime is the observation
of emission from accretion disks. Such structures approach a central black hole very closely,
typically to below the innermost stable circular orbit, i.e. on horizon scales. The accretion
process is very luminous and, therefore, in principle presents an excellent laboratory for
tests in the strong gravity regime. For recent results and constraints on violations of the
Kerr black hole hypothesis using the emission of accretion disks I refer to [59, 60].

1.3 Outline of the thesis

As outlined in the foregoing sections, there are currently large experimental and theoretical
efforts to substantially improve our understanding of gravity. In the recent decades GR
has been challenged by a large and ever increasing number of alternative gravity theories.
Reasons include, but are not limited to, the apparent incompatibility of GR with a quan-
tisation as well as the explanation of dark matter or dark energy. However, so far every
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experimental test fully supports GR.
One problem in the interpretation of observational data to test small deviations from

GR is that unaccounted effects in the data analyses may mimic an effect which is due
to another gravity theory. This may lead to weaker or even wrong constraints on these
theories. One prominent example is the influence of the unknown equation of state of neu-
tron stars, which makes it very difficult to use neutron star observation for constraining
alternative theories of gravity. The recently introduced universal (meaning nearly equation
of state independent) relations developed from this problem, see [61] for a recent review.
As one example within GR, consider the innermost stable circular orbit (ISCO), which is
an important quantity for observations. The ISCO of free electrons or protons orbiting
a non-rotating black hole with an astrophysically realistic (very tiny) electric charge can
mimic the ISCO of an uncharged black hole with a pretty large rotation parameter of about
a = 0.6m [62]. It is therefore of utmost importance (i) to model all observational quantities
as accurately as possible and (ii) to carefully asses the magnitude of putatively small rela-
tivistic effects, which for some reason are neglected in predictions and data analyses. The
first scientific question is discussed in sections 2.1, 2.3, and 3.1. In these parts I introduce
mathematically rigorous formulations of relativistic observable, and analyse the accuracies
of usually employed analytic approximation schemes. The second point is addressed in sec-
tions 2.2 and 2.3. Here I explore possible signatures of an interaction of electrically charged
particles and fluids with the electric charge of a black hole or with external electromagnetic
fields in section 2.2. Moreover, I discuss the possibility of testing for a regular black hole
which can be constructed by coupling GR to a non-linear electrodynamics. In section 2.3
spin effects on the ISCO are analysed.

Another important open question is whether we can find new ways of testing GR. To
this regard we generalised the framework for the test of a gravitomagnetic clock effect
proposed by Cohen and Mashhoon, which can then be applied to more general setups and
to strong gravitational fields, see section 3.3. An exciting new application of GR to geodesy,
discussed in section 3.2, also presents an opportunity to develop new and improved tests
of GR in the future.

The thesis is structured in two main chapters, which explore general relativistic effects
on matter motion, see chapter 2, and on clock readings, see chapter 3. After introducing
a definition of relativistic observables in section 2.1, we move on to discuss the role of
charge in astrophysical observations in section 2.2. The chapter is closed with a discussion
of general relativistic spin-curvature coupling effects in section 2.3. In Chapter 3 we start
with an introduction to redshift and timing effects in section 3.1 before discussing the
generalisation of the notion of the geoid to the strong field regime using isochronomatic
surfaces in section 3.2. The generalisation of the gravitomagnetic clock effect, which has so
far not been measured, to the strong field regime is introduced in section 3.3. The thesis
closes with a summary.
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2 Probing General Relativity with matter motion

The motion of particles in a gravitational field in classical celestial mechanics is given by the
Kepler equations, that are still widely used in many applications from the determination
of satellite orbits in the vicinity of the Earth to modelling the observations of accretion
disks near black holes. It is, however, only an approximate expression, which needs to
be corrected due to relativistic effects. When comparing bound orbital motion in the
Newtonian theory and in GR it quickly becomes clear that the structure of orbital motion
is much richer in GR. Einstein [24] already recognized in 1915 that particles orbiting a
spherically symmetric and static gravitational object will not follow a closed ellipse as
given by Kepler, but experience a shift of the point of closest approach, the periapsis,
which results in a precessing ellipse. Not much later, Lense and Thirring [30] discovered
that a rotation of the central object induces an additional effect, which is named after them:
not only will the periapsis shift be modified by the rotation, in addition the ascending node,
where the particle passes through the reference plane, will be shifted, which results in a
precession of the orbital plane. The periapsis shift and the Lense-Thirring precession of the
orbital plane are illustrated in figure 1. A related but distinct effect is the influence of the
rotation of the central gravitating object on the spin of a test-gyroscope. This spin–spin
coupling was discovered by Schiff [33] in 1960 and is named after him. Summarized, all
effects related to the rotation of the central object are often referred to as frame–dragging
effects, or gravitomagnetic effects. The latter terminology was introduced in formal analogy
of gravitational effects due to mass currents in linearised GR to magnetic effects due to
electric currents in electromagnetism.

In the following section we will explore the rich structure of the motion of particles and
fluids for the purpose of probing the spacetime around highly compact objects.

2.1 Relativistic observables related to particle motion

The relativistic effects of the precessing ellipse and the precessing orbital plane explained
above can be traced back to a mismatch of the basic periodicities of bound orbital motion.
In the Keplerian case, both the radial period and the latitudinal period happen to always
coincide with the angular period of 2π. This is in general no longer true in GR. Let us
consider the most simple example of the gravitational field of a spherically symmetric and
static body, which is described by the Schwarzschild metric,

g = −
(

1− 2m

r

)
d(x0)2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2) , (6)

where x0 = ct is the time coordinate and m = GM
c2

is given by the mass M of the body,
the gravitational constant G, and the speed of light c. See also eq. (2) with a = 0, Q = 0,
P = 0. Due to spherical symmetry, we may choose the orbital plane as the equatorial plane,
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Figure 1: Periapsis shift and Lense-Thirring precession. The left plot shows the periastron
precession relatively far away from the central black hole, which is indicated by a black
dot. An extreme case of periastron precession very close to a black hole is shown in the
middle. The right plot shows the precession of the ascending node of a spherical orbit,
where the grey sphere indicates the event horizon and the grey cones indicate the minimal
and maximal polar angle of the orbit. The plots are in units of m = GM/c2.

i.e. θ ≡ π/2. As the metric coefficients do not depend on t or ϕ, two further constants of
motion are given by the respective Killing vectors,

E

c
= −g00ẋ

0 =

(
1− 2m

r

)
c
dt

dτ
, (7)

L = gϕϕϕ̇ = r2dϕ

dτ
, (8)

which can be interpreted as the specific energy and the specific angular momentum. Here
the dot denotes a derivative with respect to the proper time τ (for the case of massive
particles). Together with the normalisation condition gµν ẋ

µẋν = −c2 we find the following
equation of radial motion,(

dr

dϕ

)2

=
E2 − c4

c2L2
r4 +

2mc2

L2
r3 − r2 + 2mr =: R(r) (9)

Most conveniently, these equations can be solved for r(ϕ) in terms of elliptic functions.
We can also derive the radial period Λr, defined as the smallest real number such that
r(ϕ+Λr) = r(ϕ) for all ϕ, by integrating from the minimal rp to the maximal ra and back,

Λr = 2

∫ ra

rp

dr√
R(r)

. (10)
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Let us have a look at the Newtonian limit of this equation, which can be derived by taking
the weak field and slow motion approximation m

r ∼
v2

c2
� 1 in (9). We find(

dr

dϕ

)2

≈ 2Ẽ

L2
r4 +

2GM

L2
r3 − r2 =: RN (r) , (11)

where Ẽ = 1
2v

2 is the Newtonian specific kinetic energy, which arises from E2

c4
≈ 1 + v2

c2
.

Then Λr reduces to

Λr,Kepler = 2

∫ ra

rp

dr√
RN (r)

= 2

[
arctan

GMr
L2 − 1√
RN (r)/r2

]r=ra
r=rp

= 2π (12)

taking into account that rp,a are zeros of RN (note that the nominator in the argument

of arctan has different signs for r = rp and r = ra in the region −1 ≤ 2EL2

(GM)2
≤ 0 which

corresponds to bound orbits). It is clear that in the case given by (10) with (9) the radial
period Λr will in general not be equal to 2π.

Related to the periods are the fundamental frequencies of bound orbits, which can be
defined by

Υr =
2π

Λr
(13)

in the radial case. Note that this is the frequency with respect to r as a function ϕ. An
observer at infinity will however observe the radial frequency with respect to the coordinate
time t, which coincides with his proper time. To find this frequency consider

dt

dϕ
=

Er3

c2L(r − 2m)
=: T (r) , (14)

which is derived from (7) and (8). This equation can not be solved by a periodic function,
but can be written as a part which is linear in ϕ plus periodic perturbations,

t(ϕ) = Υtϕ+ tosc(ϕ) . (15)

Here Υt is an infinite average with respect to ϕ,

Υt = 〈T (r)〉ϕ = lim
ϕ2−ϕ1→∞

1

ϕ2 − ϕ1

∫ ϕ2

ϕ1

T (r)dϕ , (16)

and the perturbations are given by

tosc(ϕ) =

∫ ϕ

T (r)dϕ−Υtϕ . (17)
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Due to the periodicity of r(ϕ) the expression for Υt can be reduced to a single period,

Υt =
1

Λr

∮ r(ϕ+Λr)

r(ϕ)

T (r)√
R(r)

dr =
2

Λr

∫ ra

rp

T (r)√
R(r)

dr . (18)

It can also explicitely be checked that tosc is periodic, tosc(ϕ + Λr) = tosc(ϕ). The radial
frequency with respect to the coordinate time, as measured by an observer at infinity, is
then given by

Ωr =
Υr

Υt
. (19)

An analogous procedure as outlined above for Kerr spacetime has long been prevented
due to the coupled nature of the equations of motion. With the introduction of the so–
called Mino time parameter [63, 64], it became possible to use the action–angle formalism
for orbits in Kerr spacetime developed by Schmidt [65] to explicitly analytically calculate
the fundamental frequencies [66] and their decomposition in a Fourier analysis [67]. Such a
decomposition is in particular useful in the analysis of gravitational wave signals originating
from extreme mass ratio inspirals. The detection of such signals is one of the major science
goals of the upcoming LISA mission. This is a planned gravitational wave detector in
space, based on the same principle as the Earth-bound detectors LIGO/Virgo. LISA will
consist of three satellites linked by lasers, each satellite forming a Michelson-Morley like
interferometer with the other two. The distance between the satellites is planned to be 2.5
million km, which makes the detector very sensitive in the mHz regime, but less sensitive
in the LIGO/Virgo band of a few Hz. The mission is funded by ESA and it is planned to
start in 2034. For a review on detection of extreme mass ratio inspirals with LISA see [68].

In our paper [69](H1) we explored the fundamental frequencies for a very general
geometry given by the Plebański–Demiański class of spacetimes [70, 71]. Starting with the
Schwarzschild spacetime we presented, to the best of our knowledge for the first time, the
exact analytical expression for the periapsis shift ΩP = Ωr−Ωϕ in terms of Jacobian elliptic
integrals. These integrals are implemented in all major Computer Algebra Systems and can
be evaluated without numerical integration. We then considered an axially symmetric and
stationary spacetime with six free parameters, which correspond to the mass, the rotation,
the electric and the magnetic charge, the Newman-Unti-Tamburino (NUT) parameter, and
the cosmological constant.

Let us shortly discuss the physical meaning and relevance of these six parameters. The
most important parameter (besides the mass which can be eliminated by a proper rescaling
of the units) is of course the rotation, as all astrophysically bodies are expected to rotate.
As outlined above, the mass and the rotation induce a mismatch between the radial, the
latitudinal, and the angular periodicities. These frequencies will be further modified from
the other parameters of the considered spacetime, but presumably less significantly. For
instance, the electric charge of a black hole is astrophysically expected to be very small
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due to selected accretion of oppositely charged particles. There are so far no hints to the
existence of a magnetic monopole charge of black holes, but we included it for completeness
and because for neutral particles only the sum of the squared electric and magnetic charge
parameters enters the equations, and can thus be treated as a single parameter. Therefore,
the inclusion of magnetic charge does not change the resulting equations in any way. For a
more detailed discussion of the influence of charge see the next section. The cosmological
constant describes the accelerated expansion of the universe and can be considered as a
model to describe dark energy. This constant is very small and does presumably not in-
fluence the spacetime geometry significantly in bound gravitating systems, but rather on
cosmological scales. The NUT parameter [72–74] gives rise to quite peculiar features and
can be interpreted in different ways. Spacetimes with a NUT parameter exhibit a conical
singularity along the axis of symmetry. In an interpretation due to Misner [74] this conical
singularity can be eliminated by a periodic identification of the time coordinate. This how-
ever induces the existence of closed timelike curves through every event of the spacetime.
In a different interpretation due to Bonnor [75] the conical singularity is retained and in-
terpreted as being created by a source of pure angular momentum, a semi-infinite massless
rotating rod. However, close to the physical conical singularity in this interpretation also
closed timelike curves arise. For a generalisation of the interpretation of Bonnor, which
however keeps the conical singularity and the closed timelike curves we refer to [76]. In
the presence of the NUT parameter, it was shown that geodesics always move on a cone
instead of a plane, similar to trajectories of charged particles in the field of a magnetic
monopole [77–80]. We quantified this feature by introducing the notion of conicity in our
paper [69](H1).

We then derived exact analytical expressions for the Periapsis shift, the Lense–Thirring
effect, and the conicity in the six–parameter Plebański–Demiański spacetime in terms of
Lauricelli’s hypergeometric functions. We showed how the other parameters of the space-
time modify these periods, and derived first order post–Newtonian and post–Schwarzschild
expressions. (For the latter we considered the limit that all parameters other than the mass
are small). Among others, our results could be used to constrain the conicity parameter
from astrophysical observations. In [69](H1) we calculated a constrain on the NUT param-
eter of the Sun from the orbit of Mercury. In passing, we note that recently a measurement
of the Sagnac effect was also considered as a possible method to constrain the NUT pa-
rameter of the Earth, but turned out to be insufficient to produce a meaningful constraint
[81].

2.2 Charged matter and black holes

According to the no-hair theorem, which was already described in the introduction (see e.g.
[82] and references therein) astrophysical black holes are very simple objects in the sense
that they are described by only three parameters: the mass, the angular momentum, and
the charge. The mathematical object to describe such a black hole is the Kerr-Newman
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metric (2). However, black holes usually reside in an environment which provides the
opportunity to accrete matter, and that rises the question whether the accretion of charges
will reduce the electric net charge of the black hole. Indeed, an order of magnitude estimate
of gravitational and electromagnetic forces presented in [83] shows that an initial net charge
of the black hole will be reduced on a short timescale by selected accretion of oppositely
charged particles until a charge to mass ratio of order Q/M ≈ 10−18 reached. As before,
we use here geometrised units, which are related to SI units by

Q2 =
GQ2

SI

4πε0c4
, M =

GMSI

c2
(20)

with Newton’s gravitational constant G, the speed of light c, and the electric constant
ε0. This estimate holds if sufficient matter is available in the environment, which however
should easily be possible in a binary system and even in interstellar medium. For a black
hole in complete vacuum pair production induces an upper bound on the charge to mass
ratio of order Q/M ≈ 10−5MBH/MSun where MBH and MSun are the mass of the black
hole and the Sun, respectively [83].

On the other hand, astrophysical black holes usually are surrounded by external mag-
netic fields, for instances fields created by surrounding magnetized plasma, (neutron) stars
in the vicinity, or the galactic magnetic field. A non-charged rotating black hole will drag
the magnetic fields along, thereby enabling a selective accretion of charges which then
results in a black hole with an electric net charge. Examples discussed in the literature
include asymptotically uniform magnetic fields [84], stationary and axially symmetric fields
shielded by a plasma shell [85], and charge separation in (force-free) magnetospheres of the
black hole [86, 87]. For a more extensive list see the review [88] and references therein.
The charge to mass ratio which can be reached by such scenarios directly depends on the
strength of the external magnetic fields [89].

The formation of charged black holes from gravitational collapse or from accretion
processes has also been discussed in the literature. Early gravitational collapse simulations
due to Wilson [90] suggested that supermassive black holes could be formed which carry
a large net electric charge. A recent analysis by Nathanail, Most and Rezzolla [91] shows
that a rotating neutron star with a magnetosphere and a net initial electric charge, which is
to be expected for pulsars, will collapses to a (presumably short lived) Kerr-Newman black
hole, which has a charge to mass ratio of about Q/M ≈ 10−4. Note that this is not the case
for nonrotating neutron stars [91]. Charged black holes have recently also attracted new
interest in the context of Fast Radio Bursts (FRBs). Also called Lorimer bursts [92, 93],
these are high energy astrophysical radio pulses with timescales on the order of or below one
millisecond and a high dispersion, which points to an extragalactic origin. The progenitors
and mechanisms which create FRBs are unknown, and a wide range of proposals exist in
the literature. According to one of the possible mechanisms, FRBs are connected to the
above mentioned collapse of neutron stars to a charged black hole [94]. Neutron stars with
masses above the critical value for nonrotating objects are called supramassive. These stars
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are supported by their rapid rotation and can thus be stable over timescales of hundreds
of years and longer. However, due to magnetic braking the rotation will constantly slow
down, and eventually the neutron star becomes unstable. It will then almost instantly
collapse to a charged stellar mass black hole, and the violent snapping of the magnetic field
in the magnetosphere may induce an FRB. Another possible mechanism for the creation of
FRBs are binary systems where at least one of the two black holes has an electric charge
to mass ratio of about Q/M ≈ 10−9 [95]. In this case the inspiral of the binary induces a
magnetic dipole, which evolves rapidly close to the merger. According to [95, 96] this leads
to magnetospheric outflow with increasing power which may create an FRB. If the charge
to mass ratio is even higher, above Q/M ≈ 10−5, a short duration Gamma Ray Bursts may
be created [95]. Yet another recently proposed mechanism for FRB creation which involves
charged black holes is connected to the sudden discharging of a Kerr-Newman black hole
[96, 97]. The last two scenarios are also connected to possible electromagnetic counterparts
in binary black hole mergers, like the putative detection of a weak short Gamma Ray
Burst by Fermi GBM [98] after GW150914, the first detection of gravitational waves. For
another recent proposal on electromagnetic counterpart production in black hole - neutron
star binaries due to a charged black hole see [99].

A first significant observational constraint on the charge of the galactic center black hole
was recently presented by Zajaček et al [62], where the charge to mass ratio of Sagittarius
A* was constrained to about Q/M . 4.4× 10−19 or QSI . 3.1× 108 C using a test based
on the observation of bremsstrahlung. Earlier estimates for the charge of Sagittarius A*
based on the orbits of stars are much less restrictive [100]. For the influence of charge on
the size of the black hole shadow see [101, 102]. However, both the orbits of stars and the
size of the black hole shadow are expected to be resolved in much greater detail very soon
[103–105] which might enable more stringent constraints. A possible detection of pulsars
closely orbiting Sagittarius A* [106] might as well be used to constrain the charge of the
galactic center black hole.

Summarized, it seems that astrophysically most relevant are black holes with a very
small electric charge, i.e. with charge to mass ratios many orders of magnitude below
unity. In this case it will usually suffice to treat the electric field as a test field which does
not influence the spacetime geometry. In this case neutral particles are not affected, but
charged particles or fluids can be very sensitive to the black hole charge. Black holes with
a large electric charge (charge to mass ratio of order unity) will presumably be very short
lived, but may nevertheless be relevant for specific scenarios. It is therefore of interest
to analyse if signatures of a Kerr-Newman black hole can be detected, either from (short
lived) strongly charged black holes or from (eternal) black holes where the net charge is
very small. We considered the first possibility in [69, 107](H1,H2) and the latter in [108,
109](H7,H8) and the related paper [110].

As explained in section 2.1, the physical parameters of the central object can be read
off from the observation of certain (general relativistic) effects on the orbiting particles.
The influence of a net electric charge on observables of neutral particles was covered in our

14



0 1 2 3
0

1

2

3

4

5

Figure 2: Bound orbit of a charged particle in the northern hemisphere of a Kerr-Newman
black hole with magnetic monopole. The left plot shows the three-dimensional orbit. Here
grey spheres indicate the horizons. The right plot shows the projection of the orbit onto
the (r, z)-plane. Both plots are in units of m = GM/c2. [Figure taken from [107](H2)].

paper [69](H1). In particular, we considered the periastron shift and the Lense-Thirring
effect, which I already explained in section 2.1. Later we analysed in detail the effects of
a net electric charge on charged particle motion in [107](H2). We classified all possible
particle orbits, derived analytical solutions to the equations of motion, and discussed some
relativistic observables. The two papers [69, 107](H1,H2) did not make any assumption
on the specific astrophysical setting and are rather kept totally general regarding the mass,
rotation, and charge parameters of the black hole as well as the charge parameter of the
orbiting test particle. In [107](H2) we also included for completeness a magnetic monopole
charge of the black hole. Such a setting breaks the reflection symmetry to the equatorial
plane, which leads for instance to off-equatorial circular geodesic motion. Figure 2 shows
a distinctive orbit which is not symmetric to the equatorial plane and only moves in the
northern hemisphere of the black hole. Non-reflection symmetric orbits and in particular
off equatorial circular charged particle orbits are not possible without a magnetic monopole
and therefore represent a distinctive possibility to detect such highly speculative monopoles.
Note however, that spinning particles can also form off-equatorial circular orbits [111], see
also the next section 2.3.

In a more astrophysically motivated study, we then moved on to discuss accretion from
a rotating spherical shell of (charged) particles onto a Kerr-Newman black hole [108](H7).
Here we assumed a very small charge to mass ratio of Q/M ≈ 10−18 to 10−21. We in-
vestigated the influence of a vanishingly small charge of the black hole on the accretion
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Figure 3: Streamlines, velocity field, and density field of plasma accreting onto a negatively
charged Kerr-Newman black hole with rotation parameter a = 0.1. Black and white
streamlines describe electron and proton motion, respectively. The density n/n0, where
n0 is the initial density at the spherical rotating shell, is plotted using a logarithmic scale
colour code. All parameters except the charge of the black hole coincide in both plots. In
the left plot we chose eQ = 0.5 and in the right plot eQ = 1, where e is the dimensionless
charge parameter of electrons. The inset is a zoom on the equator. [Figure taken from
[108](H7)].

of a very diluted plasma, where particle collisions and electromagnetic interactions can be
neglected. For this case, and within the region of applicability of our model, we found
that the influence of the charge of the black hole is significant, contrary to the intuition.
In figure 3 we show the influence of a very small change of the black hole charge onto the
motion of electrons and protons as well as the resulting density distribution of the accreting
plasma. As can be seen in figure 3, the result is very sensitive to the charge product eQ,
where the dimensionless charge parameter e ≈ −2 × 1021 of the electron is related to the
charge ε of the electron in SI units by

e =
ε

µ
√

4πε0G
, (21)

where µ is the mass of the electron.
We further investigated within this model the signature of the charge of a black hole

on the formation of an accretion disk. In our model we neglect particle interactions, which
implies that the inner edge of the forming accretion disk will be located at the innermost
stable circular orbit for the considered electrons and protons. The outer edge will be located
at the outermost radius where the accreting particles hit the equatorial plane. Accordingly,
if the outer edge as calculated from the model is located at a radius smaller than the ISCO,
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nearly all particles of the considered type (electrons/protons) will end up in the black hole.
Therefore, different resulting scenarios dependent on the initial conditions were discussed
in our paper [108](H7), including for instance the possibility that the accretion disk will
develop the same charge as the black hole, as the oppositely charged particles will selectively
be swallowed by the black hole.

The idea that the charge of a black hole, tiny as it might be, can have a significant
influence on charged orbiting matter was further investigated in [109](H8) and [110]. These
papers discuss equilibrium configurations which can serve as a relativistic analytical model
for a geometrically thick accretion torus, also called Polish Doughnut [112–115]. This
model was developed for disks which accrete at or above the critical Eddington limit. This
is a limit on the accretion rate onto a compact object derived from the balance of radiation
pressure and the gravitational attraction. For disks accreting at or above the Eddington
limit it can be argued that z/r . 1, where z is the vertical height and r the radius of the
disk [115]. Moreover, from the assumption of hydrostatic equilibrium it can be argued that
the viscosity has to be very small [115]. Under these assumptions, a stationary model of a
polytropic perfect fluid in hydrostatic equilibrium orbiting a black hole can be constructed.
The fluid is assumed to move circularly around the black hole, classically with a constant
angular momentum. This is however an ad hoc assumption and more generally the angular
momentum is a function of the angular velocity alone, as ensured by the relativistic von
Zeipel theorem [116]. The constructed stationary fluid tori can then be considered as a
model of accretion if an inner cusp appears, analogously to a Lagrange point on the Roche
lobe, through which material can flow from the torus to the black hole. For further details
on the Polish doughnut model I refer to the living review [117] and references therein.

In our paper [109](H8) a very general method was developed to construct stationary
Polish Doughnut equilibrium configurations of a (charged) perfect test fluid with a poly-
tropic equation of state in circular motion. This method is applicable in any stationary
and axially symmetric spacetime with a mirror symmetry with respect to the equatorial
plane, and electromagnetic test fields which exhibit the same symmetries. Here the notion
of a test fluid implies that the gravitational and the electromagnetic field of the fluid are
very small and can be neglected. The notion of a test field means that its influence on
the spacetime geometry is neglected. In the following I will outline the model resulting
from the construction method developed in [109](H8) in some more detail and explain its
relation to other works in the literature.

In the context of Polish Doughnuts, equilibrium configurations of a charged fluid or-
biting a nonrotating charged black hole were first considered in [118], and with additional
external magnetic fields in [119, 120]. The basic equations for this kind of model are
Maxwell’s equations

∇(µFνρ) = 0 , (22)

∇µF νµ = µ0J
ν , (23)

and energy-momentum conservation ∇µTµν = 0. Here (Fµν) is the electromagnetic tensor
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of the internal or external test field and (Tµν) is the total energy-momentum tensor with
a matter part and an electromagnetic part. The four current

Jµ = qUµ + σFµνUν , (24)

can be split into a part which is parallel to the four velocity (Uµ) of the fluid, and a
conduction current related to the conductivity σ. Here q is the charge density. It was
shown by Carter [121, 122] that the most general four current within the assumption of
stationarity, axial symmetry and circularity has the form Jµ = (J t, Jϕ, 0, 0). In General
Relativistic MagnetoHydrodynamics (GRMHD) simulations usually the limit of ideal mag-
netohydrodynamics is used, which means that σ is taken as infinite. This in turn requires
a vanishing Lorentz force FµνUν = 0 to keep the conduction current finite. In our model
[109](H8), for circular motion and the assumed symmetries of the electromagnetic field
this condition reduces to ∂µAt + ω∂µAϕ = 0, where (Aµ) is the electromagnetic potential
and ω is the angular velocity. As shown by Bonazzola et al [123], this condition can only
hold if the angular velocity ω is constant or a function of Aϕ. The integration of the con-
dition of vanishing Lorentz force then implies a specific relation between the components
of the electromagnetic potential (Aµ), which in the most simple case of constant ω gives
At = −ωAϕ + C for a constant C.

In our paper [109](H8) we are primarily interested in the effects due to a dipole magnetic
field. As the associated electromagnetic potential does in general not satisfy the conditions
derived from the vanishing Lorentz force condition mentioned above, we did not assume
ideal magnetohydrodynamics. Note that also the electromagnetic potential associated to
the Kerr-Newman black hole, see equation (5), is not compatible. A finite but non-zero
conductivity would then in general lead to radial and latitudinal currents, that violate the
circularity assumption. In [118–120] and in our papers [109](H8) and [110] we therefore
chose σ = 0. For a more involved but equally special approach with a direction depend
conductivity we refer to [109, 124, 125]. We are therefore taking the opposite limit to the
often employed ideal magnetohydrodynamics. Physical systems where such an extreme
assumption can be justified are discussed in [118].

As mentioned above, note that in this model the electromagnetic field which is created
by the circling charged fluid is assumed to be much smaller than the electromagnetic
fields originating from the charged black hole or from the external source and is therefore
neglected. As the external and black hole electromagnetic fields are as well assumed to be
small, this implies that they need to be strong enough to compete with the field of the
fluid but small enough to not influence the spacetime geometry. This assumption was of
course checked for all constructed examples in our papers [109](H8) and [110].

Next to the assumption of negligible conductivity, the integrability condition of the
central pressure equations gives rise to further assumptions on the angular velocity of fluid
tori and their charge distribution. For the general case that the four potential of the
electromagnetic field of the black hole or an external source contains both electric and
magnetic components (meaning that there is a gauge where (Aµ) = (At, Aφ, 0, 0)), we
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assumed rigid rotation of the charged fluid torus to ensure integrability. In the special
cases that either the electric or the magnetic component vanishes this assumption is not
needed. Note that in the uncharged case a rigidly rotating equilibrium configuration of
a fluid torus is not possible [109](H8). Furthermore, to ensure integrability the charge
distribution within the fluid torus is assumed to be a function of S = At+ωAφ, where ω is

the angular velocity. More specifically, contours of constant KU t =
ρqUt

p+ε need to coincide
with contours of constant S, where ρq is the charge density, ε is the energy density, and
p = p(ε) is the pressure.

In addition to the general construction method of equilibrium configurations, in [109](H8)
we also discussed the particular case of a Kerr spacetime with a magnetic dipol test field
aligned with the rotation axis, which then is a direct generalisation of [118] to a rotating
compact object. This scenario may for instance approximately model a compact neutron
star with a strong magnetic field. We discussed equilibrium configurations in the equato-
rial plane, named equatorial tori, and on the rotation axis, named polar clouds. We found
that the rotation has a major impact on the equilibrium structures. In particular, polar
clouds can only exist because the frame dragging induces an electric field on the rotation
axis which can balance the gravitational attraction. It would therefore be very interest-
ing to look for observational signatures of the existence of polar cloud like configurations
around neutron stars. However, our constructed model is too idealized to make reliable
predictions on how such a signature would look like and further investigations using so-
phisticated GRMHD simulations are mandatory. In figure 4 an equilibrium configuration
of an equatorial torus and a polar cloud is shown. Both examples are constructed such
that the resulting structure shows an inner cusp, where matter can flow onto the central
object.

We will now turn to a completely different motivation to consider charged black holes,
coming from the problem of singularities in GR. The singularity theorems pioneered by
Penrose [126] and Hawking [127] show that under certain reasonable assumptions the for-
mation of singularities cannot be avoided, as we already discussed in the introduction.
There are several versions of singularity theorems around, see for instance [8, 9]. Roughly
stated, there are three types of assumptions in all the theorems. Firstly, an energy condi-
tion on the energy-momentum tensor, therefore restricting the form of matter. Secondly,
a condition on the causal structure of the spacetime, usually global hyperbolicity, thereby
keeping some form of causality. Finally, there is a trapped region in spacetime, where grav-
ity strongly pulls matter together. The appearance of singularities in the theory is quite
problematic, as GR there looses its predictive power. As I already mentioned, to somehow
deal with this problem, the cosmic censorship conjecture was formulated, see [12] for a
review and [13, 128] for very recent results. Basically it states that a singularity should
always be inaccessible by an outside observer, hidden behind an event horizon.

As soon as the singularity theorems were proven, it was tried to circumvent them by
relaxing the assumptions which went into their statement. I will focus here on attempts
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Figure 4: Example of an equatorial torus and a polar cloud in a Kerr spacetime with a
magnetic dipole test field. On the left is a sketch of the setup. The middle panel shows
the energy density in a logarithmic colour code for an equatorial torus with an inner cusp,
where matter can flow out of the torus onto the central object. Here the central energy
density is ε ≈ 3×10−15 (εSI ≈ 9×1022(MSUN/M)2 J/m3) which decrease gradually to zero
at the edge of the torus. On the right the energy density of a polar cloud is shown, with
a central energy density of ε ≈ 1 × 10−15 (εSI ≈ 2 × 1023(MSUN/M)2 J/m3). [Figure from
[109](H8)].
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to relax the energy conditions, which will lead to structures very similar to black holes,
with an event horizons but without a singularity. Such constructions are usually called
regular black holes, although they are not ”holes” in the sense that they lack a singularity.
Building on ideas of Sakharov [129] and Gliner [130], Bardeen was the first to developed a
model of such a regular black hole [131]. For the construction Bardeen used an equation
of state of the form pressure equals negative energy density, which is actually the equation
of state of the cosmological vacuum and can be identified with the cosmological term in
Einstein’s equation,

Gµν + Λgµν = κTµν . (25)

Here Gµν is the Einstein tensor, Λ is the cosmological constant, κ is Einstein’s gravitational
constant, and Tµν is the energy-momentum tensor. By shifting the cosmological term to
the right hand side and considering it as part of the energy-momentum tensor, the strong
energy condition is violated. This procedure replaces the singularity at the center by a
regular de-Sitter core. Let us emphasize here that Bardeen’s construction as originally
formulated is a model, rather than a solution of Einstein’s equation with some reasonable
right hand side. Following Bardeen’s idea, a large number of models have been developed,
see for instance [132, 133] for spherically symmetric models and [134–138] for some recent
results on rotating models.

Much later, in 2000, it was realized by Ayón-Beato and Garćıa [139], that the Bardeen
model can actually be reinterpreted as a magnetic monopole solution to the Einstein equa-
tions coupled to a non-linear electrodynamics of the Plebański class [140]. Very recently,
it was also interpreted as a non-Coulomb electric solution [141]. The reinterpretation of
Ayón-Beato and Garćıa was based on an earlier work by the same authors, where they
presented the first exact regular black hole solution to the Einstein equations coupled to
a non-linear electrodynamics [142]. This solution, which we call the Ayón-Beato–Garćıa
spacetime, contains two parameters which are related to the mass of the black hole and its
electric charge. It is asymptotically flat, and at spatial infinity it reduces to the Reissner–
Nordström spacetime, see the metric (2) with a = 0, P = 0. In the limit of vanishing
charge the singular Schwarzschild solution is recovered.

These charged black hole spacetimes which are regularized by coupling GR to a non-
linear electrodynamics therefore present an interesting possibility for solving the problem
of singularities. In this sense, the coupling of GR to a non-linear electrodynamics is able to
change basic properties of spacetime [144]. At least the non-rotating models and solutions
generally obey the weak energy condition (but violate the strong and dominant energy
conditions). Let me emphasize that the regularity of the spacetime is independent of the
value of the charge parameter as long as it is not exactly equal to zero. Any ever so small
net charge is sufficient. However, the particular Lagrangian of the Plebański class taken
by Ayón-Beato and Garćıa to construct their solution is basically chosen such that the
construction of a regular black hole works. It would be desirable to add further physical
motivation for their particular choice.
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Figure 5: Existence and stability of circular orbits in Ayón-Beato–Garćıa spacetime (left)
and Reissner–Nordström spacetime (right). The dark grey areas correspond to stable
circular orbits, and the light grey areas indicate instable circular motion. In the white
regions no circular motion is possible. [Figure adapted from [143](H5)].

In our paper [143](H5) we discussed if the regular Ayón-Beato–Garćıa spacetime can
be distinguished from the singular Reissner–Nordström spacetime by observing the motion
of particles. We discussed the radial range where stable or unstable circular motion is
possible, and in particular analysed the innermost stable circular orbit as a function of the
black hole charge Q. The result is shown in figure 5. Compared to the Reissner-Nordström
spacetime, the overall structure of existence and stability changes only significantly for
very large values of Q ≥ 2, which corresponds to a spacetime without horizons. Another
interesting difference is the value of the charge where the two horizons merge to a single
horizon, which is quite different in the two cases. Up to this value, the ISCO in Ayón-Beato–
Garćıa spacetime has a smaller radius coordinate than in Reissner–Nordström spacetime.
Note that in both spacetimes the radius coordinate is related to the length L of a spacelike
circle of radius r as measured with the metric by L = 2πr. In this sense there is a
certain physical interpretation of this coordinate. Ultimately, one should however compare
invariant observable quantities.

Based on the analysis of circular motion we classified all possible types of orbits for
neutral particles and particles with a small charge according to the constants of motion.
We also derived the explicite analytical solutions for the equations of motion in terms of
hyperelliptic functions. For a comparison of Ayón-Beato–Garćıa spacetime and Reissner-
Nordström spacetime, we calculated the first non-vanishing correction to the Schwarzschild
periastron advance due to the charge Q. As the Ayón-Beato–Garćıa spacetime coincides
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with the Reissner-Nordström spacetime at spatial infinity, we found that for large radii in
both cases the periastron advance Ωr is given to first order in Q2 by

Ωr ≈
6π

p
− π

p
Q2 , (26)

where p is the dimensionless semilatus rectum. In the strong field however, Ωr differs for
the two spacetimes, which may open a way to observationally distinguish them.

Our paper [143](H5) contributed to trigger renowned interest in the Ayón-Beato–
Garćıa spacetime, and further methods to observationally test the Ayón-Beato–Garćıa
black hole were explored in the recent literature. Quasi normal modes, which for instance
correspond to the ring down of a black hole after a merger event, were investigated in [145,
146]. The connection to the observation of accretion disks was explored by calculating
the spectral lines originating from the inner parts of Keplerian discs [147], by deriving the
Paczyński-Wiita potential [148], and by considering epicyclic frequencies [149]. Particle
motion in a rotating version of the Ayón-Beato–Garćıa spacetime was analysed in [150].

2.3 Spinning particles

In General Relativity the motion of a small but extended body around a large central
body is completely determined by Einstein’s field equations. In principle, we could employ
a complicated (numerical) solution procedure to the full non-linear equations to treat such
a problem, and this is indeed usually done for the highly dynamical motion of a binary of
compact objects with comparable masses, for instance in merger events producing gravi-
tational waves. However, it is also clear that for extreme mass ratios the influence of the
small body on the gravitational interaction is in some sense negligible. As a first approxi-
mation, we may treat the particle as pointlike which then results in geodesic motion. More
generally, we may assume that the gravitational field produced by the large central body is
sufficiently homogeneous on the length scale of the small body to neglect tidal effects. This
allows to define a narrow world tube for the particle motion, where a multipole expansion of
the energy-momentum tensor (Tµν) of the small body can be performed to take its internal
structure into account. The equations of motion for the small body can then be covariantly
derived from the energy conservation law ∇µTµν = 0 [151–158]. These equations can be
significantly simplified by cutting off the multipole expansion at some low order. As the
simplest possibility beyond geodesic motion only the mass monopole and the spin dipole
are retained, resulting in the so called pole-dipole approximation [151–153].

In the following we will only consider the pole-dipole approximation. We will refer to
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the resulting equations of motion1

Dpa
dτ

= −1

2
Rabcdu

bScd , (27)

DSab

dτ
= paub − pbua , (28)

as the Mathisson-Papapetrou-Dixon (MPD) equations. Here ua = dxa/dτ is the (kine-
matical) four velocity defined as tangent to the reference worldline xa(τ) parametrised by
proper time τ , pa is the (dynamical) four momentum, Sab is the spin tensor, and D

dτ is the
directional covariant derivative along the trajectory. Note that for extended particles in
general pa is not parallel to ua, in contrast to geodesic motion.

The MPD equations contain more unknowns than equations and, therefore, have to be
closed by the so called Spin Supplementary Condition (SSC). There exist several SSCs,
which are related to different choices of the reference worldline of the particle within its
worldtube [160]. Naively, we could imagine to shrink the size of the particle to a point to
define a unique reference worldline. However, as shown by Møller [161] in the framework
of special relativity, the particle would spin with superluminal speed if its radius is below
the Møller radius r = S

m , where 2S = SabS
ab is the spin length and m2 = −papa the

(dynamical) mass. The arbitrary choice of the SSC can therefore physically be related to
the arbitrary choice of the reference worldline within the non-pointlike extended body. For
every choice of the reference worldline, we may then find a reference frame where the mass
dipole Si0 vanishes and, therefore, find an observer who associates the center of mass of the
body with the reference worldline. In this sense the choice of the SSC defines the center of
mass of the extended particle.

A wide range of SSCs has been discussed in the literature, and a proper choice is
basically determined by the problem under investigation and considerations about the
relation between (ua) and (pa), which is also fixed by the SSC. One popular choice is the
covariant condition of a vanishing mass dipole,

SabVb = 0 , (29)

where Vb is a timelike vector associated with the observer who sees the reference worldline
as the motion of the center of mass. The Tulczyjew SSC uses Vb = pb, giving

Sabpb = 0 . (30)

For this SSC the associated observer is the zero angular momentum observer (ZAMO), and
the dynamical mass m as well as the spin length S is conserved. Another popular choice

1In our paper [159](H4) we used signature (+,−,−,−), but here we use signature (−,+,+,+) to be
consistent throughout the thesis. This results here in some minor changes in the signs as compared to
[159](H4).
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is Vb = ub, giving the Frenkel (or Pirani) SSC

Sabub = 0 . (31)

The related observer is comoving, and the (kinematical) mass M = −paua as well as the
spin length S are conserved. The relation of (pa) and (ua) is for both the Tulcyjew and
the Frenkel SSC the same and can be given explicitly, see [162].

According to the MPD equations the spin of a test particle will couple to the curvature
of spacetime. This of course leads to observable effects on the motion of spinning particles
as compared to non-spinning bodies. These effects are of very high importance for the
detection and analysis of gravitational waves generated by the inspiral of compact objects.
There are basically three approaches to handle this problem. Firstly, for arbitrary mass
ratios but somewhat large separation of the two objects the weak field and slow motion
approximation, i.e. the post-Newtonian (PN) approximation, can be used to determine
the influence of the spin on the motion of the two objects. For reviews on the different
approaches to the PN approximations see [163–166]. Secondly, the highly dynamical strong
field regime close to the merger of two compact objects can be treated using numerical
relativity methods, where considerable progress has been made in the last two decades,
in particular after 2005 [167]. For recent reviews see for instance [168–171]. Finally, for
extreme mass ratios perturbation theory is used to calculate the deviation of the less
massive body from a geodesic trajectory. This includes predominantly the effects due to
the gravitational self force, see [172] and references therein, but also the effects due to spin-
curvature coupling. For completeness, note that the effective one-body formalism, which is
basically a PN method, aims to interpolate between the three different approaches, see e.g.
[173] for a review and [174] for a comparison of the different approaches. All these methods
are absolutely necessary to detect and analyse gravitational wave signals both on ground
with LIGO/Virgo type detectors and in space with the upcoming LISA mission. The spin-
curvature coupling under discussion here will be of particular importance for the latter,
which will among other detect extreme mass ratio inspirals [68]. For some recent results on
the influence of spin-curvature coupling on gravitational wave creation for extreme mass
ratios see for instance [175–178].

One particularly unsettling property of the motion of spinning particles is the onset
of chaos. Suzuki and Maeda [179] showed that the motion of sufficiently rapid spinning
particles becomes chaotic in the Schwarzschild spacetime. The same authors found then
that the innermost radially stable orbit of spinning particles in the equatorial plane of the
Kerr spacetime becomes unstable in the direction perpendicular to the equatorial plane for
prograde orbits with sufficiently large spins [180]. For general orbits of spinning particles
in the Kerr spacetime, it was shown by Hartle [181, 182], that chaos generally exists but
belongs to astrophysically unrealistic situations or to parameter regimes violating the pole-
dipole approximation. The explicite dependence of the onset of chaos on the spacetime
and particle parameters was studied by [183]. In conclusion, the observation of chaos due
to the spin of particles appears to be unlikely or at least very difficult.
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Figure 6: Innermost radially stable orbit for a spinning particle with (anti-)aligned spin in
the equatorial plane of a Kerr spacetime. The radius r̄ = r/m, the rotation parameter ā =
a/m, and the spin parameter S̄ = S/(mm) are rescaled such that they are dimensionless
using the geometrised mass m = GM/c2 of the black hole. The solid blue line corresponds
to prograde motion and the dashed red line to retrograde motion. [Figure from [159](H4)].

In our paper [159](H4) we analysed the particular scenario of a spinning particle or-
biting a Kerr black hole using the Tulczyjew SSC. We considered motion in the equatorial
plane and aligned or anti-aligned spin. For this case we focused on two specifically relevant
quantities: the innermost stable circular orbit (ISCO), which marks the transition from
stable to unstable circular motion, and the periastron shift, which was already introduced
in section 2.1. The influence of the spin-curvature coupling on the periastron shift, and
also on the deflection of light, was in the Schwarzschild spacetime already considered by
Micoulaut in 1967 [184] to first order in the spin using the Tulczyjew SSC. More recently,
the periastron shift of spinning black hole binaries was discussed in the PN framework for
quasi-circular orbits [185]. Tod, Calvani, and Felice [186] showed that for aligned spin of
a central Kerr black hole and the particle the trajectory always remains in the equatorial
plane. They also drew the ISCO for the extreme Kerr spacetime using the Tulczyjew SSC.
Later Abramowicz and Calvani [187], using the same scenario as in [186], discussed for
prograde orbits the first order in the spin correction due to spin-curvature coupling on
physical quantities of particles on the ISCO, like the orbital angular velocity. They already
noticed that anti-aligned spin can stabilize circular orbits very close the black hole. In our
work [159](H4) we did not restrict to linear or any other order in the spin but used the
full nonlinear equations within the pole-dipole approximation. For the calculation of the
ISCO and the periastron shift we used the Tulczyjew SSC.

In Kerr spacetime the geodesic ISCO is always a prograde orbit, which may even reach
the horizon for maximally rotating black holes. This is probably the reason why earlier
works focused on prograde motion. We showed however in our paper [159](H4) that for
anti-aligned spin the innermost radially stable orbit can be retrograde. In figure 6 the
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innermost radially stable orbit of a spinning particle in Kerr spacetime is plotted. We see
that in particularly for slowly rotating black holes small anti-aligned spins are sufficient
for a retrograde ISCO. It is however an open question if these retrograde ISCOs are also
stable in the direction perpendicular to the equatorial plane, and further investigations in
this direction are necessary.

In [159](H4) we also derived an explicit analytical expression in terms of hypergeometric
functions for the periastron shift. We compared our results to a PN analysis for arbitrary
mass ratios of quasi circular orbits by Le Tiec et al. [185]. In the particular case that the
mass ratio becomes small we assessed the accuracy of the PN result, that was derived to
first order in the spin, and found that for large spins, say dimensionless spin length of order
10−1, and small radii, say r = 500m in geometrised units, the second order contributions
to the perisastron shift become important.

It was recently shown that the orbits of spinning particles will in general not be sym-
metrical to the equatorial plane [188]. Consequently, it makes sense to search for circular
orbits which are not located within the equatorial plane. Indeed, our results can be gen-
eralised to off-equatorial circular ISCOs, as recently shown in [111]. Such off-equatorial
circular orbits can also be found for test particle motion in Kerr-Newman spacetimes with
a magnetic monopol, as mentioned in section 2.2.
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3 Probing General Relativity with time measurements

According to Special Relativity space and time are no longer distinct concepts. They are
to be understood as a single merged four dimensional spacetime. Different observer will in
general see different three dimensional slices of the four dimensional spacetime, resulting in
different notions of simultaneity and different measurements of lengths. As a rule of thumb,
one can say that moving clocks go slower and moving sticks become shorter. However, many
of the so-called paradoxa of Special Relativity are related to the wrong application of these
rules, and for a correct interpretation one should consider the complete four dimensional
picture.

In General Relativity the spacetime is no longer flat but will be curved due to the
presence of mass and energy. This induces additional effects on time measurements in a
gravitational field. Again, one may formulate a rule of thumb, saying that higher clocks go
faster. As in Special Relativity this is however often too simplified if we want to explore
the underlying theory. In the following I will explain some of the peculiar clock effects in
general relativity and how they may be used to test the theory of gravitation.

3.1 Gravitational time delation

Probably the most fundamental postulate of General Relativity is the equivalence principle.
It basically states that in a small enough region of spacetime, where gravity gradients
can be neglected, the spacetime of Special Relativity is recovered. More specifically, a
homogeneous gravitational field with acceleration ~g can be mimicked by a system with
constant acceleration ~a = −~g in the absence of any gravitational source. The equivalence
principle has several important observational implications, which can be tested. For our
purposes the most important is the gravitational time delay.

Consider an homogeneous gravitational field with acceleration g in negative z-direction.
To describe this situation in the framework of Special Relativity, we switch to a frame with
constant acceleration a = −g in positive z-direction. For this, it is useful to introduce the
Minkowski metric in Rindler (or Kottler-Møller) coordinates [189]

ds2 = −
(

1 +
gz

c2

)2
c2dt2 + dx2 + dy2 + dz2 . (32)

An observer who is at rest in the homogeneous gravitational field is mimicked by an observer
with a constant acceleration a = −g in the absence of any gravitational field. Such an
observer always remains at her spatial coordinate position in the Rindler coordinates (32).
From the normalisation condition for timelike motion,

−c2 = gµν
dxµ

dτ

dxν

dτ
(33)

where τ is the proper time of the observer, we derive the relation between the proper time
and the coordinate time of an observer at rest in the homogeneous gravitational field. We
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find

−c2 = −
(

1 +
gz

c2

)2
c2

(
dt

dτ

)2

⇒ dτ =
(

1 +
gz

c2

)
dt . (34)

For two observers A and B at heights zA and zB in the homogeneous gravitational field we
derive

dτA =
(

1 +
gzA
c2

)
dt =

1 + gzA
c2

1 + gzB
c2

dτB . (35)

Then zA > zB implies dτA > dτB. This nicely illustrates the above mentioned rule that a
clock at a higher position in the gravitational field will run faster.

Obviously, to determine the difference between the rate of two clocks we somehow have
to compare them. This can naturally be done by exchanging light signals. In the considered
case of an homogeneous gravitational field with two observers at rest, we send light signals
in z-direction. Assume A sends a light signal at τA = 0 which arrives at B at time τB = 0.
A second light signal is emitted by A at τA = ∆τA and received by B at τB = ∆τB. We
can then define the gravitational redshift, usually denoted by z, as

z + 1 =
νA
νB

=
dτB
dτA

= lim
∆τA→0

∆τB
∆τA

. (36)

Here νA and νB are frequencies as measured by the respective observers. The definition
(36) is general; it holds for any kind of observer, not only observers at rest. In section 3.2,
see also our paper [190](H6), we will explain in some more detail how surfaces of constant
gravitational redshift can be used to define the geoid.

The gravitational redshift is well tested in several experiments. From the first successful
experimental verification in 1960 by Pound and Rebka [25], who tested the effect on the 10%
level, the accuracy has been drastically improved [26, 191]. Until very recently however,
the best test by Gravity Probe A was about 40 years old, with a confirmation on the 0.01%
level [192]. A new verification of the gravitational redshift has been carried through very
recently using two Galileo satellites, which accidentally have been injected in a slightly
eccentric orbit. By a careful data analysis of the two satellites the so far best test of the
gravitational redshift could be achieved, which improved the result of the Gravity Probe A
experiment by a factor of four or more [20, 21]. A non-competitive test in the strong field
regime close to the supermassive black hole in the galactic center has also been reported
very recently [58].

Another aspect of the gravitational time delay is the changing proper velocity of light
in a gravitational field. To derive the equation of motion for light travelling in z-direction,
we can use the condition for null paths

gµν
dxµ

ds

dxν

ds
= 0 , (37)
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where s is an affine parameter along the null curve. We find

0 = −
(

1 +
gz

c2

)2
c2

(
dt

dτ

)2

+

(
dz

dτ

)2

⇔ dz

dt
= ±c

(
1 +

gz

c2

)
. (38)

The proper velocity of light at the spatial point with coordinate z as seen by observer A is
then given by

dz

dτA
=
dz

dt

dt

dτA
= ±c c2 + gz

c2 + gzA
. (39)

From this formula, we see that actually light decelerates when ”falling” in a gravitational
field from zA to z < zA. This fact is also reflected in the proper round trip time TA of light
from A to B and back to A as measured by the observer A,

cTA = 2c

∫ τA(zB)

τA(zA)
dτA = 2c

∫ zB

zA

dτA
dz

dz = ±2

∫ zB

zA

c2 + gzA
c2 + gz

dz

= ±2

(
c2

g
+ zA

)
ln
c2 + gzB
c2 + gzA

(40)

≈ 2|zA − zB| ±
g

c2
(zA − zB)2 . (41)

Here the plus sign corresponds to zA > zB, i.e. an inward trip, and the minus sign to
zA < zB, i.e. an outward trip. The last line (41) shows that compared to the Newtonian
travel time (meaning here distance over c), an inward trip in an homogeneous gravitational
field is delayed, while an outward trip is advanced.

The effect of the delayed inward travel time of light is an analog of the Shapiro delay [27],
which was formulated for radar pulses to the inner planets using the Schwarzschild metric
(6). The case of an homogeneous gravitational field can be handled by using solely Special
Relativity and the equivalence principle, which implies that any theory of gravity obying
the equivalence principle will also exhibit the travel time delay/advance calculated above.
In contrast, the Schwarzschild metric represents an inhomogeneous field derived from the
Einstein equation. Therefore, any test of the time delay/advance in a Schwarzschild metric
(or more general solutions of the Einstein equation) is a genuine test of General Relativity.

To understand the Shapiro delay better let us consider the simple case of radial signals
in the Schwarzschild metric (6),

g = −
(

1− 2m

r

)
d(x0)2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2) .
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Analogously to the case of an homogeneous gravitational field we can derive the proper
velocity of light using (37), which for radial motion yields

dr

dt
= c

(
1− 2m

r

)
. (42)

For an observer A at rest we find

dτA =

√
1− 2m

rA
dt . (43)

Therefore, the proper velocity of light as seen by observer A is

dr

dτA
= c

1− 2m
r√

1− 2m
rA

. (44)

As compared to the case of an homogeneous gravitational field we see here an interesting
effect: before, the proper light velocity was smaller than c for z < zA, meaning closer to
the gravitating body, and larger than c for z > zA. Here, we see that for r & rA the
proper light velocity is smaller than c. More specifically, the proper light velocity as seen
by observer A is smaller than c for

r <
2m

1−
√

1− 2m
rA

= 2rA +O(m) . (45)

The round trip time from observer A to the radius rB and back as measured by observer
A for the considered radial motion can then be derived by integrating (44),

cTA = 2c

∫ rB

rA

dτA
dr

dr = 2

√
1− 2m

rA

(
rB − rA + 2m ln

rB − 2m

rA − 2m

)
(46)

≈ 2|rB − rA| ± 4m

(
ln
rB
rA
− rB − rA

2rA

)
. (47)

The last term is the relativistic correction which encodes the delay/advance relative to the
Newtonian travel time. Therefore, usually only this term (or half of it) is called the Shapiro
delay.

The Shapiro delay is also experimentally very well tested. While the first experiment
in 1968 only confirmed the effect on the percentage level [28], later the accuracy could be
improved significantly. Up to now the best experimental verification was achieved with the
Cassini spacecraft, to an accuracy of about 0.001 % [29].

The timing of pulsars in binary systems can also test the Shapiro delay. As mentioned
in the introduction, in the timing of the double pulsar system PSR J0737-3039 a test of
the so called shape parameter of the Shapiro delay validated the GR prediction to 0.05%.
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This particular parameter emerges from the post-Keplerian parametrisation used in pulsar
timing, where two parameters called shape and range are introduced to model the Shapiro
time delay.

A major science goal of upcoming observation facilities like the Square Kilometer Array
(SKA) [106] or the next generation Very Large Array (ngVLA) [193] is the detection of
pulsars orbiting the Sagittarius A*, the supermassive black hole in the center of our galaxy.
Such a detection would enable exciting new science like the accurate determination of the
mass and spin of Sagittarius A* as well as tests of the no-hair theorem [194].

In our paper [195] we derived an exact expression for the Shapiro delay for the case of
a pulsar orbiting a supermassive Schwarzschild black hole. In this extreme mass ratio we
treated the pulsar as a test particle. We confirmed the validity of the usually employed
post-Keplerian approach in all but the most extreme setup of an edge-on orbit, where the
pulsar is directly behind the black hole.

3.2 Geodesy with clocks

Geodesy is the science of accurately measuring and mapping the Earth [196]. One of
its most important tasks is to determine the gravitational field of the Earth. From the
gravitational field we can then conclude on global and regional mass variations, including
for instance the loss of polar ice sheets, the mass flux contribution to the sea level rise,
or groundwater movement. Moreover, the gravitational field data is necessary to refine
reference systems, which for instance are used for height determination and for Earth
observation. Therefore, geodesy contributes fundamentally to monitor climate change.

As explained in section 3.1, the gravitational field has an influence on the rate of clocks.
In the recent years, there was a tremendous increase in the accuracy and stability of op-
tical atomic clocks. The state of the art laboratory optical atomic clocks have inaccuracy
reaching the 10−18 level [197–199], which makes them the most accurate available mea-
surement devices. Excitingly, the principles of Relativity enable to use these extremely
accurate devices for measurements of the gravitational field. The basic quantity which can
be determined by clock comparison is the gravitational redshift (36). In 2010 it was already
demonstrated that via measuring the gravitational redshift by a direct clock comparison a
height difference of 30 cm can be resolved [200].

For geodetic applications, it is absolutely mandatory to compare clocks at different
places to establish height systems. A network of optical fibre links between national metrol-
ogy institutes in Europe is planned and already partly established. A frequency transfer
through a long fibre link of about 1800 km with fractional inaccuracies at the 10−19 level
was already demonstrated [201]. Such fibre links can be used for highly accurate compari-
son of the gravitational redshift of the linked remote clocks and, therefore, to determine the
relative heights of the clocks. Moreover, transportable optical clocks are under active de-
velopment, reaching the 10−17 level [202]. These kind of transportable clocks have already
been used to compare clocks directly and remotely [203].
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Any statement of height data relies on the definition of a reference surface. One partic-
ularly important reference surface in geodesy is the geoid, which was defined by Gauss as
the mathematical figure of the Earth. The usual (Newtonian) definition of the geoid is the
equipotential surface of the sum of the gravitational and the centrifugal potential of the
Earth which is closest to mean sea level. Relativistic effects have been added to this clas-
sical definition in the framework of the weak field and slow motion (i.e. post-Newtonian)
approximation of General Relativity by Soffel et al [204]. They introduced a so-called a-
geoid based on acceleration measurements and an u-geoid based on clock measurements.
Within the setting discussed in [204] it was shown that the two definitions coincide. For
a more recent treatment of the geoid in the post-Newtonian framework we refer to the
reviews [205–207]

The post-Newtonian framework used to define the geoid should probably be sufficient
for applications on or near the Earth. However, from a conceptual point of view it is more
satisfactory to find a definition of the geoid which does not rely on a specific approximation
of General Relativity. In 2015 Kopeikin et al [208] introduced an exact definition of the
u-geoid as a particular surface of constant gravity potential W , and an exact definition of
the a-geoid as a surface being everywhere orthogonal to the plumb line. For the assumed
stationary spacetime these geoids again coincide [208]. Shortly after that, in 2016 Oltean et
al [209] defined an a-geoid in terms of quasilocal frames, which is a geometric construction
basically describing the temporal movement of a finite spatial volume. By imposing certain
restrictions the quasilocal frames can be used to describe a geoid, leading to so-called geoid
quasilocal frames [209]. In our paper [190](H6) we defined a general relativistic u-geoid in
terms of isochronometric surfaces. We also introduced an acceleration potential based on
the notion of observer congruences to find an a-geoid, which is equivalent but should from
our point of view be considered as secondary to the definition in terms of isochronomatic
surfaces. Contrary to [208], our definition is explicitly based on clock comparison and the
redshift potential. Compared to the definition in [209] our approach and [208] are more
special, as both assume stationarity. However, we believe that our approach in [190](H6) is
more operational, as the geoid in terms of isochronometric surfaces can be directly realized
by a network of clocks connected by optical fibres. Just as in the Newtonian case, the time-
varying geoid can then be treated as consisting of a stationary part, which is determined
by the mean value of the redshift over a certain period of time, plus a perturbative time
varying part. Therefore, the impressing technological developments outlined above can be
utilized in the framework of our definition in terms of isochronometric surfaces.

Recall the definition of the redshift z from section 3.1, equation (36)

z + 1 =
νA
νB

=
dτB
dτA

= lim
∆τA→0

∆τB
∆τA

.

In general, the observers A and B will not be static as considered in section 3.1, but follow
timelike worldlines. We can now consider a family of timelike observers given by a four-
velocity field u (parametrised by proper time gµνu

µuν = −c2). The redshift potential φ is
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Figure 7: Isometric embedding of isochronomatic surfaces in Erez-Rosen spacetime into Eu-
clidean three-space. The quadrupole parameter q2 was chosen such that the corresponding
source is oblate. Static observers are shown on the left and rotating observers on the
right. The color code of the innermost isochronometric surface indicates the actual shape,
with red encoding the largest and purple the smallest distance to the origin. [Figure from
[190](H6)].

then defined by

ln(z + 1) = φ(γA(τA))− φ(γB(τB)) (48)

for any two observers of the family with worldlines γA and γB. Such a redshift potential
exists if and only if exp(φ)u is a conformal Killing vector field [210]. It is thus time-
independent if and only if exp(φ)u is a timelike Killing vector field. Therefore, a time
independent redshift potential exists if and only if the spacetime if stationary.

For any two clocks that have the same value of the redshift potential along their world-
lines, according to (48) the gravitational redshift z between these two clocks vanishes.
This implies that their proper times coincide. Therefore, we call surfaces of constant red-
shift potential isochronomatic surfaces. In [190](H6) we discussed several examples of
isochronometric surfaces in stationary and axially symmetric spacetimes. Figure 7 shows
two examples in the static Erez-Rosen spacetime, which has next to the monopole an
independent quadrupole moment. In the Newtonian limit, the redshift potential of this
spacetime corresponds to the gravitational potential of a source which possesses only a
Newtonian monopole and quadrupole.

If the redshift of two clocks is measured using freely propagating electromagnetic signals,
i.e. lightlike geodesics λ(s) with an affine parameter s, there is a general expression for the

34



gravitational redshift [211],

z + 1 =

(
gµν

dλµ

ds
dγνA
dτA

) ∣∣∣∣
γA(τA)(

gµν
dλµ

ds
dγνB
dτB

) ∣∣∣∣
γB(τB)

. (49)

However, for stationary spacetimes we showed in [190](H6) that this formula remains
valid for any electromagnetic signal, i.e. lighlike worldline, as long as the spatial path of
the signals is at rest with respect to the clocks. That has the important consequence that
arbitrarily shaped optical fibres at rest, with an arbitrary but constant index of refraction,
can be used to determine the redshift.

The new definition of the geoid as developed in [190](H6) reduces of course to the well
known definitions in the Newtonian and post-Newtonian settings. Although we discussed
in the paper only examples with axial symmetry, the presented formalism can be used for
any stationary spacetime. This includes any arbitrarily shaped body, as long as effects
due to gravitational radiation can be neglected. In particular, a ”geoid” of Moon or Mars
can be defined in our framework. As we did not resort to any approximation, the geoid
definition in terms of isochronomatic surfaces is also valid for strongly gravitating objects
like neutron stars.

3.3 Gravitomagnetic clock effects

In General Relativity the rotation of gravitating objects induces frame-dragging or grav-
itomagnetic effects, which do not have a Newtonian analog. One of these effects, the
Lense-Thirring precession of the orbital plane of test particles, was already discussed in
chapter 2. Here, we will discuss a spacetime frame dragging effect on clocks.

In 1993 Cohen and Mashhoon [38] introduced the gravitomagnetic clock effect in the
following way. Consider two counterrevolving clocks on otherwise identical circular orbits
around the Earth. After a full revolution of 2π of each clock, a comparison of the proper
times of the two clocks reveal that they will show a difference of

τ+ − τ− ≈
4πJ

Mc2
, (50)

where τ+ (τ−) refers to the proper time of the corotating (counterrotating) clock. Here J
is the angular momentum of the central body and M is its mass, both in SI units. For
the Earth, this effect is of the order of 10−7 seconds per revolution. Compared to today’s
accuracies of space based clocks this is surprisingly large.

There are two noticeable features of the formula (50). Firstly, it does not depend on
the radius of the circular orbits of the two clocks, and secondly it does not depend on the
Newtonian gravitational constant G. Both features are however an artefact of the first
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order post-Newtonian approximation employed to arrive at the formula (50), as was shown
in [212, 213]. Let us compute the proper orbital period of clocks on a circular orbit in the
equatorial plane of the Kerr spacetime,

g = −
(

1− 2mr

ρ2

)
c2dt2 − 4mra sin2 θ

ρ2
cdtdϕ+ sin2 θ

(
r2 + a2 +

2mra2 sin2 θ

ρ2

)
dϕ2

+
ρ2

∆
dr2 + ρ2dθ2 , (51)

where ∆ = r2+a2−2mr and ρ2 = r2+a2 cos2 θ, see also equation (2) with Q = 0, P = 0. As
in (2) the parameter m = GM/c2 denotes the mass in geometrised units, and the parameter
a = J/(Mc) encodes the rotation. From the geodesic equation ẍµ+Γµνρẋ

ν ẋρ = 0 for µ = r
we find for circular equatorial orbits

dt

dϕ
=
a

c
± TK

2π
, (52)

where TK = 2π
√
r3/(GM) is the Keplerian orbital period. Here the positive sign is for

prograde and the negative sign for retrograde motion. From the normalisation condition
gµν ẋ

µẋν = −c2 we then find

dτ

dϕ
= ±TK

2π

√
1− 3m

r
± 4πa

cTK
(53)

where again the positive (negative) sign is for prograde (retrograde) motion. Therefore,
we see that

τ+ − τ− = TK

(√
1− 3m

r
+

4πa

cTK
−
√

1− 3m

r
− 4πa

cTK

)
(54)

=
4πJ

Mc2
+

6πJG

rc4
+O

(
1

c6

)
, (55)

which does actually depend on both the radius and Newton’s gravitational constant. The
gravitomagnetic clock effect (54) decreases monotonically for increasing r and quickly ap-
proaches the constant value (50) for large radii. Therefore, for both the comoving observers
and the observer at infinity the prograde clock ticks slower than the retrograde clock [212].
But note that relative to the Keplerian orbital period TK , which of course diverges for
large radii, the gravitomagnetic clock effect becomes vanishingly small at infinity.

In any practical application, it will of course not be possible to have clocks on exactly
identical and perfectly circular orbits. Furthermore, it would be more convenient to define
the gravitomagnetic clock effect for general clock orbits, as this would enable to use non
dedicated satellites for a measurement of the effect. Another very exciting possibility
would then be to use two pulsars orbiting Sagittarius A* (Sgr A*), the supermassive black
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hole in the center of our galaxy, for a measurement of the effect. Pulsars represent very
stable ”astronomical clocks”, and the formula (50) yields an order of magnitude for the
gravitomagnetic clock effect around Sgr A* of τ+ − τ− ∼ 102s.

Generalisations of the formula (50) to inclined [212] and further to eccentric orbits
[214] have been derived in the literature under the assumption of a slowly rotating cen-
tral object. However, both papers require identical initial conditions and identical orbital
parameters (apart from the sense of rotation, of course) for the two clock orbits. In our
paper [215](H3) we defined the gravitomagnetic clock effect for general geodesic motion
without the assumption of slow motion, including arbitrary inclination and eccentricity
as well as non-identical orbits of the two clocks and arbitrary initial conditions. For the
general definition we used the framework of fundamental frequencies which was already
outlined in section 2.1, and which can also be used for the definition of the periastron shift
and the Lense-Thirring precession. In analogy to (15) we may define the averaged secular
increase of the proper time Υτ via

τ(λ) = Υτλ+ τ rosc(r) + τ θosc(θ) , (56)

where λ is the so called Mino time which decouples the equations of geodesic motion in Kerr
spacetime. It is related to the proper time by cdτ = ρ2dλ. The two terms τosc represent
oscillations around the average secular increase of τ , which are periodic with respect to r or
θ. For the average secular increase with respect to ϕ (instead of λ) we use the analogously
defined Υϕ to find

τ(ϕ) =
Υτ

Υϕ
ϕ . (57)

We then defined the gravitomagnetic clock effect by combining the result (57) for two differ-
ent clocks such that the gravitoelectric effect cancel, i.e. such that the emerging expression
vanishes for the case J = 0. This gives rise to the gravitomagnetic clock effect ∆τgm in the
form

∆τgm = τ1(±2π) + ατ2(±2π) , α = − τ1(±2π)

τ2(±2π)

∣∣∣∣
J=0

. (58)

Here the sign in the argument of τ indicates the sense of rotation. In the limit of
identical clock orbits, apart from the sense of rotation, we find α = −1. For circu-
lar orbits in the equatorial plane the expression then reduces to Υτ = r2/c and Υ−1

ϕ =

±
√

1− 3m
r ±

4πa
cTK

/
√
mr which reproduces (54).

In the vicinity of the Earth the gravitational field is weak, which allows to employ a
post-Newtonian expansion of the gravitomagnetic clock effect (58), as m/r ∼ 10−10 and
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a/r ∼ 10−7. We find

∆τgm ≈
2πa

c

[
s1

cos i1(3e2
1 + 2e1 + 3)− 2e1 − 2

(1− e2
1)

3
2

− s2
d

3
2
1 (cos i2(3e2

2 + 2e2 + 3)− 2e2 − 2)

d
3
2
2 (1− e2

2)
3
2

]
,

(59)

where en, in, dn, n = 1, 2, denote the eccentricity, inclination, and semi-major axis of the
respective orbit. These quantities are defined via ra = dn(1 + en), rp = dn(1− en) for the
apoapsis ra and the periapsis rp as well as θmax = π/2 + i for the maximal polar angle
θmax of the respective orbit. The sense of rotation is encoded in sn with sn = 1 (sn = −1)
for prograde (retrograde) motion. Note that for e→ 1 the expression (59) diverges, as the
gravitomagnetic clock effect is not defined for unbound orbits.

For identical orbital parameters but s1 = 1, s2 = −1 (59) reduces to

τ+ − τ− ≈
4πJ

mc2

cos i(3e2 + 2e+ 3)− 2e− 2)

(1− e2)
3
2

. (60)

In the formal limit i → π/2 but fixed eccentricity, the absolute value of this expression
reaches a maximum. However, in this case of a polar orbit, which corresponds to a vanishing
angular momentum, the orbital plane is always dragged along in positive ϕ-direction, which
implies that a retrograde orbit is impossible. Therefore, the expression (60) is invalid for
i = π/2. But we see from (59) that two polar orbits still show a gravitomagnetic clock
effect if they have different eccentricities or semi major axes.

In figure 8 the gravitomagnetic clock effect (60) is shown as a function of the eccentricity
and the inclination. From the plots it can be concluded that there is a range of inclinations
where the gravitomagnetic clock effect is very small. Indeed, the effect vanishes somewhere
in a range which is approximately given by (π/4, π/3), as can be inferred from the exact
expression of vanishing τ+ − τ−,

cos i =
2(1 + e)

3e2 + 2e+ 3
. (61)

Therefore, we conclude that either very small or very high inclinations are beneficial for
the effect.

Although the gravitomagnetic clock effect is reasonably large around the Earth com-
pared to the accuracies of space based clocks, it is tiny compared to the Kepler or Schwarz-
schild orbital period. For a near Earth orbit, the relative magnitude (τ+ − τ−)/TK for the
original setup of counterrevolving circular equatorial orbits is of the order of 10−11 [213].
In [215](H3) we calculated the gravitomagnetic clock effect for two satellites of the Global
Navigation Satellite Systems, for instance a European Galileo satellite (circular prograde
orbit of radius ∼ 30000 km and inclination i ∼ 56◦) and a geostationary Chinese Beidou
satellite (circular equatorial prograde orbit of radius ∼ 40000 km). The relative gravito-
magnetic clock effect ∆τgm/TS is then of the order of 10−12, where TS is the Schwarzschild
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Figure 8: The gravitomagnetic clock effect around the Earth for identical clock orbits apart
from the sense of rotation. The left plot shows the effect as a function of the eccentricity
for three different inclinations: an equatorial orbit i = 0 (solid red line), i = π/4 (dashed
blue line), and the limit of polar orbits i = π/2 (dotted black line). On the right the
dependence on the inclination is shown for three different eccentricities: a circular orbit
e = 0 (solid red line), e = 0.2 (dashed blue line), and e = 0.5 (dotted black line). [Figure
from [215](H3)].
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orbital period. We can also do a similar calculation for two pulsars orbiting Sgr A*. Let
us assume a pulsar orbit of eccentricity e1 = 0.01 and inclination i1 = 0.01 with orbital
period of about one year (semi major axis d1 ∼ 2.4 × 1013m) compared to a second pul-
sar orbit with e2 = 0.1, i2 = π/4 and an orbital period of about two years, for instance
d2 ∼ 3.8×1013m. Here we assumed a mass of 4×106MSun for the central black hole. Such
kind of pulsar orbits were assumed for other tests of GR [194] and are rather pessimistic
in the sense that the inclination of the second pulsar is exactly in the range of inclinations
where the clock correction due to frame dragging vanishes, see (61). For this case the
relative gravitomagnetic clock effect (τ+ − τ−)/TS is of order 10−6.

These considerations imply that the orbits of the clocks must be very well known
to separate the gravitomagnetic clock effect in the data. For the original setup, it was
estimated that the radius of the circular orbits of the clocks must be known up to an
accuracy of 10−2 cm, and the inclination up to 10−10 rad for observation over a single orbit
[213]. For the scenario of a Galileo and a geostationary orbit the estimated necessary
accuracies for a single orbit are 10−3 cm but only 5×10−4 rad [215](H3). The requirement
on the accuracy of the inclination is so much less stringent than in the original setup
because the inclinations of the two orbits do no longer have to coincide. They just have
to been known to sufficient accuracy. In general the very stringent requirements on the
accuracy of the semi major axes of the two orbits can be relaxed with longer observation
times, as the gravitomagnetic clock effect is cumulative. Nevertheless, this is probably the
most difficult obstacle in a measurement of the effect.

Next to the neccesary accurate tracking of the clock orbits further perturbations need
to be taken into account carefully. In [213] it was estimated that perturbative accelerations
acting on the clock orbits should be below 10−11g. Relevant effects therefore include the
gravitational perturbations due to Moon, Sun, or other Solar System objects as well as
perturbations from the nonspherical shape of the Earth. The tides of the oceans and
the solid Earth are less relevant. Among the non-gravitational perturbations the Solar
radiation pressure is the most dominant, but depending on the orbit a large number of
additional effects may become relevant. In the literature it was however concluded that
a satellite with state of the art drag free operation will be more than sufficient to keep
these effects under control. For a more extensive treatment of perturbation analysis we
refer to [213, 216–221]. But note that all these treatments are based on the classical setup
of identical counterrevolving clock orbits. A throughout analysis using arbitrary geodesic
clock orbits, including an analysis of two pulsars around Sgr A* acting as clocks is a very
worthwhile future work.

The gravitomagnetic clock effect has not been measured so far due to the stringent
requirements on the clock orbits outlined above. However, other effects due to gravit-
omagnetism have already been measured. As mentioned in the introduction, the LA-
GEOS/LARES satellites measured the spin-orbit coupling, and Gravity Probe B measured
the spin-spin coupling. A measurement of the gravitomagnetic clock effect is a complemen-
tary test to these earlier efforts. Firstly, another experiment to validate GR is worthwhile
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on its own right. Secondly, although one could argue that LAGEOS/LARES and Grav-
ity Probe B are testing the same basic principle in GR, this needs not to be the case
in alternative theories of gravity. In particular, Gravity Probe B and LAGEOS/LARES
provide complementary tests of Chern Simons theory, which is inspired by a low energy
limit of string theory [31, 35]. As another example, in a theory independent framework for
spacetimes with torsion [36] Gravity Probe B and LAGEOS/LARES constrain different
parameters [36, 37]. How exactly a test of the gravitomagnetic clock effect can provide
complementary constrains of alternative theories of gravity is still an open question.
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4 Summary and outlook

This thesis provides a comprehensive framework for the included publications collected in
appendix B. I introduced the theoretical foundations for designing and interpreting tests
of General Relativity in the strong field regime, where non-linear effects play an important
role. The addressed research focuses on two aspect: the motion of massive particles, ranging
from structureless test particles to charged fluids, and on time measurements. The first
can be observed in the strong field, as you find it close to neutron stars or black holes, by
electromagnetic radiation or gravitational waves.

The presented research significantly improved our understanding on a wide variety
of phenomena related to matter motion. Due to the vastly improving observational and
computational capabilities in the recent past and the near future, it will become increasingly
important to consider relativistic effects beyond the usually employed background of a Kerr
spacetime, both for general relativistic simulations and the interpretation of observational
data. In this framework my research provided a definition of relativistic observables for a
very general spacetime, including next to the usual rotation of the compact object effects
due to charges, a cosmological constant, and even the exotic NUT parameter. As in
particular the traditionally neglected tiny charges of astrophysical black holes arose new
interest in the astronomical community to explain some not yet understood phenomena,
we then extensively investigated resulting effects on particle motion. We explored for the
first time the complete parameter region of charged particle motion and provided analytical
solutions to the equations of motions in the rotating and charged Kerr-Newman spacetime.
Moreover, we investigated the impact of the electric charge of a black hole on the accretion
of charged diluted plasma. Maybe surprisingly, as the influence of charge on the spacetime
geometry is extremely small, we found that the electromagnetic interaction of black hole
and orbiting charges may be strong enough to cause large effects, at least within the
boundaries of our simplified analytical model. This naturally led to the question whether
more complicated models will also be influenced in a non-negligible way by the inclusion of
black hole charges into the model. We therefore developed a general construction method
for charged fluid configurations close to a rotating compact object embedded in internal or
external electromagnetic fields, using certain symmetry assumptions. Our results indicate
that the charge distribution within the fluid may have a non-negligible influence, dependent
on the specific setup under consideration.

Motivated by the problem of singularities, which apparently can not be avoided in
General Relativity due to the singularity theorems, besides the standard Einstein-Maxwell
system we also investigated an alternative non-linear electrodynamics coupled to Einstein’s
equations. This enables to construct a regular black hole, which does not have a central
curvature singularity, however tiny the black hole may be charged. For the regular Ayón-
Beato–Garćıa black hole spacetime we then investigated if and how it is possible to obser-
vationally distinguish it from the corresponding singular Reissner-Nordström spacetime.
We found that this is only possible very close to the black hole, deep in the strong field
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regime, for instance by observation of periastron precession. As a result it seems rather
unlikely to rule out this alternative model by observation of test particle motion in the
near future.

For a decent understanding of binary systems of compact objects, which are the primary
source for current and upcoming gravitational wave observations, it is of utmost importance
to correctly model the spin of the two objects. As an exact analytical treatment of this
situation is in general impossible, one important approach to this is approximate post-
Newtonian theory. However, for the special case of extreme mass ratios, which is of prime
importance for the upcoming LISA mission, an exact analytical solution can be derived.
We exactly calculated the periastron shift and the innermost stable circular orbit (ISCO)
of a spinning particle orbiting the massive spinning primary body assuming aligned or
anti-aligned spins. A surprising result was that the ISCO can be retrograde, which is
impossible for vanishing spin of the particle. We also tested the accuracy of a comparable
post-Newtonian solution and found that they are reliable if the spin of the particle is small.

The second main topic of this thesis are general relativistic effects on time measure-
ments. Here the presented research significantly contributed to provide a solid theoretical
foundation of basic concepts in geodesy and of new tests of GR in astrophysical strong
fields. The link between the position of a clock in a gravitational field and its proper time
rate can now be used to competitively measure heights due to the astonishing stability and
accuracy of modern clocks. This advent of relativistic geodesy calls for a mathematically
and physically rigorous reformulation of classical Newtonian geodetic concept in General
Relativity. Therefore, we developed a new exact general relativistic definition of the geoid,
which is an important reference surface in geodesy. Our approach thereby generalised
existing concepts formulated in the approximate post-Newtonian setting.

A very intriguing idea is to use time measurements to test an aspect of General Rel-
ativity without any Newtonian analogue, the so-called dragging of inertial frames by the
spin of the central gravitating object. Two effects of frame dragging have already been
measured: the spin-orbit coupling (LAGEOS/LARES) and the spin-spin coupling (GPB).
Neither of them is however related to time measurements. This gap is closed by the grav-
itomagnetic clock effect proposed by Cohen and Mashhoon, which is a spacetime frame
dragging effect. To enable a measurement of this effect with non-dedicated satellites around
the Earth or astrophysical objects, say two pulsars orbiting a supermassive black hole, we
generalised the original setup to an exact expression for arbitrary geodesic orbit pairs in a
Kerr spacetime.

The work presented in this thesis can be continued in various ways, from which I
will outline my personally most pressing open questions. Firstly, the general construction
method for charged fluids circling Kerr black holes embedded in electromagnetic fields
currently has some major restrictions. One is the need for a rigidly rotating fluid, which
maybe can be relaxed to a certain functional relation to the components of the involved
electromagnetic potential. Even more challenging is to remove the assumption of vanishing
conductivity, which is needed to ensure the absence of radial movements of the fluid, which
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is very basic for the model. As a first idea one could use a perturbative approach. Secondly,
relativistic geodesy a wide new field, where a lot of conceptual work still needs to be done.
Further results on general relativistic definitions of Newtonian geodetic concepts like the
reference ellipsoid or geopotential numbers were already obtained in our research group
and will be published soon. Finally, for a measurement of the gravitomagnetic clock effect
with satellites orbiting the Earth requirements on clocks and orbit determination accuracy
have to be formulated and the magnitude of acceptable perturbations forces has to be
accessed. For a measurement with astrophysical objects, like pulsars orbiting Sagittarius
A* which were not detected until now, a reformulation of the effect in terms of post-
Keplerian parameters would be necessary.
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[71] D. Kubizňák and P. Krtouš. “Conformal Killing-Yano tensors for the Plebański-
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[147] J. Schee and Z. Stuchĺık. “Profiled spectral lines generated by Keplerian discs orbit-
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The periastron shift and the Lense-Thirring effect of bound orbital motion in a general axially

symmetric space-time given by Plebański and Demiański are analyzed. We also define a measure for

the conicity of the orbit and give analytic expressions for the observables in terms of hyperelliptic

integrals and Lauricella’s FD function. For an interpretation of these analytical expressions, we perform a

post-Schwarzschild and a post-Newton expansion of these quantities. This clearly shows the influence of

the different space-time parameters on the considered observables and allows one to characterize Kerr,

Taub-NUT, Schwarzschild–de Sitter, or other space-times.
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I. INTRODUCTION

Axially symmetric vacuum solutions of the Einstein
field equations are used to describe a wide range of black
holes appearing in the Universe. The most prominent of
these solutions is the Kerr space-time [1], which describes
an axially symmetric rotating black hole. Generalizations
of these are the charged Kerr-Newman black holes, the
Kerr–de Sitter space-time which incorporates a nonvanish-
ing cosmological constant, the Kerr-Taub-NUT space-time
which includes the NUT charge, or some combination of
these. All these space-times can be seen as special cases of
the family of electrovac space-times of Petrov type D given
by the Plebański-Demiański class of solutions [2]. They
are characterized by seven parameters: the mass, the rota-
tion around the symmetry axis, the electric and magnetic
charge, the NUT charge, the cosmological constant, and
the acceleration of the gravitating source.

Shortly after the introduction of general relativity,
Einstein found that for every revolution of a planetary orbit
the point of the shortest distance between particle and
central object, the periapsis, is shifted in the direction of
rotation of the test particle [3]. Indeed, the explanation of
the anomalous shift of Mercury’s perihelion, together with
the observation of light deflection, constituted the break-
through of general relativity. Already in 1918, Lense and
Thirring found that bound orbital motion around an axially
symmetric rotating black hole is perturbed not only com-
pared to the Newtonian case but also to the nonrotating
case [4]. The rotation of the central object causes an addi-
tional shift of the periapsis and a precession of the orbital
plane. For the more exotic Taub-NUT space-time Misner
and Taub [5] showed that the geodesic motion takes place

on a cone which, if slit open and flattened, defines the
orbital plane as it would be for vanishing NUT charge.
These three examples show that the parameters of the
space-time affect the observables of bound orbital motion
and that in turn these observables may be used to character-
ize a space-time. In this paper we will investigate these
orbital effects starting from the general Plebański-
Demiański space-time with vanishing acceleration of the
gravitating source.
The only way to get access to these characteristics of

black holes is through the orbits of particles and light
around these black holes. They are given as solutions of
the geodesic equation describing the motion of test parti-
cles and light rays in a given space-time. For a thorough
investigation of the physical properties of orbits analytical
solutions of the geodesic equation are most useful.
Hagihara [6] was the first to find an analytical solution of
the geodesic equation in Schwarzschild space-times
using elliptic functions. He also classified all possible types
of orbits in terms of the energy and the angular momentum
of the test particle. The complete set of solutions for
charged particle motion in Reissner-Nordström space-
times has been presented only recently by Grunau and
Kagramanova [7]. Shortly after the discovery of the Kerr
solution in 1963 [1], a number of authors studied the
geodesic motion in this space-time. Their results were
reviewed and extended by Chandrasekhar [8]. A treatise
of the geodesics in Kerr space-time of the same complete-
ness as [6] was given only recently by Slezáková [9] and
for the motion of charged particles in Kerr-Newman space-
times by Xu [10]. Geodesics in even more complicated
space-times like the one incorporated in the Plebański-
Demiański space-time are beyond the methods introduced
by Hagihara. However, in 2008 a method has been
found to analytically integrate the geodesic equation in
Schwarzschild–de Sitter space-times using the theory of
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hyperelliptic functions [11,12] and to classify all types of
possible orbits in terms of energy and angular momentum
of the particles as well as the cosmological constant. This
approach was then used to find solutions of the geodesic
equations in general Plebański-Demiański space-times
with vanishing acceleration of the gravitating source [13]
and of some special cases [14,15].

Bound stable orbits far away from the black hole are not
very different from Newtonian orbits but in the vicinity of
the black holes they exhibit some peculiar features. These
are caused by mismatches between the periodicities of the
radial, polar, and azimuthal motion, which are all equal to
2� in the Keplerian case but may differ greatly near black
holes. A systematic approach to handle these different
periodicities for Kerr space-time was worked out by
Schmidt [16] and continued by Drasco and Hughes [17]
using a technique for decoupling the radial and polar
motion suggested by Mino [18]. They showed that arbi-
trary functions of Kerr black hole orbits can be described in
the frequency domain and how these expansions may be
computed explicitly. Later, Fujita and Hikida [19] derived
analytical expressions for the frequencies of radial, polar,
and azimuthal motion in Kerr space-time and also for
bound timelike orbits in Kerr space-time.

In this paper, we will find analytic expressions of the
fundamental frequencies defined by Schmidt [16], Drasco
and Hughes [17], as well as Fujita and Hikida [19] for the
general Plebański-Demiański space-time with vanishing
acceleration of the gravitating source. We will then inves-
tigate how these frequencies are influenced by the parame-
ters of the black hole. To this end, we expand the analytic
expression in terms of the parameters in a Taylor series up
to first order. This clearly shows the influence of different
parameters on the orbits of the black hole and leads to
conclusions about which kinds of orbits may belong to a
given black hole.

The paper is organized as follows. In Sec. II, we review
the equations of motion in Plebański-Demiański space-
times decoupled by the method introduced by Mino.
These equations are then used in Sec. III to define the
fundamental frequencies and observables for Plebański-
Demiański space-time following closely the arguments
of Fujita and Hikida. All necessary quantities in
Schwarzschild space-time as well as their post-Newtonian
expansions are computed in Sec. IV. These quantities will
serve as a reference for the comparison with more compli-
cated space-times later on. Section V is the most technical
one, where the linear correction to the fundamental frequen-
cies are computed. These corrections are given in terms of
elementary function or in terms of complete Jacobian ellip-
tic integrals. In Sec. VI we use these results to compute the
post-Schwarzschild and post-Newtonian corrections to the
periastron shift, the Lense-Thirring effect, and the conicity
and compare them to earlier results. A discussion and
outlook closes the paper.

II. GEODESIC MOTION IN
PLEBAŃSKI-DEMIAŃSKI SPACE-TIME

The axially symmetric Plebański-Demiański space-
times are characterized by the seven parameters mass,
rotation, acceleration, cosmological constant, NUT pa-
rameter, electric charge, and magnetic charge. It can be
shown that the Hamilton-Jacobi equation for these space-
times is separable and the geodesic equation integrable, if
and only if the acceleration vanishes or null geodesics are
considered. In this paper we will consider the case of
geodesic motion of massive test particles in a Plebański-
Demiański space-time with vanishing acceleration. We
will also assume that the test particles are neutral, i.e.
without electric or magnetic charge.
The six-parameter Plebański-Demiański space-times

considered here are then given by the metric [2,20,21]
(we use units where c ¼ 1 ¼ G)

ds2=M2 ¼ �r

p2
ðdt� Ad’Þ2 � p2

�r

dr2

���

p2
sin2�ðadt� Bd’Þ2 � p2

��

d�2; (1)

where p2 ¼ r2 þ ðn� a cos�Þ2, A ¼ asin2�þ 2n cos�,
B ¼ r2 þ a2 þ n2,

�r ¼ ðr2 þ a2 � n2Þð1��ðr2 þ 3n2ÞÞ
� 2rþQ2

e þQ2
m � 4�n2r2; (2)

�� ¼ 1þ a2�cos2�� 4�an cos�: (3)

Here a, the angular momentum per mass of the gravitating
source, the NUT parameter n, the electric charge Qe, and
the magnetic charge Qm as well as the coordinates r and t
are normalized with respect to M, where M is the mass of
the gravitating object. The dimensionless parameter �
denotes the cosmological constant divided by three and
normalized by multiplication with M2.
The equations of motion for massive test particles in

these space-times are given by�
dr

d�

�
2 ¼ PðrÞ2 ��rðr2 þ CÞ ¼: RðrÞ; (4)

�
d�

d�

�
2 ¼ ��ðC� ðn� a cos�Þ2Þ �Oð�Þ2

sin2�
¼: �ð�Þ; (5)

d’

d�
¼ a

�r

PðrÞ þ Oð�Þ
��sin

2�
¼: �ðr; �Þ; (6)

dt

d�
¼ r2 þ a2 þ n2

�r

PðrÞ þ asin2�þ 2n cos�

��sin
2�

Oð�Þ

¼: Tðr; �Þ; (7)

where
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PðrÞ ¼ ðr2 þ a2 þ n2ÞE� aL; (8)

Oð�Þ ¼ L� ðasin2�þ 2n cos�ÞE: (9)

The constants of motion E, L, and C have the mean-
ing of energy, angular momentum in direction of the
symmetry axes, and Carter constant, each per unit
mass. The two constants L and C are additionally nor-
malized by division by M and M2, respectively, such that
they are dimensionless. The affine parameter � is the
Mino time [18], also normalized to M, d� ¼ d�=ðMp2Þ
with the eigentime �. Note that R depends quadratically
on n, Qe, and Qm and that � does not depend on Qe

and Qm.
Equations (4)–(7) can be solved analytically [13,22,23].

However, in this paper we are interested in the periods of
the motion, which can be used to define observables related
to geodesic motion in these space-times.

III. OBSERVABLES FOR BOUND ORBITS

In Newtonian gravity bound geodesic motion is de-
scribed by a fixed ellipse defining the orbital plane. This
is no longer true in the framework of general relativity. In
the spherically symmetric Schwarzschild space-time, the
orbital plane remains fixed while the ellipse precesses
resulting in a periastron shift. In the axially symmetric
Kerr space-time additionally the orbital plane itself pre-
cesses what is known as the Lense-Thirring effect [24]. In
the more exotic Taub-NUT space-time the geodesic motion
of test particles does not lie in a plane at all but on a cone;
see e.g. [25].

The precession of the orbital ellipse and the orbital
plane is induced by mismatches of the periods of the
motion in the r and � coordinates compared to the aver-
age secular increase of the angle ’ about the symmetry
axes. These effects were discussed in the framework of a
Kerr space-time by Schmidt [16], Drasco and Hughes
[17], and Fujita and Hikida [19]. In the following sec-
tions, we will use the procedure in [19] to analyze the
first-order corrections to the periastron shift and the
Lense-Thirring effect due to the parameters a, n, and �.
(As Qe and Qm appear only quadratically, there are no
linear effects due to electric or magnetic charge on neutral
test particles.) Below we review their line of argument for
the convenience of the reader. In addition, we will char-
acterize the deviation from an orbital plane, the conicity,
due to the parameter n.

For bound orbits, the radial and polar components r and
� vary between a minimal and maximal value given by the
turning points dr

d� ¼ 0 and d�
d� ¼ 0. The periods �r of r and

�� of � with respect to the Mino time � are then defined by
a revolution from maximum to minimum and back to the
maximal value. This means that �r and �� are defined by
the smallest nonzero real value with rð�þ �rÞ ¼ rð�Þ and
�ð�þ ��Þ ¼ �ð�Þ giving

� r ¼
I
ar

drffiffiffiffiffiffiffiffiffi
RðrÞp ¼ 2

Z ra

rp

drffiffiffiffiffiffiffiffiffi
RðrÞp ; (10)

� � ¼
I
a�

d�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp ¼ 2

Z �max

�min

d�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp ; (11)

where rp is the periapsis and ra the apoapsis. In general

these are hyperelliptic integrals, which are a generalization
of elliptic integrals. [The closed integration path ar (a�)
refers to the integration on the Riemann surface of the
algebraic curve defined by y2 ¼ RðrÞ (y2 ¼ �ðcos�Þ). It
runs around the branch cut connecting rp and ra ( cos�min

and cos�max). On the Riemann surface the two branches of
the square root are glued to one analytic function.] From
these two periods conjugate fundamental frequencies can
be defined by

�r :¼ sgnL
2�

�r

; �� :¼ sgnL
2�

��

: (12)

The sign of L is included in this definition to indicate the
direction in which the particle travels around the gravitat-
ing object relative to a > 0. This means that L > 0 corre-
sponds to a prograde and L < 0 to a retrograde orbit.
For vanishing n, Eq. (5) is symmetric with respect to the

equatorial plane � ¼ �
2 . However, in the more general

space-time considered here this is not true, and the devia-
tion from this symmetry can be measured by the difference
between 1

2 ð�min þ �maxÞ and �
2 . In the case of a Taub-NUT

space-time, where all parameters except mass and NUT
parameter vanish, this implies that the particle moves on an
orbital cone rather than an orbital plane [5]. Later we will
see that this phenomenon also appears in the weak field
limit. For these reasons, we will refer to this quantity as the
conicity, �conicity :¼ �� ð�min þ �maxÞ. This means that

�conicity > 0 corresponds to a cone opened in the northern

direction and �conicity < 0 to a cone opened in the southern

direction.
The nature of Eqs. (6) and (7) is somewhat different

from (4) and (5) as they cannot be solved by periodic
functions. They depend on both r and � but can be sepa-
rated in an r-dependent and a �-dependent part,

�ðr; �Þ ¼: �rðrÞ þ��ð�Þ; (13)

Tðr; �Þ ¼: TrðrÞ þ T�ð�Þ: (14)

The solutions ’ð�Þ and tð�Þ of Eqs. (6) and (7) can be
written as an averaged part linear in � plus perturbations in
r and �,

’ð�Þ ¼ h�ðr; �Þi��þ�r
oscðrÞ þ��

oscð�Þ; (15)

tð�Þ ¼ hTðr; �Þi��þ Tr
oscðrÞ þ T�

oscð�Þ; (16)

where
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h�i� :¼ lim
ð�2��1Þ!1

1

2ð�2 � �1Þ
I �2

�1

�d� (17)

is an infinite time average with respect to �, and Xr
oscðrÞ and

X�
oscð�Þ (with X ¼ � or X ¼ T) represent oscillatory de-

viations from this average. They are defined by

Xr
oscðrÞ ¼

Z
XrðrÞd�� hXrðrÞi��; (18)

X�
oscð�Þ ¼

Z
X�ð�Þd�� hX�ð�Þi�� (19)

and have periods�r and��. Therefore, the average secular
increase of ’ and t with respect to � is given by

� :¼ hTðr; �Þi� ¼ hTrðrÞi� þ hT�ð�Þi�; (20)

�’ :¼ h�ðr; �Þi� ¼ h�rðrÞi� þ h��ð�Þi�: (21)

As Xr and X� (again with X ¼ � or X ¼ T) are periodic
functions with respect to � because r and � are periodic
functions, their integrals,

I �2

�1

Xrðrð�ÞÞd�;

and

I �2

�1

X�ð�ð�ÞÞd�;

in the definition of the infinite time average can be reduced
to an integral over one period �r or ��, respectively. This
yields

�’ ¼ 2

�r

Z ra

rp

�rðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp þ 2

��

Z �max

�min

��ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp ; (22)

� ¼ 2

�r

Z ra

rp

TrðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp þ 2

��

Z �max

�min

T�ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp : (23)

The corresponding frequencies with respect to the coordi-
nate time t are then given by

�r :¼ �r

�
; �� :¼ ��

�
; �’ :¼ �’

�
: (24)

These are frequencies as seen by an observer at infinity.
In the limit of weak gravitational fields the mismatch of

the frequency of the ’- and r-motion,�P ¼ �’ ��r can

be interpreted as the precession of the orbital ellipse, and
the mismatch of the frequency of the ’- and �-motion,
�LT ¼ �’ ��� as a precession of the orbital plane. In

strong gravitational fields the orbits are in general of such
irregularity that orbital planes or ellipses can no longer be
identified.

IV. REFERENCE ORBIT

In the next section we will analyze the influence of the
parameters a, �, and n on the observables of a bound
reference orbit, which is neither circular nor polar. (Polar
orbits may be considered as a special case but we leave this
out here. For a discussion of these orbits in Kerr space-
time, see [26].) This will be done by post-Schwarzschild
and post-Newton expansions, where we assume the con-
stants of motions to be fixed. But first wewill introduce and
characterize the reference orbit.
If all space-time parameters except the mass vanish,

the Plebański-Demiański space-time is identical to the
Schwarzschild space-time and the functions RðrÞ and
�ð�Þ of Eqs. (4) and (5) reduce to

R0ðrÞ :¼ ðE2 � 1Þr4 þ 2r3 � Cr2 þ 2Cr; (25)

�0ð�Þ :¼ C� L2

sin2�
: (26)

A necessary condition for the existence of a noncircular
bound orbit in a Schwarzschild space-time is that R0ðrÞ has
four real zeros, 0 ¼ r01 < r02 < r03 < r04 <1, where
R0ðrÞ> 0 for r03 < r < r04; cf. [23]. Therefore, our bound
reference orbit has turning points r03 and r04. Note
that instead of using E2 and C all formulas can also be
expressed in terms of the turning points: A comparison
of coefficients in ðE2 � 1Þr4 þ 2r3 � Cr2 þ 2Cr ¼ ðE2 �
1Þrðr� r02Þðr� r03Þðr� r04Þ yields

E2 � 1 ¼ �2

r02 þ r03 þ r04
; (27)

C ¼ r02r03r04
r02 þ r03 þ r04

; (28)

r02 ¼ �2r03r04
2r03 þ 2r04 � r03r04

: (29)

A nonpolar orbit requires C � L2 and lies in an orbital

plane with inclination arcsinjLjffiffiffi
C

p (or �
2 � arcsinjLjffiffiffi

C
p if mea-

sured from the equatorial plane). Therefore, the �-motion
of the reference orbit is symmetric with respect to the

equatorial plane and confined to ½�01; �02� with �01 ¼
arcsinjLjffiffiffi

C
p 2 ½0; �2� and �02 ¼ �� arcsin jLjffiffiffi

C
p 2 ½�2 ; ��. In

particular, the orbit lies in the equatorial plane if C ¼ L2.
In terms of the inclination and the turning points the
constant of motion L is given by

L ¼ � ffiffiffiffi
C

p
sin�01 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02r03r04

r02 þ r03 þ r04

s
sin�01: (30)

In the following we will calculate the expressions �r, ��,
��, and � for the reference orbit.
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A. Frequency of r

Let us first calculate the r period for our reference orbit.
For an orbit bound between r03 and r04 we get

� r;0 :¼ 2
Z r04

r03

drffiffiffiffiffiffiffiffiffiffiffi
R0ðrÞ

p : (31)

This is a complete elliptic integral of the first kind which
can be easily transformed to the Legendre form giving

� r;0 ¼ 4KðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� E2Þr03ðr04 � r02Þ
p ; (32)

with k2 ¼ r02ðr04 � r03Þ=ðr03ðr04 � r02ÞÞ. For general in-
formation on the complete elliptic integral of the first kind,

KðkÞ ¼
Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� t2Þð1� k2t2Þp ; (33)

see e.g. [27]; for fast numerical computation, see e.g. [28].
In computer algebra systems like MATHEMATICA or MAPLE

the complete elliptic integrals are usually implemented
and, therefore, �r;0 can be computed easily. The conjugate

fundamental frequency �r;0 is then given by

�r;0 ¼ 2�

4KðkÞ sgnL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� E2Þr03ðr04 � r02Þ

q
: (34)

B. Frequency of �

The � period of the reference orbit is given by

� �;0 :¼ 2
Z �02

�01

d�ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ð�Þ

p ¼ 2
Z �03

�02

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1� �2Þ � L2

p ;

(35)

where we substituted � ¼ cos� and cos�01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L2

C

q
¼:

�03, cos�02 ¼ �02 ¼ ��03. This can be solved by

��;0 ¼ 2�ffiffiffiffi
C

p ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ r03 þ r04

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02r03r04

p ; (36)

from which we infer

��;0 ¼ sgnL
2�

��;0

¼ sgnL
ffiffiffiffi
C

p
: (37)

Note that for the case �01 ¼ �
2 ¼ �02 it is �ð�Þ � �

2 and,

therefore, ��;0 is undefined. However, we can treat this as

the limiting case C ! L2, which gives the same results for
��;0 and ��;0 as above.

C. Frequency of ’

For the reference orbit Eq. (6) simplifies to

d’

d�
¼ L

sin2�
(38)

and �’ can be calculated to

�’;0 ¼ 2

��;0

Z �02

�01

L

sin2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ð�Þ

p ¼ 2� sgnL

��;0

¼ sgnL
ffiffiffiffi
C

p
; (39)

where we used the substitution � ¼ cos� as in Sec. IVB.
Although ��;0 is not defined for �ð�Þ � �

2 we get in this

case ’ð�Þ ¼ L� and, therefore, the same result �’;0 ¼
L ¼ sgnL

ffiffiffiffi
C

p
.

D. Frequency of t

The expression for �0 is the most complicated in this
section as it involves an elliptic integral of the third kind.
For the reference orbit Eq. (7) simplifies to

dt

d�
¼ r3E

r� 2
; (40)

which leads to

�0 ¼ 2

�r;0

Z r03

r02

r3Edr

ðr� 2Þ ffiffiffiffiffiffiffiffiffiffiffi
R0ðrÞ

p
¼ E

2KðkÞ
�
�r03r04KðkÞ þ r03ðr04 � r02ÞEðkÞ

þ 2r04ð3� 2E2Þ
1� E2

�ðn1; kÞ þ 8r04
r04 � 2

�ðn2; kÞ
�
; (41)

where EðkÞ and �ðn; kÞ are the complete elliptic integrals
of second and third kind,

EðkÞ ¼
Z 1

0

ð1� k2t2Þdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� t2Þð1� k2t2Þp ; (42)

�ðn; kÞ ¼
Z 1

0

dt

ð1� nt2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� t2Þð1� k2t2Þp ; (43)

and the parameters n1, n2 are given by

n1 ¼ r03 � r04
r03

< 0; n2 ¼ 2ðr04 � r03Þ
r03ðr04 � 2Þ< 0: (44)

E. Observables

Let us now collect the results so far in this section. As
expected for a ¼ 0, the frequencies��;0 and�’;0 coincide

and the Lense-Thirring effect vanishes,

�LT;0 ¼
�’;0 ���;0

�0

¼ 0: (45)

Likewise, for n ¼ 0 the particle moves on an orbital plane,

�conicity;0 ¼ �� ð�01 þ �02Þ ¼ 0: (46)

The periastron shift �P;0 ¼ ð�’;0 ��r;0Þ��1
0 is given in

terms of elliptic integrals
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�P;0 ¼ sgnL

E

2
ffiffiffiffi
C

p
KðkÞ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr04 � r02Þð1� E2Þp

ð�r03r04KðkÞ þ r03ðr04 � r02ÞEðkÞ þ 2r04ð3�2E2Þ
1�E2 �ðn1; kÞ þ 8r04

r04�2�ðn2; kÞÞ
: (47)

The usual result for the periastron shift in terms of radians
or degrees can be found in the following way: Using the
averaged �ð’Þ ¼ ’��1

’ we get the period of the r-motion
in terms of ’, r’ :¼ r � �: ’ � rð’��1

’ Þ, by observing
that r’ð’þ�’�rÞ ¼ rð’��1

’ þ �rÞ ¼ r’ð’Þ. From this
period we get for the difference between the angle of the
periapsis and 2� after one revolution,

�P;0 ¼ �’;0�r;0 � 2� sgnL

¼ sgnL

�
4

ffiffiffiffi
C

p
KðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� E2Þr03ðr04 � r02Þ

p � 2�

�
: (48)

If this shift should be expressed in terms of radians per
time, it can be referred to the time needed for a revolution
from some fixed ’0 to ’0 again, i.e. the sidereal period, or
for a revolution from some fixed r0 to r0 again, i.e. the
anomalistic period. The first choice corresponds to the
usual notion of the periastron shift in arc seconds per
century whereas the second corresponds to the definition
of �P: The time elapsed for a revolution from, say,
periapsis to periapsis is given as the period of rt :¼ r �
�: t � rðt��1Þ, which is ��r. If �P ¼ �’�r � 2� sgnL
is divided by this period we obtain �P ¼ �P=ð��rÞ.

Note that (47) and (48) are exact and, therefore, more
complicated than the post-Newtonian formula given e.g. in
[29]. If we consider the weak field approximation by
assuming that the periapsis r03 and the apoapsis r04 be-
come large, we recover Eq. (51) of [29] with vanishing
solar quadrupole momentum and parameters correspond-
ing to general relativity,

�P;0 � 6� sgnL

dð1� �2ÞM; (49)

where d ¼ M
2 ðra þ rpÞ is the semimajor axis and � ¼ M

2d 	
ðra � rpÞ the eccentricity with the apoapsis ra ¼ r04 and

the periapsis rp ¼ r03. Here we used (27)–(29) to perform

the series expansion. Note that the angular momentum of
the test particle is usually chosen to be positive and, there-
fore, its sign does not appear in Eq. (51) of [29]. But we
include it here as we choose the sign of L relative to the
angular momentum of the gravitating source, which will be
nonzero later on. The post-Newtonian expression for�P is
given by

�P;0 � 3 sgnL

dð5=2Þð1� �2ÞM
ð5=2Þ; (50)

which includes the perturbation of the time needed for one
revolution from periapsis to periapsis.

Let us test our results for the orbital motion of Mercury.
From [30] we take for peri- and aphelion the values

rmin ¼ ð307 500:7� 3:0Þ 	 10�6 AU; (51)

rmax ¼ ð466 696:6� 2:6Þ 	 10�6 AU; (52)

and use M ¼ 1476:625 28 m for the mass of the Sun to
determine r03 ¼ rmin

M and r04 ¼ rmax

M . With Eqs. (27)–(29)

and the results of this section we obtain

�P;0 ¼ 3:252 308	 10�19 � 5:5	 10�24: (53)

In order to express this dimensionless quantity in terms of
arc seconds per century we have to multiply it by c

M where

c ¼ 299 792 458 m s�1 is the speed of light. Then we get

�P;0

c

M
¼ 42:980 48� ð0:73	 10�3Þ ðarc secÞ=cy; (54)

in consistency with observations; cf. [31]. However, it is
not the usual result in the sense that it describes the
perihelion shift per revolution from periapsis to periapsis
rather than from 0 to 2�.
The usual result for the perihelion shift in terms of arc

seconds per century can by found using �P,

�P;0 ¼ 5:018 648 5	 10�7 � 3:7	 10�12: (55)

In [30] a revolution of Mercury is given as 87.969 257 days.
We get with t’ :¼ t � �: ’ � �0�

�1
’;0’ for a revolution

of 2�

yM :¼ 2��0

�’;0

M

c
¼ 87:969 25� ð8:5	 10�4Þ days; (56)

which agrees to the given accuracy with observation. This
yields for the perihelion shift

�P;0

yM
¼ 42:980 48� ð0:73	 10�3Þ ðarc secÞ=cy; (57)

in accord with observations. We see here that this value
coincides with (54) within the given accuracy and, there-
fore, the two different definitions cannot be distinguished.

V. FIRST-ORDER CORRECTIONS

In the following we will calculate the linear post-
Schwarzschild corrections for all quantities used to define
the observables�P and�LT as well as the conicity�conicity

due to the parameters a, n, and �. As the parameters Qe

and Qm appear only quadratically in Eqs. (4)–(7), we will
not study them here. However, this would be a totally
analogous procedure. We assume the constants of motion
to be fixed but let the zeros ri of R and �i of� vary. By this
procedure we will reduce the hyperelliptic integrals ap-
pearing in the definitions of �r, ��, �’, and � for the
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general Plebański-Demiański space-time to elliptic inte-
grals and elementary expressions.

The observables �P and �LT are defined through the
frequencies �r, ��, �’, and �. Whereas �r and ��

depend only on the variable indicated in the index, �’

and � can be separated in an r- and a �-dependent part,
�’ ¼ �’r þ�’� and � ¼ �r þ ��, where

�’r :¼ 2

�r

Z ra

rp

�rðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp ¼:

I’r
�r

;

�’� :¼ 2

��

Z �max

�min

��ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp ¼:

I’�
��

; (58)

�r :¼ 2

�r

Z ra

rp

TrðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp ¼:

Itr
�r

;

�� :¼ 2

��

Z �max

�min

T�ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp ¼:

It�
��

: (59)

In terms of these expressions the periastron shift and the
Lense-Thirring effect can be restated as

�P ¼
�’ ��r

�
¼ I’r�� þ I’��r � sgnL 2���

Itr�� þ It��r

; (60)

�LT ¼ �’ ���

�
¼ I’r�� þ I’��r � sgnL 2��r

Itr�� þ It��r

: (61)

A. Standard form of hyperelliptic integrals

All integrals appearing here have the form

Z x2

x1

fðxÞdxffiffiffiffiffiffiffiffiffiffiffiffi
P6ðxÞ

p ; (62)

where P6 is a polynomial of degree 6 in x ¼ r or x ¼ � ¼
cos�, fðxÞ is a rational function, and x1, x2 are zeros of P6.
This type of integral is called a hyperelliptic integral. The
functions P6 and f as well as the zeros x1, x2 depend on the
parameters a, n, and �. For a Taylor expansion of such an
integral it is of advantage to first reduce it to a standard
form similar to the elliptic integrals which appeared in the
calculations for the reference orbit. However, to our knowl-
edge such a standard form does not exist in the literature. A
straightforward generalization of the Legendre standard
form of elliptic integrals of the first kind can be obtained
by an additional term ð1� k22t

2Þ under the square root but
this yields again an elliptic integral as a substitution s ¼ t2

shows. A better choice is to generalize the Riemann form
of elliptic integrals,

Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞð1� k2tÞp ; (63)

to the hyperelliptic form

Z 1

0

ðAtþ BÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞð1� k21tÞð1� k22tÞð1� k23tÞ

q ; (64)

which was also used in [26] for the calculation of the
periastron shift of equatorial orbits in Kerr–de Sitter
space-times. As pointed out in [26], the form (64) can
also be expressed in terms of Lauricella’s hypergeometric
FD function; see also Appendix A.
The transformation of the form (62) to the form (64)

depends on the range of integration ½x1; x2�. In the case of
P6ðxÞ ¼ RðrÞ, we have four real zeros r1 < r2 < r3 < r4
and another two zeros r0, r5 which may be complex and
which tend to infinity for vanishing �. Here x1 ¼ r3 and
x2 ¼ r4 result in a transformation r ¼ ðAtþ BÞ�1 þ r1,
which yields

Z r4

r3

drffiffiffiffiffiffiffiffiffi
RðrÞp ¼ 1ffiffiffiffi

D
p

Z 1

0

ðAtþ BÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞð1� k21tÞð1� k22tÞð1� k23tÞ

q
¼ Affiffiffiffi

D
p �

2
FD

�
3

2
; ~	1; 2; ~m

�

þ Bffiffiffiffi
D

p �FD

�
1

2
; ~	1; 1; ~m

�
; (65)

where B ¼ 1=ðr4 � r1Þ ¼: Br,

A ¼ r4 � r3
ðr4 � r1Þðr3 � r1Þ ¼

: Ar ; (66)

D ¼ �
ðr3 � r1Þðr4 � r2Þ

ðr4 � r1Þ2
ðr4 � r0Þðr5 � r4Þ ¼: Dr ; (67)

k21 ¼
ðr4 � r3Þðr2 � r1Þ
ðr3 � r1Þðr4 � r2Þ ¼

: k21r ; (68)

k22 ¼ �ðr4 � r3Þðr5 � r1Þ
ðr3 � r1Þðr5 � r4Þ ¼

: k22r ; (69)

k23 ¼ �ðr4 � r3Þðr1 � r0Þ
ðr3 � r1Þðr4 � r0Þ ¼

: k23r ; (70)

and ~	1 ¼ ð12 ; 12 ; 12Þ, ~m ¼ ðk21r; k22r; k23rÞ ¼: ~m0r. For the case

of P6ðxÞ ¼ ��ð�Þ [see Eq. (90)], there are two real zeros

�2 < �3 and four other maybe complex zeros �0, �1, �4,
�5, where �1, �4 tend to infinity for vanishing a and �0, �5

for vanishing a or�. With x1 ¼ �2 and x2 ¼ �3 we get the
same form (65) but with B ¼ 1=ð�3 � �1Þ ¼: B�,

A ¼ ð�3 � �2Þ
ð�2 � �1Þð�3 � �1Þ ¼

: A� ; (71)

D¼a4�
ð�2��1Þð�4��3Þ

ð�3��1Þ2
ð�3��0Þð�3��5Þ¼:D� ; (72)
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k21 ¼ �ð�3 � �2Þð�4 � �1Þ
ð�2 � �1Þð�4 � �3Þ ¼

: k21� ; (73)

k22 ¼ �ð�3 � �2Þð�5 � �1Þ
ð�2 � �1Þð�5 � �3Þ ¼

: k22� ; (74)

k23 ¼ �ð�3 � �2Þð�1 � �0Þ
ð�2 � �1Þð�3 � �0Þ ¼

: k23� ; (75)

and ~m ¼ ðk21�; k22�; k23�Þ ¼: ~m0�.

B. Linear correction to period of r

In this section we will calculate the linear corrections to
the reference orbit due to the parameters a, n, and �. The
exact formula for the r period is given by

�r¼2
Z r4

r3

drffiffiffiffiffiffiffiffiffi
RðrÞp

¼ 2ffiffiffiffiffiffi
Dr

p
Z 1

0

ðArtþBrÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞð1�k21rtÞð1�k22rtÞð1�k23rtÞ

q
¼ 2Arffiffiffiffiffiffi

Dr

p �

2
FD

�
3

2
; ~	1;2; ~m0r

�
þ 2Brffiffiffiffiffiffi

Dr

p �FD

�
1

2
; ~	1;1; ~m0r

�
:

(76)

All quantities indexed with an r are given as some combi-
nation of the zeros of RðrÞ and, therefore, depend on the
parameters a, n, and �. This means that for a Taylor
expansion of �r we need to explicitly know how the zeros
ri of RðrÞ depend on the parameters. To see this, we
compare the coefficients of the equation

RðrÞ ¼ �

�
r� ~r0ffiffiffiffi

�
p

�
ðr� r1Þðr� r2Þðr� r3Þ

	 ðr� r4Þ
�
r� ~r5ffiffiffiffi

�
p

�
; (77)

where ~r0 ¼ r0
ffiffiffiffi
�

p
, ~r5 ¼ r5

ffiffiffiffi
�

p
do not have a singularity at

� ¼ 0. As the coefficient of r5 vanishes in RðrÞ we imme-
diately see that

� ðr2 þ r3 þ r4 þ r1Þ�� ð~r0 þ ~r5Þ
ffiffiffiffi
�

p
¼ 0 (78)

and, thus, ~r0 and ~r5 have to be expanded in terms of
ffiffiffiffi
�

p
.

Therefore, we introduce l ¼ ffiffiffiffi
�

p
as an expansion parame-

ter instead of �. Expanding the right-hand side of (77) in
terms of a, n, and l gives a system of equations which can
be solved for the derivatives of all ri with respect to the
parameters.

The Taylor expansion of �r in ~p ¼ ða; n; lÞ near ~p ¼ ~0
then reads

�r � �rð ~p ¼ ~0Þ þX3
i¼1

�r;ið ~p ¼ ~0Þpi (79)

¼ �r;0 þ 2
X3
i¼1

��Dr;i

2Dð3=2Þ
r

�
Ar

�

2
FD

�
3

2
; ~	1; 2; ~m0r

�
þ Br�FD

�
1

2
; ~	1; 1; ~m0r

��

þ 1ffiffiffiffiffiffi
Dr

p
�
Ar;i

�

2
FD

�
3

2
; ~	1; 2; ~m0r

�
þ Br;i�FD

�
1

2
; ~	1; 1; ~m0r

��
þ 1ffiffiffiffiffiffi

Dr

p X3
j¼1

ðk2jrÞ;i
2k2jr

�
Ar

�

2

�
FD

�
3

2
; ~	j

1; 2; ~m0r

�

� FD

�
3

2
; ~	1; 2; ~m0r

��
þ Br�

�
FD

�
1

2
; ~	j

1; 1; ~m0r

�
� FD

�
1

2
; ~	1; 1; ~m0r

������������ ~p¼~0
pi; (80)

where we used @
@xi

FDð
; ~	; �; ~xÞ ¼ 	i

xi
ðFDð
; ~	i; �; ~xÞ � FDð
; ~	; �; ~xÞÞwhich can be found in [32]. The symbol ~	j

means
that the jth component of ~	 is increased by one [e.g. ~	2

1 ¼ ð12 ; 32 ; 12Þ], and by X;i we denote the derivative of X with respect
to pi. Note that

k22r ¼
r03 � r04

r03
¼ k23r for ~p ¼ ~0; (81)

and, therefore, the Lauricella function FD reduces to an elliptic integral in this case. Here r0i are again the zeros of R0, i.e.
the turning points of the reference orbit.

For the linear correction with respect to a we obtain

� r;að~0Þ ¼ �4EL
�1ð1� E2Þ2ðr03 � r02ÞKðkÞ þ 2r03ð4� 3Cþ 3CE2ÞEðkÞ

ð1� E2Þ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr04 � r02Þð1� E2Þp ðr04 � r02Þðr03 � r02Þ2ðr04 � r03Þ2

; (82)

where k2 ¼ r02ðr04�r03Þ
r03ðr04�r02Þ as for the reference orbit and �1 is a nonsymmetric function of r02, r03, and r04,

�1 ¼ r02r03 þ r02r04 � r203 � r204: (83)

The linear corrections with respect to n vanishes,
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� r;nð~0Þ ¼ 0 (84)

and also the linear correction due to l ¼ ffiffiffiffi
�

p
, as expected. To determine the linear correction due to � we use

df

d�
ða; n;�Þj�¼0 ¼

�
df

dl
ða; n; lÞ 1

2l

�
l¼0

: (85)

In this way the linear correction due to � can be calculated to

�r;�ð~0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr04 � r02Þð1� E2Þp ð1� E2Þ

�
r03r04ð�1 � 2C�2Þ

ðr02 � r04Þðr03 � r04Þ2ðr02 � r03Þ
KðkÞ

� 4r03Cð�16Cþ 76CE2 � 57CE4 � C2 þ C2E4 � 48Þ
ðr02 � r04Þðr02 � r03Þ2ðr03 � r04Þ2ð1� E2Þ5 EðkÞ þ 6r04

ð1� E2Þ2 �ðn1; kÞ
�
; (86)

where �1 and �2 are nonsymmetric functions of r02, r03,
and r04,

�1¼2r203r
2
04�3r303r04�3r304r03þ3r303r02þ3r304r02�r203r

2
02

þ2r03r04r
2
02�r204r03r02�r204r

2
02�r203r04r02;

�2¼r04r02þr03r02�2r04r03: (87)

C. Linear correction to period of �

The linear correction to the � period can be determined
analogously to the foregoing subsection. The exact formula
for the period of the �-motion is

��¼
2A�ffiffiffiffiffiffiffi
D�

p �

2
FD

�
3

2
; ~	1;2; ~m0�

�
þ 2B�ffiffiffiffiffiffiffi

D�

p �FD

�
1

2
; ~	1;1; ~m0�

�
:

(88)

Again, we have to determine the dependence of the zeros
�i, i ¼ 0; . . . ; 5 on the parameters a, n, and �. This time
we use the ansatz

��ð�Þ ¼ a4�ð�� �2Þð�� �3Þ
�
��

~�1

a

��
��

~�4

a

�

	
�
��

~�0

a
ffiffiffiffi
�

p
��
��

~�5

a
ffiffiffiffi
�

p
�
; (89)

where ��ð�Þ is the right-hand side of (5) with the sub-

stitution � ¼ cos�,�
d�

d�

�
2 ¼ ��ð�Þ
¼ ð1þ a2��2 � 4�an�ÞðC� ðn� a�Þ2Þð1� �2Þ

� ðL� ðað1� �2Þ þ 2n�ÞEÞ2; (90)

and ~�1 ¼ a�1, ~�4 ¼ a�4, ~�0 ¼ a
ffiffiffiffi
�

p
�0, ~�5 ¼ a

ffiffiffiffi
�

p
�5 be-

have regularly in the limit a ¼ 0, � ¼ 0. By comparing
the coefficient of �5 it can be seen that �0 and �5 expand in

terms of l ¼ ffiffiffiffi
�

p
like r0 and r5 in the foregoing section.

Solving the system of equations given by (89), we obtain

~�0 � �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p
, ~�5 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p
and, therefore, ~�0 and

~�5 are complex conjugate.
For the Taylor expansion of �� we obtain the same

formula (80) with r replaced by �. However, in this case
we get

k21� ¼ k22� ¼ k23� ¼ 0 for ~p ¼ 0; (91)

which means that the Lauricella function FD reduces to an
elementary function in the limit ~p ¼ 0. For the linear
correction with respect to a we get

��;að~0Þ ¼ � 2�LE

Cð3=2Þ : (92)

The corrections with respect to n and l vanish, ��;nð~0Þ ¼
0 ¼ ��;lð~0Þ, as well as the correction for � due to

��;lð~0Þ ¼ Oðl2Þ.

D. Linear correction to frequency of ’-motion

In this section we will calculate the Taylor expansions of
the integrals I’r and I’� defined in (58),

I’rð ~pÞ ¼ 2
Z ra

rp

�rðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp ; I’�ð ~pÞ ¼ 2

Z �max

�min

��ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp :

The conversion of these two integrals to the standard form
is more involved than in the case of �r and �� because an
additional function�r or�� appears in the integrand here.

Let us first consider �rðrÞ ¼ a PðrÞ
�r

. The poles of �r are

given by the horizons �r ¼ 0, which we denote by hi, 1 

i 
 4. Let h2 � 0 and h3 � 2 correspond to the
Schwarzschild case, whereas h1 � �l�1 � 1 and h4 �
l�1 � 1 tend to infinity for vanishing �. Then �r can be
rewritten as

�rðrÞ ¼ aPðrÞ
l2ðr� ~h1

l Þðr� h2Þðr� h3Þðr� ~h4
l Þ
; (93)
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where ~h1 ¼ lh1, ~h4 ¼ lh4. Now �r can be decomposed in partial fractions and the resulting integrals transformed to the
standard form by the substitution outlined in Sec. VA. This yields an integral of the form

I’rð ~pÞ ¼ 2
X4
i¼0

ci’rffiffiffiffiffiffi
Dr

p
Z 1

0

ðArtþ BrÞdt
ð1� Ni’rtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞð1� k21rtÞð1� k22rtÞð1� k23rtÞ

q (94)

¼ 2
X4
i¼0

ci’rffiffiffiffiffiffi
Dr

p
�
Ar

�

2
FD

�
3

2
; ~	2; 2; ~mi’r

�
þ Br�FD

�
1

2
; ~	2; 1; ~mi’r

��
; (95)

where ci’r and Ni’r are some constants with N0’r ¼ 0, ~	2 ¼ ð12 ; 12 ; 12 ; 1Þ, and ~mi’r ¼ ðk21r; k22r; k23r; Ni’rÞ. The Taylor
expansion of this can be done analogously to Sec. VB and gives

I’rð ~pÞ � 4Er04�ðn2; kÞ
ðr04 � 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r03ðr04 � r02Þð1� E2Þp a (96)

as the other corrections with respect to n, l, and � vanish. Here r0i, k, and n2 correspond to the reference orbit; see
Sec. IV for a definition.

Now let us consider I’�. With the substitution � ¼ cos�, the integral can be transformed to

I’�ð ~pÞ ¼ 2
Z �3

�2

ðL� ðað1� �2Þ þ 2n�ÞEÞd�
ð�� 1Þð�þ 1Þð�� 1

l ð2nlþ fðn; lÞÞÞð�� 1
l ð2nl� fðn; lÞÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�Þ

q ; (97)

where fðn; lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2n2 � 1

p
. Then the standard form can

be obtained with the substitution described in Sec. VA
giving the integral (95) with r replaced by �. Here again
ci’� and Ni’� are constants with N0’� ¼ 0. The Taylor
expansion is given by

I’�ð ~pÞ � 2� sgnL� 2�Effiffiffiffi
C

p a; (98)

with vanishing corrections due to n, l, and �.

E. Linear correction to frequency of t-motion

The two integrals to be considered for determining the
correction to the t-motion are

Itrð ~pÞ ¼ 2
Z ra

rp

TrðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp ; It�ð ~pÞ ¼ 2

Z �max

�min

T�ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp :

The procedure will be analogous to the foregoing subsec-
tion. The poles of Tr and T� are the same as of �r and ��

respectively and, therefore, the integrals can be expressed
similar to (95). We get

Itrð ~pÞ ¼ 2
X4
i¼0

citr

�
Ar

�

2
FD

�
3

2
; ~	2; 2; ~mitr

�
þ Br�FD

�
1

2
; ~	2; 1; ~mitr

��

� Itrð~0Þ þ Itr;að~0Þaþ Itr;nð~0Þnþ Itr;�ð~0Þ�; (99)

where citr and Nitr are constants with N0tr ¼ 0, ~	2 ¼ ð12 ; 12 ; 12 ; 1Þ, ~mitr ¼ ðk21r; k22r; k23r; NitrÞ, and Itrð~0Þ ¼ Itr;0 as for the
reference orbit. The linear correction due to a is given by

Itr;að~0Þ¼ 4Lr203
ðr03ðr04�r02Þð1�E2ÞÞð3=2Þðr04�r03Þ2ðr03�r02Þ

�
r041E

2KðkÞ
ðr04�2Þðr03�2Þþ

2Cð8þ2C�3CE2Þ
ðr03�r02Þð1�E2Þ2 EðkÞ

�
; (100)

where 1 is a nonsymmetric function of r02, r03, and r04,

1 ¼ 2r204r02 � r03r
2
04r02 � 2r204r03 þ 2r203r

2
04 � 2r203r04 � r203r04r02 þ 2r203r02: (101)

The correction due to n vanishes, Itr;nð~0Þ ¼ 0, and the correction due to � is given by
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Itr;�ð~0Þ¼ Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr04�r02Þð1�E2Þp �

�r03r04KðkÞ
�� ð
2þ12C
3Þ

24ð1�E2Þðr04�r03Þ2ðr03�r02Þðr04�r02Þ
þ
1

12

�
ðr04�2Þ�1ðr03�2Þ�1

þ 2

ð1�E2Þ3
�
þr03ðr04�r02Þ

ð1�E2Þ EðkÞ
�ð
4þ12C
5Þ

24S
�8�75E2þ149E4�116E6þ32E8

E2ð1�E2Þ2 �4C

3

�

þ r04
1�E2

�ðn1;kÞ
�
238�754E2þ952E4�560E6þ27E8

ð1�E2Þ3 þ2Cð2E2�5Þ
1�E2

þ 
6þ4C
7

8ðr04�r03Þ2ðr03�r02Þðr04�r02Þ
�

þr02þr03�3r04
ð1�E2Þ2

�
r03r04KðkÞ�r03ðr04�r02ÞEðkÞ�2r04ð3�2E2Þ

1�E2
�ðn1;kÞ

�
þ256r04
r04�2

�ðn2;kÞ
�
; (102)

where S ¼ ðr04 � r03Þ2ðr03 � r02Þ2ðr04 � r02Þ2ðr04 � 2Þ	
ðr03 � 2Þðr02 � 2Þ and 
i, i ¼ 1; . . . ; 7, are nonsymmetric
functions of r02, r03, and r04 given in Appendix B.

The Taylor expansion for the �-dependent part is much
easier. The zero-order term and all linear corrections ex-

cept It�;a vanish, It�ð~0Þ ¼ It�;nð~0Þ ¼ It�;�ð~0Þ ¼ 0. The re-

maining term is given by

It�;að~0Þ ¼ 2�Lffiffiffiffi
C

p : (103)

VI. OBSERVABLES

In Sec. III we defined the general expressions for the
fundamental frequencies �r, ��, and �’ in Plebański-

Demiański space-time. The analytic expressions of these
quantities are given in terms of complete hyperelliptic
integrals on a Riemann surface of genus 2 [see Eqs. (76),
(88), (95), and (99)], whose numerical evaluation is quite
cumbersome. By a post-Schwarzschild expansion of the

fundamental frequencies we will reduce the hyperelliptic
integrals to elementary expressions and elliptic integrals,
which can be handled easily with computer algebra sys-
tems like MATHEMATICA or MAPLE. In addition, we will
perform the post-Newtonian expression for comparison
with other results and use the parameter values of
Mercury to get an idea of the order of magnitude of the
corrections.

A. Periastron shift

In Sec. IV we calculated the expression for �P for the
Schwarzschild case [see Eq. (47)] and noted that as long as
a particle is considered to move in an orbital plane usually
the difference angle �P [see (48)] is used instead of �P.
Let us now consider the linear corrections of �P and �P

due to a, n, and �. As all linear corrections due to n so far
vanished, the linear correction due to this parameter also
vanishes for �P and �P. The linear correction due to a for
the frequency �P is given by

�P;að~0Þ¼
I’r;að~0ÞþsgnL

ffiffiffiffi
C

p
�r;að~0Þ�E�r;0ð1� jLjffiffiffi

C
p Þ

Itr;0
þsgnL

ðL�r;0þItr;að~0ÞÞð2�� ffiffiffiffi
C

p
�r;0Þ

I2tr;0

¼ 2

Z

�
r04

r04�2
�ðn2;kÞþ

ffiffiffiffi
C

p jLj�1ðr02�r03ÞðE2�1Þ2KðkÞ�2r03ð4�3CðE2�1ÞÞEðkÞ
ðr02�r03Þ2ðr02�r04Þðr03�r04Þ2ðE2�1Þ3 �KðkÞ

�
1� jLjffiffiffiffi

C
p

��

þ jLj
E2Z2

�
KðkÞþ

�
r03r041E

2KðkÞ
ðr04�2Þðr03�2Þþr03

2Cð8þ2C�3CE2ÞEðkÞ
ðr03�r02Þð1�E2Þ2

�
ðð1�E2Þðr04�r02Þðr04�r03Þ2ðr03�r02ÞÞ�1

�

	
�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr02�r04ÞðE2�1Þ

q
�4

ffiffiffiffi
C

p
KðkÞ

�
; (104)

where Z ¼ �r03r04KðkÞ þ r03ðr04 � r02ÞEðkÞ þ 2r04
3�2E2

1�E2 �ðn1; kÞ þ 8r04
r04�2�ðn2; kÞ and �1, 1 are nonsymmetric func-

tions of r02, r03, and r04 defined in (83) and (101). Here r0i, k, and ni correspond to the reference orbit and are defined in
Sec. IV. Note that�P;a does not depend on the sign ofL, i.e. on whether the particle travels on a prograde or retrograde orbit.

The correction of �P due to the angular momentum of the gravitating source reads

�P;að~0Þ ¼ 4E
ffiffiffiffi
C

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� E2Þr03ðr04 � r02Þ

p �� jLj�1
ðr04 � r03Þ2ðr03 � r02Þðr04 � r02ÞðE2 � 1Þ �

1ffiffiffiffi
C

p þ jLj
C

�
KðkÞ

� 2jLjr03ð4� 3C� 3CE2Þ
ð1� E2Þ3ðr04 � r03Þ2ðr03 � r02Þ2ðr04 � r02Þ

EðkÞ þ r04
r04 � 2

�ðn2; kÞ
�
; (105)

which also does not depend on the sign of L. These formulas are exact in M and, therefore, quite complicated. If we
consider the post-Newtonian approximation of these terms by using (27)–(30) and assuming that r03 and r04, the turning
points of the reference orbit in Schwarzschild space-time, become large we obtain
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�P;að~0Þa ¼ 2
1� 6 sin�01

d3ð1� �2Þð3=2Þ JM
2 þOðJM3Þ; (106)

�P;að~0Þa ¼ 4�
1� 6 sin�01

dð3=2Þð1� �2Þð3=2Þ JM
ð1=2Þ þOðJMð3=2ÞÞ;

(107)

where d is again the semimajor axis, � the eccentricity, and
J ¼ aM is the non-normalized specific angular momentum
of the gravitating source. These terms are similar to the
expression derived by Lense and Thirring [4] for the pre-
cession of the longitude of pericenter, to which it differs
only in the second term containing the inclination �01.
However, the fundamental frequency �P is not identical
to the precession of longitude of the pericenter: As�r does
not contribute to the first order correction of�P the value of
�P;a is calculated by the correction due to �’ ¼ �’

� only,
which is the averaged d’

dt . The longitude of pericenter on the
other hand contains the argument of the pericenter which is
defined not on the reference plane but the orbital plane.

Note that the expressions for �P and �P depend on the
inclination of the orbital plane. For an inclination of �01 <

arcsin16 � 0:053� the periastron shift is perturbed in the

direction of the rotation of the gravitating source whereas
for �01 > arcsin16 the perturbation is in the opposite direc-

tion. (Here an inclination of �01 ¼ �
2 corresponds to the

equatorial plane and �01 
 �
2 by definition; see Sec. IV.) In

particular, if the unperturbed test particle moves on the
equatorial plane, the periastron shift is perturbed against
the direction of rotation. This seems to be counterintuitive
as a particle radially approaching the gravitational source
is dragged along the direction of the rotation. However, this
does not mean that the shape of the orbit is affected in the
same way: The rotation of the gravitating source acts as an
repulsive force which also causes the peri- and apoapsis to
increase; see (4).

Let us now consider the linear correction of �P and �P

due to �. For �P we get a very complicated expression
given in Appendix B. In terms of the expression derived in
the previous section we get

�P;� ¼ sgnL
ffiffiffiffi
C

p �
�r;�

Itr;0
þ

�
2�ffiffiffiffi
C

p � �r;0

�
Itr;�
I2tr;0

�
: (108)

The correction of �P due to � is much simpler,

�P;� ¼ sgnL
ffiffiffiffi
C

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� E2Þr03ðr04 � r02Þ

p ð1� E2Þ
	

�
2Cðr02r03 þ r02r04 � 2r03r04Þ � �1

ðr04 � r03Þ2ðr04 � r02Þðr03 � r02Þ
r03r04KðkÞ

þ 48þ 16C� 76CE2 þ 57CE4 þ C2 � C2E4

16þ 8C� 36CE2 þ 27CE4 þ C2 � C2E2

	 r03ðr04 � r02ÞEðkÞ þ 6r04
1� E2

�ðn1; kÞ
�
: (109)

These complicated expressions can be simplified by con-
sidering the post-Newtonian approximation, which reads

�P;�� ¼ 1

2
sgnLdð3=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
�̂Mð1=2Þ þOð�̂Mð3=2ÞÞ;

(110)

�P;�� ¼ � sgnLd3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �̂

M
þ 2� sgnLd2

2� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �̂

þOð�̂MÞ; (111)

where �̂ ¼ 3�
M2 is the usual non-normalized cosmological

constant and d, � are the semimajor axis and eccentricity.
The first term of Eq. (111) coincides with the result in [33].

Interestingly, although we assumed both �̂ and M to be
small we assumed nothing about their ratio. This raises the
question whether the first term of (111) is indeed the largest
of the expansion. But if we divide the second term by the
first, this is proportional to M

d , which is assumed to be

small. This proves that the terms of the above expansions
in fact decrease in magnitude for increasing powers of M.
The exact formula for the perihelion shift assuming a

nonvanishing cosmological constant was derived in
[12,34]. We will use the formalism of [12] [see Eq. (70)]
to compute the perihelion shift of Mercury in
Schwarzschild–de Sitter space-times and compare it with
our approximate formula. For this, we use M ¼
1476:62528 m and, by using (27)–(30), we determine
averaged values for the energy and angular momentum
from the apo- and periapsis data given by [30] and written
down in Sec. IVE. With the exact formulas given in [12]
the difference between the perihelion shift for � ¼ 0

and with a cosmological constant of �̂ ¼ 3�=M2 ¼
3	 10�52 m�2 is given by

�P;ð�¼10�52Þ=yM � �P;ð�¼0Þ=yM

¼ 1:038 833 075 425 928	 10�14 arc sec

cy
; (112)

where yM is the Mercury year as calculated in (56). If we
insert the same values in our formula (106) we get

�P=yM��P;0=yM

¼1:038832108177831	10�14 arc sec

cy
þOð�2Þ; (113)

which agrees very well with (112).

B. Lense-Thirring effect

The Lense-Thirring effect, which can be identified with
a precession of the orbital plane in the weak field limit, is
up to first order not influenced by any other parameter than
the rotation a. This is because all linear corrections to ��
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and�’ due to n and� vanish. The linear correction due to

a is given by

�LT;a ¼ 1

Z

�
2r04

ðr04 � 2Þ�ðn2; kÞ � 2KðkÞ
�
; (114)

where Z¼�r03r04KðkÞþr03ðr04�r02ÞEðkÞþ2r04
3�2E2

1�E2 	
�ðn1;kÞþ 8r04

r04�2�ðn2;kÞ and r0i, k, and ni correspond to the
reference orbit; see Sec. IV.

Let us consider now the weak field limit by assuming
that r03 and r04 become large. Using (27)–(30), we get

�LT;aa ¼ 2

d3ð1� �2Þð3=2Þ JM
2 þOðJM3Þ; (115)

where J ¼ aM is the non-normalized angular momentum
of the gravitating source per unit mass, d is the semimajor
axis, and � the eccentricity. This formula is identical to the
precession rate of the longitude of the ascending node as
given by Lense and Thirring; cf. [4].

C. Conicity

The effect of n can be observed by a deviation from the
symmetry of the geodesic motion with respect to equatorial
plane. In Sec. III we defined �conicity ¼ �� ð�min þ �maxÞ
as a measure for this deviation, which is given by

�conicity � sgnL
4Effiffiffiffi
C

p n (116)

up to first order. Linear corrections due to a and � vanish.
This deviation from the symmetry to the equatorial plane
also implies that for n � 0 a test particle cannot move on
an orbital plane and, in particular, not in the equatorial
plane (if E � 0). Instead it moves on a cone with opening
angle �� 4Effiffiffi

C
p nþOðn2Þ. As �01 and �02 are perturbed by

the same value 
 ¼ �sgnL 2Effiffiffi
C

p n (up to first order) the

symmetry axis of this cone coincides with one of the two
normals of the orbital plane in the Schwarzschild case, i.e.
�n ¼ �02 � �

2 2 ð0; �2Þ if 
< 0 or �n ¼ �01 þ �
2 2 ð�2 ; �Þ

if 
> 0.
In the post-Newtonian limit, the conicity becomes

�conicity � 4 sgnLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð1� �2Þp n̂

Mð1=2Þ �
8 sgnL

dð3=2Þð1� �2Þð3=2Þ n̂M
ð1=2Þ;

(117)

where n̂ ¼ nM is the non-normalized NUT parameter.
Here d and � are the semimajor axis and the eccentricity,
as before. Note that as we assumed n ¼ n̂

M to be small in the

first place, the first term in the above equation will indeed
tend to zero for M ! 0 (but is still the largest of the
expansion).

The conicity can be used to determine an upper bound
for the value of n. As the error tolerance of the inclination

of an orbiting object places a bound for�conicity, this can be

used in one of the above equations to get an estimate of n.
From [30] we obtain for the difference of maximal and
minimal inclination of Mercury over a time span of 10 yr
j�conicityj 
 4:2001 arc sec or j�conicityj
2:04	10�5 rad.

Inserted in (116) this yields jnj 
 0:032.

VII. CONCLUSIONS AND OUTLOOK

In this paper we derived analytic expressions for the
periastron shift and Lense-Thirring effect assuming neutral
test particles in the general axially symmetric Plebański-
Demiański electrovac space-time with vanishing accelera-
tion of the gravitating source. We determined the direct
dependence of these observables on the parameters of the
space-time by expanding them in a Taylor series up to first
order. In addition, we defined the conicity of an orbit and
analyzed its dependence on the space-time parameters by
also expanding it in a Taylor series up to first order. Within
the linear approximation we used the osculating orbital
elements of Mercury to derive an upper bound for the
dimensionless NUT parameter n.
From the six parameters of a Plebański-Demiański

space-time with vanishing acceleration, only the mass M,
the rotation a, the NUT charge n, and the cosmological
constant � have any linear effects on neutral test particles.
For Schwarzschild space-time (0 ¼ a ¼ n ¼ � ¼ Qe ¼
Qm), the only effect is the periastron shift, whereas the
Lense-Thirring effect vanishes and the mean value of the
polar coordinate coincides with the equator. In the follow-
ing we summarize the effects due to the other parameters
compared to Schwarzschild space-time:
(i) Taub-NUT space-time (0 ¼ a ¼ � ¼ Qe ¼ Qm):

The mean value of the polar motion deviates from
the equator and the motion takes place on a cone
rather than a plane.

(ii) Kerr space-time (0 ¼ n ¼ � ¼ Qe ¼ Qm): The
periastron shift is changed and the Lense-Thirring
effect is nonzero. The latter can be interpreted as a
precession of the orbital plane in the weak field
approximation. Both are independent from the di-
rection of rotation of the particle.

(iii) Kerr-Taub-NUT space-time (0 ¼ � ¼ Qe ¼ Qm):
In addition to Kerr, the mean value of the polar
motion deviates from the equator. The combination
with a nonvanishing Lense-Thirring effect causes a
precession of the orbital cone.

(iv) Kerr-Taub-NUT–de Sitter space-time (0 ¼ Qe ¼
Qm): In addition to Kerr-Taub-NUT, the periastron
shift is changed by a nonvanishing�. However, due
to the smallness of � the effect is tiny.

The effects of nonvanishing space-time parameters may
also be analyzed compared to any other space-time covered
by the general Plebański-Demiański metric using the same
methods as presented in this paper. In particular the Kerr
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space-time may be used as reference. In this case ��;0 and

�’;0 are also given in terms of elliptic integrals instead of

elementary expressions.
The mathematical framework presented in this paper is

based on the theory of hyperelliptic and elliptic functions.
We defined a standard form for hyperelliptic integrals
based on the Riemann form of elliptic integrals and ex-
pressed it in terms of the hypergeometric FD function
introduced by Lauricella (see also [26]). The methods
presented in this paper may also be used to analyze the
linear (and higher order) effects of the six parameters of
Plebański-Demiański space-time with vanishing accelera-
tion on charged particles with a complete analogous pro-
cedure. Another interesting question is whether additional
effects arise for a higher order approximation, for example,
the quadratic effect of n on r-dependent expressions or the
coupling of a to the other parameters. Similarly to the
analysis presented here, observables for unbound orbits
like light deflection or the deflection of massive particles
may be considered. This will be postponed to a later
publication.
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APPENDIX A: LAURICELLA’S FD FUNCTION

The four functions FA, FB, FC, and FD of Lauricella
are hypergeometric functions of multiple variables
generalizing the hypergeometric functions of Gauss and
Appell. They were introduced in 1893 [35] and given as a
hypergeometric series,

FDð
; ~	; �; ~xÞ ¼
X1
~�¼0

ð
Þj~�jð ~	Þ~�
ð�Þj~�j ~�! ~x~�; (A1)

where ~� is a multi-index, jx�n j< 1 for all n, and ð�Þj~�j the
Pochhammer symbol. Here j~�j ¼ P

n�n, ~�! ¼
Q

n�n!, and

ð ~	Þ~� ¼ Q
nð	nÞ�n . The function FD can be extended to

other values of ~x by analytic continuation.
In this paper the FD function is used because it can be

represented in an integral form,

FDð
; ~	; �; ~xÞ ¼ �ð�Þ
�ð
Þ�ð�� 
Þ

Z 1

0
t
�1ð1� tÞ��
�1

	Y
n

ð1� xntÞ�	ndt; (A2)

for Reð�Þ> Reð
Þ> 0, which is exactly the form of all
hyperelliptic integrals appearing in this paper.

APPENDIX B: DETAILS OF �P;�

The calculation of the linear correction of the periastron
shift due to the cosmological constant yields a very cum-
bersome expression given by

�P;� ¼ 2EsgnL
ffiffiffiffi
C

p
ðE2 � 1ÞZ

�
�1 � 2Cðr02r03 þ r02r04 � 2r03r04Þ
ðr02 � r04Þðr02 � r03Þðr03 � r04Þ2

r03r04KðkÞ

þ �16Cþ 76CE2 � 57CE4 � C2 þ C2E4 � 48

16þ 8C� 36CE2 þ 27CE4 þ C2 � C2E2
r03ðr04 � r02ÞEðkÞ þ 6r04

E2 � 1
�ðn1; kÞ

�

� sgnL

2EZ2
½2 ffiffiffiffi

C
p

KðkÞ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr02 � r04ÞðE2 � 1Þ

q
�
�
r02 þ r03 � 3r04

ðE2 � 1Þ2
�
r03r04KðkÞ � r03ðr04 � r02ÞEðkÞ

� 2r04
3� 2E2

1� E2
�ðn1; kÞ

�
3þ

�
2

ðE2 � 1Þ3 �

1

12ðr04 � 2Þðr03 � 2Þ
þ 
2 þ 12C
3

24ðr04 � 2Þðr03 � 2Þðr02 � r04Þðr02 � r03Þðr03 � r04Þ2ðE2 � 1Þ
�
r03r04KðkÞ

þ
�

4C

3ðE2 � 1Þ2 �

4 þ 12C
5

24ðr04 � 2Þðr03 � 2Þðr02 � 2Þðr02 � r04Þ2ðr02 � r03Þ2ðr03 � r04Þ2

þ�75E2 þ 8þ 149E4 � 116E6 þ 32E8

E2ðE2 � 1Þ4
�
r03ðr04 � r02ÞEðkÞ þ 256r04

r04 � 2
�ðn2; kÞ

þ
�
2Cð2E2 � 5Þ
ðE2 � 1Þ2 � 
6 þ 4C
7

8ðr02 � r04Þðr02 � r03Þðr03 � r04Þ2ðE2 � 1Þ
þ 238þ 128E8 þ 952E4 � 754E2 � 560E6

ðE2 � 1Þ4
�
r04�ðn1; kÞ

�
; (B1)

where Z ¼ �r03r04KðkÞ þ r03ðr04 � r02ÞEðkÞ þ 2r04
3�2E2

1�E2 �ðn1; kÞ þ 8r04
r04�2�ðn2; kÞ and �1; 
1; . . . ; 
7 are nonsymmet-

ric expressions of r02, r03, and r04. These constants read
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�1 ¼ �2r203r
2
04 þ 3r303r04 þ 3r304r03 � 3r303r02 � 3r304r02 þ r203r

2
02 � 2r03r04r

2
02 þ r204r03r02 þ r204r

2
02 þ r203r04r02 (B2)


1 ¼ 1536� 288r04 � 288r03 þ 96r02 þ 20r202 � 8r204r02 þ 4r203r04r02 þ 4r204r03r02 þ 5r03r04r
2
02

þ 8r02r03r04 þ 14r203r
2
04 þ 15r304r03 � 10r03r

2
02 � 10r04r

2
02 � 30r303 � 8r203r02 þ 14r204r03

þ 14r203r04 þ 56r03r04 � 32r02r04 � 32r02r03 � 84r203 þ 15r303r04 � 30r304 � 84r204; (B3)


2 ¼ 864r03r
2
04r

2
02 � r403r04r

3
02 � 336r03r

3
04r02 þ 384r203r04r02 � 20r203r04r

3
02 þ 384r204r03r02 þ 36r303r04r

3
02

� 52r302r
2
04r

2
03 þ 48r403r04r

2
02 þ 58r402r04r

2
03 � 768r03r04r

2
02 þ 58r402r

2
04r03 � 12r03r

3
02r

3
04 � 96r302r04r03

þ 286r203r
2
02r

3
04 þ 592r203r02r

3
04 þ 124r302r

2
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2
02r

3
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5
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4
04r

2
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2
04r
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02 þ 432r303r04r02 þ 23r503r

2
02r04

� 7r503r
2
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02r04 þ 148r303r04r
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02

þ 29r402r04r
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03 � 13r03r
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04r

3
02 � 11r303r

2
04r

3
02 þ 416r403r

2
04 þ 414r604r02 þ 137r02r

2
03r

5
04 þ 102r603r02 þ 58r02r

3
03r

4
04

þ 29r402r
3
04r03 � 58r402r
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04r
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03 þ 120r303r
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02r
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04 � 207r03r02r
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04 þ 25r203r
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02r
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04

� 179r202r
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03r
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04 þ 95r03r
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04r
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02r
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04 � 34r503r
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4
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3
04 þ 51r603r
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03; (B4)


3 ¼ 32r204r02 þ 2r03r
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5 ¼ �18r502r
3
04 þ 128r03r

2
04r

2
02 � 16r403r04r

3
02 � 128r03r

3
04r02 � 48r502r04r03 þ 24r203r04r

3
02 þ 24r303r04r

3
02 þ 32r302r

2
04r

2
03

þ 24r403r04r
2
02 � 40r402r04r

2
03 � 8r402r

2
04r03 þ 56r03r

3
02r

3
04 þ 16r203r

2
02r

3
04 þ 120r203r02r

3
04 � 40r302r

2
04r03

� 168r03r
2
02r

3
04 � 56r404r02r

2
03 � 88r03r

5
04r02 þ 24r03r

4
04r

2
02 � 24r503r04r02 � 24r403r02r

2
04 þ 120r303r

2
04r02

� 32r303r
3
04r02 � 16r303r

2
04r

2
02 � 128r303r04r02 þ 6r503r

2
02r04 þ 6r503r

2
04r02 þ 176r03r02r

4
04 þ 32r402r04r03

þ 48r403r04r02 � 128r203r
2
04r02 þ 128r203r

2
02r04 � 18r303r

5
02 � 104r303r04r

2
02 þ 20r402r04r

3
03 þ 24r402r

4
04

� 32r03r
4
04r

3
02 � 16r303r

2
04r

3
02 þ 36r203r

5
02 � 24r403r

2
04 þ 22r02r

2
03r

5
04 � 12r02r

3
03r

4
04 þ 20r402r

3
04r03 þ 20r402r

2
04r

2
03

þ 32r303r
2
02r

3
04 � 64r302r

2
04 � 48r203r

3
02r

3
04 þ 96r302r

3
04 þ 16r202r

2
03r

4
04 þ 22r03r

5
04r

2
02 þ 4r403r

3
04r02 � 88r202r

4
04

� 88r203r
4
04 þ 64r203r

3
04 þ 12r503r

2
04 þ 44r203r

5
04 þ 4r403r

3
04 þ 36r502r

2
04 � 24r403r

2
02 � 8r402r

2
03 � 64r203r

3
02 þ 36r303r

4
04

þ 64r303r
2
04 þ 3r503r04r

3
02 þ 11r03r

5
04r

3
02 þ 6r502r

2
04r03 þ 8r403r

4
02 � 6r503r

2
02r

2
04 � 3r202r

3
03r

4
04 þ 9r502r

3
04r03

� 12r502r
2
04r

2
03 � 4r403r04r

4
02 þ 6r203r04r

5
02 þ 9r303r04r

5
02 � 7r402r

2
04r

3
03 þ 3r503r

3
04r02 � 2r02r

4
03r

4
04 þ 11r02r

3
03r

5
04

� 3r403r
2
02r

3
04 þ r402r

3
04r

2
03 � 2r303r

3
02r

3
04 þ 9r403r

2
04r

3
02 � 12r03r

4
04r

4
02 þ 17r302r

2
03r

4
04 � 22r202r

2
03r

5
04 � 22r504r

3
02

� 6r503r
3
02 � 44r402r

3
04 � 22r303r

5
04 � 6r503r

3
04 þ 4r403r

4
04 � 48r202r

2
03r

2
04 þ 32r302r

3
03 � 12r303r

4
02

þ 12r503r
2
02 þ 44r504r

2
02 � 8r402r

2
04 � 48r303r

3
04 � 4r404r

3
02 � 4r403r

3
02 þ 64r304r

2
02 þ 64r202r

3
03; (B7)
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7 ¼ �12r302r04r03 þ 9r203r
3
02 þ 9r302r

2
04 � 16r03r04r

2
02 � r03r

2
04r

2
02 � 9r203r

2
02r04 þ 16r203r

2
02 þ 2r202r

3
03

þ 16r204r
2
02 � 6r304r

2
02 þ 6r03r

3
04r02 � 32r304r02 � 3r403r02 þ 8r204r03r02 þ 2r203r

2
04r02

� 24r203r04r02 � 11r404r02 � 2r303r04r02 þ 3r403r04 þ 5r203r
3
04 � 3r303r

2
04 þ 11r404r03 þ 32r304r03: (B9)

These complicated expressions are exact and may be simplified by an additional approximation. For example, for large
peri- and apoapsis only the higher orders of r03 and r04 may be taken into account. In particular, in the post-Newtonian case
these long expressions are reduced to (110).
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I. INTRODUCTION

The Kerr-Newman solution to the Einstein-Maxwell
equations describes the gravitational field of a rotating
and electromagnetically charged stationary black hole
[1]. It generalizes both the static and charged Reissner-
Nordström metric [2,3] as well as the rotating Kerr
metric [4]. The latter is of very high importance not
only for general relativity but also from an astrophysical
point of view, as many black hole candidates were found
in recent years that are expected to rotate. Although it is
not very likely that they also carry a net charge, some
accretion scenarios were studied that may create such
black holes [5–7].

One way to explore the gravitational field of a Kerr-
Newman black hole is to consider the geodesic motion of
(charged) test particles in this space-time. Shortly after the
discovery of this solution, many aspects of the geodesic
motion were studied, including timelike equatorial and
spherical orbits of uncharged particles [8] and the last
stable orbit of charged particles [9] among others
(see also Sharp [10] and references within). Later, the
motion of charged particles was studied by Bičák et al.
in a series of papers [11–13], including a general discus-
sion of the radial motion as well as the motion along the
symmetry axis, circular motion of ultrarelativistic parti-
cles, zero angular momentum particles, and other special
cases. Only recently, Kovář et al. [14] found off-equatorial
circular orbits of charged particles that are unstable outside
the outer horizon, and Pugliese et al. [15] used equatorial
circular orbits of neutral test particles to distinguish be-
tween black holes and naked singularities. A comprehen-
sive analysis of photon orbits in Kerr-Newman space-time
was among others presented by Calvani and Turolla [16]
including the extended manifold with negative values of
the radial coordinate and naked singularities.

Analogously to the uncharged case, the geodesic equa-
tion in Kerr-Newman space-time can be separated by in-
troducing an additional constant of motion (besides the

constants associated with the obvious symmetries of the
space-time), the Carter constant [17], which ensures the
integrability of the equations of motions. The resulting
structure of the equations of motion is essentially the
same as in Schwarzschild and Reissner-Nordström space-
times, where they can be solved analytically in terms of
elliptic functions as first demonstrated by Hagihara in 1931
[18] and for charged particles in Reissner-Nordström
space-times only recently, see [19]. However, due to the
remaining coupling of radial and colatitudinal equations,
the generalization of this method to Kerr(-Newman) space-
time was not straightforward. This issue was solved by
Mino [20] by introducing a new time parameter, often
called the Mino time, which completely decouples the
equations of motion and enables a straightforward appli-
cation of elliptic functions. This was already used to ana-
lytically solve the geodesic equation for bound timelike
orbits in Kerr space-time by Fujita and Hikida [21] and for
general timelike and lightlike orbits in Kerr space-time in
[22]. In this paper we will generalize this method to Kerr-
Newman space-times. To our knowledge, so far analytical
solutions for equations of motion in Kerr-Newman space-
times were found only for special cases in terms of
elementary functions, e.g. for charged zero angular mo-
mentum particles, where the repulsive Coulomb force on
the particle balances the gravitational force at infinity [13].
In this paper, we will discuss the geodesic motion of

charged test particles in Kerr-Newman black hole space-
times. For the sake of completeness, we will include a
magnetic charge of the black hole, which was not done
in the cited references but has interesting effects on the
colatitudinal motion. After introducing the relevant nota-
tions and equations of motion in the next section, we
proceed with a complete classification of timelike orbits
of (charged) particles in Kerr-Newman space-time. This is
done separately for the colatitudinal motion (Sec. III A) and
the radial motion (Sec. III B). In both parts, we discuss
(1) general properties, i.e. symmetries and notation of orbit
types (see Table I), (2) possible orbit configurations, i.e.
which combinations of orbit types are possible at all (see
Tables II and III), and (3) regions of orbit configurations in
parameter space, which can be identified by considering
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orbits of constant r or � (see Figs. 1–11). Therefore, here
special cases are discussed like equatorial orbits, motion
along the symmetry axis, or orbits hitting the ring singu-
larity. The discussion includes off-equatorial orbits, trajec-
tories crossing the horizons, and orbits with negative values
of the radial coordinate. In Sec. IV, we will present analyti-
cal solutions in terms of elliptic functions dependent on the
Mino time for all coordinates. The paper is closed by a
summary and conclusion.

II. GEODESICS IN KERR-NEWMAN SPACE-TIME

A. Kerr-Newman space-time

The Kerr-Newman spacetime is a stationary, axisym-
metrical, and asymptotically flat solution of the Einstein-
Maxwell equation

G�� ¼ �2

�
g��F��F�� � 1

4
g��F��F

��

�
;

where G�� is the Einstein tensor and F�� the electromag-

netic tensor. Throughout, the units are chosen such that
c ¼ 1 for the speed of light andG ¼ 1 for the gravitational
constant. In Boyer-Lindquist coordinates the metric takes
the form

ds2 ¼ �2

�
dr2 þ �2d�2 þ sin 2�

�2
½ðr2 þ a2Þd�� adt�2

� �

�2
½asin 2ð�Þd�� dt�2; (1)

with

�2ðr; �Þ ¼ r2 þ a2cos 2�; (2)

�ðrÞ ¼ r2 � 2Mrþ a2 þQ2 þ P2; (3)

and M> 0 the mass, a the specific angular momentum, Q
the electric, and P the magnetic charge of the gravitating
source. (The existence of magnetic charges has not been
proven yet but it will be considered for the sake of com-
pleteness.) We restrict ourselves here to the case that two
horizons exist, given by the coordinate singularities

�ðrÞ ¼ 0, r� ¼ M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2 �Q2 � P2

p
. The only

genuine singularity is for �2 ¼ 0, where r ¼ 0 and

� ¼ �=2 is fulfilled simultaneously. This means that a
test particle approaching r ¼ 0 from above or below the
equatorial plane does not terminate at r ¼ 0 as it would in
Schwarzschild space-time but continues to negative values
of r. For large negative values of r, this can be interpreted
as a ‘‘negative universe,’’ see [23].
The Kerr-Newman metric reduces to the Kerr metric for

Q ¼ P ¼ 0, describing the exterior of rotating noncharged
black holes. It reduces to the Reissner-Nordström metric
for a ¼ 0, which describes the exterior of a nonrotating but
charged black hole. In the case P ¼ Q ¼ a ¼ 0, the Kerr-
Newman metric is reduced to the Schwarzschild metric.
The electromagnetic potential is given by

A ¼ A�dx
� ¼ Qr

�2
ðdt� asin 2�d�Þ

þ 1

�2
P cos �ðadt� ðr2 þ a2Þd�Þ; (4)

from which the electromagnetic tensor can be calculated
by F ¼ 1

2 ð@�A� � @�A�Þdx� ^ dx�. By the interchanges

Q ! P, P ! �Q the electromagnetic potential �A of the

dual electromagnetic tensor �F can be obtained.

B. Equations of motion

The equations of motion for a test particle of mass 	,
electric charge e, and magnetic charge h (all normalized to
the particle’s mass) can be obtained by the Hamiltonian

H ¼ 1

2
g��ð�� þ eA� þ h �A�Þð�� þ eA� þ h �A�Þ; (5)

where �� describe the generalized momenta. By

introducing

Q̂¼ eQþhPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þh2

p ; P̂¼ eP�hQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þh2

p ; ê¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þh2

p
; (6)

the Hamiltonian can be reduced to

H ¼ 1

2
ĝ��ð�� þ êÂ�Þð�� þ êÂ�Þ; (7)

where ĝ and Â are defined by (1) and (4) with P, Q, e

replaced by P̂, Q̂, ê. Therefore, the discussion of a test

TABLE I. Overview of the notation of orbit types. As examples, ES is an orbit which crosses the equatorial plane and reaches the
south pole, and F�

0 is a flyby orbit which comes from infinity, crosses both horizons and r ¼ 0 before it returns the same way to infinity.

Abbreviation Description Abbreviation Description

N (northern) orbit stays in the northern hemisphere � < �=2 index N the north pole � ¼ 0 is reached

E (normal) orbit crosses or stays in the equatorial plane � ¼ �=2 index S the south pole � ¼ � is reached

S (southern) orbit stays in the southern hemisphere � > �=2 index þ orbit stays at r > 0
T (transit) r starts at �1 and ends at �1 index 0 orbit crosses r ¼ 0
F (flyby) r starts and ends at þ1 or �1 index � orbit stays at r < 0
B (bound) r remains in a finite interval ½rmin ; rmax � superscript � orbit crosses the horizons
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particle without magnetic charge is sufficient. In the fol-
lowing we omit the hats for brevity.
We can obtain three constants of motion directly, since

H does not depend on 
,�, or t. The first, 	2 ¼ �g�� _x� _x�

is the normalization condition with 	 ¼ 1 for timelike and
	 ¼ 0 for lightlike trajectories. (The dot denotes differen-
tiation with respect to an affine parameter 
.) The second
and third equation,

E ¼ ��t ¼ �gtt _t� gt� _�þ eAt; (8)

L ¼ �� ¼ g�t _tþ g��
_�� eA�; (9)

describe the conservation of the specific energy E and the
specific angular momentum in z direction, respectively.
A fourth constant of motion can be obtained by considering
the Hamilton-Jacobi equation,

�@
S ¼ 1

2
g��ð@�Sþ eA�Þð@�Sþ eA�Þ: (10)

With the ansatz S ¼ 1
2 	
� Etþ L�þ S1ðrÞ þ S2ð�Þ, it

can be shown that the Hamilton-Jacobi equation indeed
separates with the Carter constantK as separation constant,
see [17].
With these four constants the equations of motion

become�
d�

d�

�
2 ¼ �K � 	 �a2cos 2��T 2ð�Þ

sin 2�
¼: �ð�Þ; (11)

�
d�r

d�

�
2 ¼ R2ð�rÞ � ð	�r2 þ �KÞ ��ð�rÞ ¼: Rð �rÞ; (12)

d�

d�
¼ �aRð�rÞ

��ð �rÞ � T ð�Þ
sin 2�

; (13)

dt

d�
¼ ð �r2 þ �a2ÞRð�rÞ

��ð �rÞ � �aT ð�Þ; (14)

where

Rð�rÞ ¼ ð �r2 þ �a2ÞE� �a �L�e �Q �r; (15)

T ð�Þ ¼ �aEsin 2�� �Lþ e �P cos�: (16)

All quantities with a bar are normalized to the gravitating
mass M, i.e. x ¼ �xM for x ¼ r, a, L, Q, P as well as

K ¼ �KM2 and ��ð �rÞ ¼ �r2 � 2�rþ �a2 þ �Q2 þ �P2. Here � is
the Mino time [20] normalized to M, which is given by
d� ¼ M��2d
 with the eigentime 
.

III. CLASSIFICATION OF MOTION

In this section we will classify the types of orbits in
terms of colatitude and radial motion. We will analyze
which orbit configuration, i.e. which set of orbit types,
may appear for given parameters �a, �Q, �P, E, �L, �K, e and

TABLE II. Overview of all possible orbit configurations for
colatitudinal motion. The vertical bar of the second column
denotes � ¼ �=2 and the thick lines � � 0, i.e. regions where
a motion is possible. Dots represent single zeros and circles double
zeros. If zeros merge, the resulting orbits are stable if a line is
reduced to a point and unstable if lines merge. The configurations
(B2) and (B4) with �L ¼ �e �P are obtained by a reflection at the
equatorial plane. For notation of orbit types, see Table I.

Zeros Range of � 2 ½0; �� Types of orbits

(A) �L � �e �P; (B1) �L ¼ �e �P, �K < �a2

2 N

2 E

2 S

4 N N

4 N E

4 N S

4 E S

4 S S

(B2) �L ¼ e �P, �L � 0, �K > �a2

1 NN

1 EN

3 NN N

3 NN E

3 NN S

3 EN S

(B3) �L ¼ 0 ¼ e �P, �K > �a2

0 EN;S

2 NN SS

(B4) �L ¼ e �P, �L � 0. �K ¼ �a2

2 NN

3 NN

3 EN

4 NN N

4 NN E

4 NN S

(B4) �L ¼ 0 ¼ e �P, �K ¼ �a2

4 NN SS
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which region in parameter space a given orbit
configuration occupies. Here we assume that 	 ¼ 1,
that is, we restrict ourselves to test particles with
mass, but the discussion for light may be done analo-
gously. The whole analysis will be based on the conditions
�ð�Þ � 0 and Rð �rÞ � 0 which are necessary for geodesic
motion.
For both colatitudinal and radial motion, we will first

give some general properties as symmetries and notation of
orbit types. We then proceed with the determination of
possible orbit configurations, i.e. sets of orbit types that
are possible for given parameters (for more than one
possible orbit type the actual orbit is determined by initial
conditions). Each orbit configuration covers a particular
region in the parameter space. Finally, we will analyze how
these regions look and determine their boundaries in pa-
rameter space.

A. Colatitudinal motion

The coordinate � may only take a specific value �0 2
½0; �� if�ð�0Þ � 0 is valid. We will analyze in the follow-
ing whether this is fulfilled for a given parameter set.

1. General properties

First, we notice that � does not depend on �Q and that e
and �P only appear as the product e �P. The function � has
the following symmetries:
(i) A change of sign of e �P has the same effect as

reflecting � at the equatorial plane: �j�e �Pð�Þ ¼
�je �Pð�� �Þ. In particular, � is symmetric with
respect to the equatorial plane if e �P ¼ 0:
�je �P¼0ð�Þ ¼ �je �P¼0ð�� �Þ.

(ii) A simultaneous change of sign of �L and E result in
a reflection at the equatorial plane: �j� �L;�Eð�Þ ¼
�j �L;Eð�� �Þ and � �L¼0¼Eð�Þ ¼ � �L¼0¼Eð�� �Þ.

TABLE III. (Continued)TABLE III. Overview of all possible orbit configurations
for radial motion. The vertical bars of the second column
mark �r ¼ 0, �r ¼ �r�, and �r ¼ �rþ (from left to right). The dots
represent the real zeros of R (turning points) and the thick
lines R�0, i.e. regions where a motion is possible. If zeros
merge, the resulting orbits are stable if a line is reduced to a point
and unstable if lines merge. For notation of orbit types see
Table I.

Real zeros Range of �r Types of orbits

(I) E2 > 1

0 T

2 F�
0 Fþ

2 F0 F�þ
2 F� F�þ
2 F� F�

0

4 F�
0 Bþ Fþ

4 F0 B�þ Fþ

4 F� B�þ Fþ

4 F� B�
0 Fþ

4 F0 Bþ F�þ
4 F� Bþ F�þ
4 F� B0 F�þ
4 F� B� F�þ
4 F� B� F�

0

(II) E2 < 1

2 B�þ
2 B�

0

4 B�þ Bþ

4 B�
0 Bþ

4 Bþ B�þ
4 B0 B�þ
4 B� B�þ
4 B� B�

0

(III) E2 ¼ 1, e �Q> 1

1 F�
0

3 F� B�
0

3 F� B�þ
3 F0 B�þ
3 F�

0 Bþ

Real zeros Range of �r Types of orbits

(III) E2 ¼ 1, e �Q< 1

1 F�þ
1 F�

0

3 B�þ Fþ

3 B�
0 Fþ

3 Bþ F�þ
3 B0 F�þ
3 B� F�þ
3 B� F�

0
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Therefore, we assume without loss of generality e �P � 0
and E � 0 in the following. The condition �ð�Þ � 0 also
shows that �K � 0 is a necessary condition for geodesic
motion as all other (positive) terms are subtracted.

The Carter constant also encodes some geometrical
information if considered in its alternative form �C ¼ �K �
ð �aE� �LÞ2. Because of �ð�=2Þ ¼ �K � ð �aE� �LÞ2 ¼ �C a
particle may only cross or stay in the equatorial plane if
�C � 0. For equatorial orbits even �C ¼ 0 is necessary as
d�
d� ð�2Þ ¼ 0 needs to be fulfilled. For �K ¼ 0 geodesic motion

is only possible if �a ¼ �L ¼ 0 or in the equatorial plane
with �aE ¼ �L.

The function �ð�Þ contains a term which diverges for

� ¼ 0, � given by �ð �L�e �P cos�Þ2
sin 2�

. This fact suggests that we

distinguish between the following two cases:
(i) �L � �e �P: In this case �ð�Þ ! �1 for � ! 0, �,

that is, the north or south pole will never be
reached.

(ii) �L ¼ �e �P: In this case �ð�Þ ! �K � �a2 for � ! 0
and �L ¼ e �P as well as for � ! � and �L ¼ �e �P.
Therefore, a particle with �L ¼ e �P may reach the

north pole and a particle with �L ¼ �e �P the south
pole if in addition �K � �a2. For the subcase �L ¼
0 ¼ e �P, both north and south pole may be reached
if �K � �a2.

If the parameters are such that the poles cannot be
reached it is convenient to consider � ¼ cos � instead of
�. In terms of � the differential equation for colatitudinal
motion reads �

d�

d�

�
2 ¼ X4

i¼0

bi�
i ¼: ��ð�Þ; (17)

where b0 ¼ �K � ð �L� �aEÞ2 ¼ �C, b1 ¼ 2e �Pð �L� �aEÞ,
b2 ¼ � �K � �a2 � e2 �P2 þ 2 �a2E2 � 2 �aE �L, b3 ¼ 2 �aEe �P,
and b4 ¼ �a2ð1� E2Þ.
For a given set of parameters of the space-time and the

particle, different types of orbits may be possible. We call
an orbit
(i) northern orN, if it stays in the northern hemisphere

� < �=2,
(ii) normal or E, if it crosses or stays in the equatorial

plane � ¼ �=2,

FIG. 1 (color online). Orbit configurations for the colatitudinal motion with �a ¼ 0:5, �K > �a2, and e �P> 0. For a general description
see the text and Table II. The orbit configurations on the solid lines contain an orbit with constant �. They are unstable if marked by the
red solid line starting at the dot and approaching the dashed line, and stable otherwise. The dash-dotted line at �L ¼ e �P ( �L ¼ �e �P)
denotes an orbit crossing the north (south) pole and corresponds to the orbit configurations (B2). The other regions correspond to the
configurations (A). Small plots on the top are enlarged details of the lower plot.
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(iii) southern or S, if it stays in the southern hemisphere
� > �=2.

Equatorial orbits with � � �=2 are a special case of nor-
mal orbits. In addition to the above notions, we add an
index N if the north pole � ¼ 0 and S if the south pole
� ¼ � is reached, for example, NN for a northern orbit
reaching the north pole. See also Table I.

2. Orbit configurations

Let us now analyze which orbit configurations, i.e.
which sets of the above introduced orbit types, are possible
for given parameters. We use the necessary condition for
colatitudinal motion �ð�Þ � 0 for this. It implies that the
occurrence of real zeros of� in ½0; �� and the behaviour of
� at the boundaries has to be analyzed. (If several orbits
would be possible for some given parameters the actual
orbit of the test particle depends on the initial values.)

(A) Case �L � �e �P Here �ð�Þ ¼ �1 at � ¼ 0, �
which implies that �� has an even number of zeros
in ð�1; 1Þ (counted with multiplicity). If �� has no

real zeros there, no colatitudinal motion is possible,
which gives a restriction to the permitted sets of
parameters for geodesic motion. In the case of two
real zeros, there is a single orbit of type N, E, or S,
which is stable at a constant � if the two zeros
coincide. If all four zeros of �� lie in ð�1; 1Þ, all
combinations of two orbit types except EE are
possible. For two or more coinciding zeros, this
point is stable if it is a maximum of�� and unstable
otherwise.

(B) Case �L ¼ �e �P Here we have to consider four
subcases. (B1) �K < �a2: The same orbit types as in

(A) are possible. (B2) �K > �a2, �L � 0: In this case�

has different signs at � ¼ 0, �, which implies

that � has an odd number of real zeros in ð0; �Þ.
For one real zero there is one orbit of type NN or EN

for �L ¼ e �P and one of type SS or ES for �L ¼ �e �P.

If � has three real zeros in ð0; �Þ, there is one

additional orbit not reaching a pole. (B3) �K > �a2,
�L ¼ 0 ¼ e �P: Here�> 0 at � ¼ 0, �, i.e.� has an

even number of zeros in ð0; �Þ. Also, for e �P ¼ 0 the

none none

none

nonenone

FIG. 2 (color online). Orbit configurations for the colatitudinal motion with �a ¼ 0:5, �K � �a2, and e �P ¼ 0:3. For a general
description see the text and Table II. The orange solid lines in (a) correspond to orbits of constant � ¼ 0, �, which are unstable
for energies less than the one marked by the dots. These orbits correspond to the configurations (B4), other regions (in both plots) to the
configurations (A) or (B1). In both plots, the orbits labeled by the red solid line starting at the dot and approaching the dashed line are
unstable. All other orbits on solid lines are stable. Small plots on the top are enlarged details of the lower plot.

EVA HACKMANN AND HONGXIAO XU PHYSICAL REVIEW D 87, 124030 (2013)

124030-6



function � is symmetric with respect to the equa-
torial plane. For no real zeros there is one orbit of
type ENS which reaches both poles, and for two real
zeros an NN and an SS orbit. More zeros in ½0; ��
are not possible. (B4) �K ¼ �a2: Here an orbit with
constant � ¼ 0 (� ¼ �) is possible for �L ¼ e �P
( �L ¼ �e �P). For �L ¼ 0 no other than the two con-
stant orbits are possible, but for �L � 0 it is � !
�1 at the other boundary. In the latter case, if the
orbit is stable, there may be one additional orbit of
type E, N, or S.

For an overview of this different orbit configuration,
see Table II.

3. Regions of orbit configurations in parameter space

It is now of interest to analyze at which sets of
parameters a given orbit configuration changes. As
� � 0 is necessary for geodesic motion, this happens
if the behavior of � at the boundaries changes, which
means a switch from one of the above cases
ðAÞ; ðB1Þ; . . . ; ðB4Þ to another, or if the number of real
zeros of � changes. The latter occurs at that parameter
for which � has multiple zeros. With these two con-
ditions the different regions of orbit configurations in
parameter space can be completely determined. The first
condition was already analyzed above.

For � 2 ð0; �Þ the function� has the same zeros as the
polynomial ��, and we may use �� instead of � for all
orbits not reaching � ¼ 0,�. If �L ¼ �e �P then �0 ¼ �1 is
a zero of �� but does not correspond to a turning point of
the colatitudinal motion. If in addition �K ¼ �a2, then �0 ¼
�1 is a double zero of �� and � ¼ 0, � a simple zero of

�, which does correspond to a turning point of �. Keeping
this in mind, we will also use �� for these cases but
discuss the occurrence of multiple zeros at � ¼ 0, �
separately using �.

The condition for a double zero �0 is d��

d� ð�0Þ ¼ 0 ¼
��ð�0Þ. This can be read as two conditions on two
of the five parameters E, �L, �K, e �P, and a. Solving these
two conditions for E and �L dependent on the position of the
double zero �0 and the other parameters yields

E1;2¼ e �P

2 �a�0

�1

2

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
0ð1��2

0Þð �K� �a2�2
0Þð �Kþ �a2�2 �a2�2

0Þ2
q

ð�2
0�1Þð �K� �a2�2

0Þ �a�0

; (18)

�L1;2¼e �Pð�2
0þ1Þ

2�0

�1

2

	 �0ð1��2
0Þð �K� �a2Þð �Kþ �a2�2 �a2�2

0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
0ð1��2

0Þð �K� �a2�2
0Þð �Kþ �a2�2 �a2�2

0Þ2
q : (19)

The expressions for E and L diverge at �0 ¼ 0 for e �P � 0,

at �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�K= �a2

p
, and at �0 ¼ �1 for E, which suggests to

consider the two conditions for double zeros directly for
the following special cases:
Equatorial orbits.—For �0 ¼ 0 the two conditions im-

ply that either �K ¼ 0 and �L ¼ �aE or �K ¼ ð �aE� �LÞ2 and
e �P ¼ 0 are necessary and sufficient for the existence of
equatorial orbits. The asymptotic behavior of E and �L at
�0 ¼ 0 also displays these conditions,

none

none

none
none

FIG. 3 (color online). Orbit configurations for the colatitudinal motion with �a ¼ 0:5 and e �P ¼ 0. For a general description
see the text and Table II. The green solid lines correspond to equatorial orbits which are unstable from dot to larger �L
and else stable. The black solid line marks two stable orbits of constant � � �

2 which are symmetric with respect to the

equatorial plane. The dash- dotted line in (a) marks the case (B3) with an ENS orbit between the green solid lines and an NNSS
configuration else.
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E1;2 ¼ e �P

2 �a�0

� �K þ �a2

2 �a
ffiffiffiffi
�K

p þOð�2
0Þ; (20)

�L1;2 ¼ e �P

2�0

� �K � �a2

2
ffiffiffiffi
�K

p þOð�0Þ ¼ �aE1;2 �
ffiffiffiffi
�K

p
þOð�0Þ:

(21)

In the case �K ¼ 0, �L ¼ �aE the equatorial orbit is the
only possible geodesic orbit (for � 6�0) and, thus,
stable, whereas for �K ¼ ð �aE� �LÞ2, e �P ¼ 0 the sign of
A :¼ �a2ðE2 � 1Þ � �L2 has to be considered. The orbit is
stable if A � 0 (for � 6�0) and unstable if A > 0. In the
case A ¼ 0, the zero � ¼ �=2 is even fourfold. For �K ¼
�a2, e �P ¼ 0 ¼ �L, and E2 ¼ 1 the function � is identical
to zero.

Orbits with � � 0, �.—Geodesic motion along the
axis � ¼ 0, � is possible only if � ¼ 0, � is a double
zero of �. The two conditions on double zeros show
that �L ¼ e �P and �K ¼ �a2 are necessary and sufficient for
� � 0, and �L ¼ �e �P, �K ¼ �a2 for � � �. This can also
be seen by considering the asymptotic behavior of �L1;2

and E1;2 as �0 approaches �1; it is given by

lim �0!1
�L1;2 ! e �P and lim �0!�1

�L1;2 ¼ �e �P, whereas

E1;2 diverges for �K � �a2.
Let us discuss the stability of the orbits � � 0, �. The

orbits are unstable if �a2 � ð �aE� �L=2Þ2 > 0 and stable if
�a2 � ð �aE� �L=2Þ2 < 0. For �a2 � ð �aE� �L=2Þ2 ¼ 0 the
poles � ¼ 0, � are fourfold zeros and the orbit � � 0 is

stable if E ¼ �L
2a � 1, and the orbit � � � if E ¼ �L

2a þ 1. In

the special case of �L ¼ 0 ¼ e �P the two orbits are unstable
if E2 < 1 and stable if E2 > 1. For �L ¼ 0 ¼ e �P, �K ¼ �a2,
and E2 ¼ 1 again � � 0.

Orbits with � � � ffiffiffiffiffiffiffiffiffiffiffiffi
�K= �a2

p
.—The singularity �0 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffi
�K= �a2

p
is located in ð�1; 1Þ and is not equal to zero

only if 0< �K < �a2. Assuming this, orbits with constant

cos � � � ffiffiffiffiffiffiffiffiffiffiffiffi
�K= �a2

p
can exist only if �a �L�ð �a2 � �KÞE ¼

�e �P
ffiffiffiffi
�K

p
is fulfilled. This can be inferred from the asymp-

totes of �L1;2 in terms of E1;2 around �0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi
�K= �a2

p
,

�L1;2 ¼ �a2 � �K

�a
E1;2 � e �P

ffiffiffiffi
�K

p

�a
þO

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

ffiffiffiffiffi
�K

�a2

svuut 1
CA: (22)

none none

none

FIG. 4 (color online). Orbit configurations for the colatitudinal motion with �a ¼ 0:5 and e �P ¼ 0:3. For a general description
see the text and Table II. For both plots, solid lines with dashed asymptotes correspond to unstable and all other to stable orbits.
In (b) the regions above the solid orange line at �K ¼ �a2 correspond to the configurations (B2) and below to (B1). The line
itself corresponds to (B4) and covers all possible configurations (leftmost corresponds to topmost in Table II) with the exception
of the NNN configuration which is only possible for large values of e �P. Small plots on the top are enlarged details of the lower plot.
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The expressions (18) and (19) depend linearly on e �P and a rescaling of parameters ( �L= �a, �K= �a2, e �P= �a) removes the rotation

parameter �a completely from the equations. Only the dependence on �K is not obvious. If we solve the two conditions
d��

d� ð�0Þ ¼ 0 ¼ ��ð�0Þ for E and �K instead of �L, this yields

E1;2 ¼ e �P

2 �a�0

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe �Pð�2

0 þ 1Þ � 2 �L�0Þ2 þ 4�2
0 �a

2ð�2
0 � 1Þ2

q
�a�0ð�2

0 � 1Þ ; (23)

�K1;2 ¼ �a2 � e �Pð�2
0 þ 1Þ � 2�0

�L

2�2
0ð�2

0 � 1Þ
�
ðe �Pð�2

0 þ 1Þ � 2�0
�LÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe �Pð�2

0 þ 1Þ � 2 �L�0Þ2 þ 4�2
0 �a

2ð�2
0 � 1Þ2

q �
: (24)

Note that E1 and �K1 behave regular at �0 ¼ 0 and �aE1 ¼ �LþOð�0Þ, �K1 ¼ Oð�2Þ whereas E2 and �K2 are finite at
�0 ¼ 0 only if e �P ¼ 0. Then �K ! ð �aE� �LÞ2 as expected from the analysis of equatorial orbits above. Also, for
�0 ! �1, the conditions �L ¼ �e �P, �K ! �a2 are recovered.

Triple zeros are also of interest as they correspond to parameters where a stable orbit with constant �
becomes unstable and vice versa. Therefore, we will study them here. The three conditions for such points are

0 ¼ d2��

d�2
ð�0Þ ¼ d��

d� ð�0Þ ¼ ��ð�0Þ, which we read as three conditions on E, �L, and e �P yielding

E1;2 ¼ � 1

2

2�6
0 �a

4 þ 6�2
0
�K �a2 � ð3�4

0 �a
2 þ �KÞð �K þ �a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� �2
0Þð �K � �a2�2

0Þ
q

ð1� �2
0Þð �K � �a2�2

0Þ �a
; (25)

�L1;2 ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2

0Þð �K � �a2�2
0Þ

q
ð �K � �a2Þð �a2�6

0 � 3�4
0 �a

2 þ 3�2
0
�K � �KÞ

ð�2
0 � 1Þ2ð �K � �a2�2

0Þ2
; (26)

e �P1;2 ¼ � �3
0ð �K � �a2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� �2
0Þð �K � �a2�2

0Þ
q

ð�2
0 � 1Þð �K � �a2�2

0Þ
: (27)

In particular, triple zeros are also double zeros and
the asymptotic behavior of �L as a function of E and �K
at the singularities �0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi

�K= �a2
p

is determined by (22).
The points �0 ¼ �1 were studied above, but we note here
that � ¼ 0, � is a double zero of � if � ¼ �1 is a triple
zeros of ��.

Besides the equatorial orbits and orbits with constant
� ¼ 0, � discussed above, fourfold or even higher order
zeros are only possible for parameters corresponding to
� � 0, which are �a ¼ e �P ¼ �L ¼ �K ¼ 0 with arbitrary E
or E ¼ �1, �K ¼ �a2, and �L ¼ e �P ¼ 0.

The results of this section are visualized in Figs. 1–4.
As the five-dimensional parameter space cannot be
completely pictured, we have to fix at least two parameters.
For this we choose �a, which can be removed from
Eqs. (18), (19), (23), and (24), by a rescaling of parameters,
and e �P, which enters only linearly in (18) and (19). As a
three-dimensional plot of E, �L, and �K is still confusing, we
present two-dimensional plots of �L over E and �K over E.
Special cases to be discussed are then e �P ¼ 0, �L ¼ �e �P,
�K ¼ �a2, and �K ¼ 0. For the latter, geodesic motion is only
possible on a stable orbit of constant � (if not� � 0), more
precise on the equator for �L ¼ �aE or on e �P cos � ¼ �L for
�a ¼ 0. In each plot, we use the following conventions:

(i) Solid lines indicate double zeros of � which
correspond to stable or unstable orbits of constant
�. We use red lines for orbits with constant � < �

2 ,

blue for constant � > �
2 , and green for equatorial

orbits.
(ii) Dashed lines denote orbits with turning points at

the equatorial plane and are given by �L ¼ �aE�ffiffiffiffi
�K

p
. They also mark the transition fromN or S to E

orbits and are asymptotically approached by solid
lines corresponding to orbits with constant � near
the equatorial plane.

(iii) Dash dotted lines correspond to orbits which
cross a pole. They only appear in �L over E plots
for �K � �a2 and are located at �L ¼ �e �P. In this
case they are asymptotes to the solid lines corre-
sponding to orbits with constant � near a pole.

(iv) Dotted lines are asymptotes to solid lines. They do
NOT separate different orbit configurations. For �L
over E plots they only appear for �K < �a2 and are

approached for �0 ! � ffiffiffiffi
�K

p
= �a. If �K is plotted ver-

sus E they are approached for �0 ! �1.
(v) Single dots mark triple zeros which separate stable

from unstable orbits.
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(vi) The labels N, E, and S indicate the orbit configu-
rations summarized in Table II. Solid, dashed, and
dash- dotted lines indicate transitions from one
orbit configuration to another. Here dash-dotted
lines are special in the sense that on both sides
there are always the same orbit configurations but
only the line itself corresponds to another configu-
ration. Regions where a colatitudinal motion is
forbidden are marked with ‘none‘.

Note that we plot usually only positive values of E as
negative values can be obtained by E ! �E, �L ! � �L
and a reflection at the equatorial plane (e.g. an N orbit
becomes an S orbit).

B. Radial motion

The discussion of the radial motion will be analogous to
that of the �motion. An orbit can only take a specific value
in ½�1;1� if the radicand of the right-hand side of
Eq. (12) is larger than or equal to zero at that point, i.e. if

Rð �rÞ ¼ ðð�r2 þ �a2ÞE� �a �L�e �Q �rÞ2
� ð	�r2 þ �KÞð�r2 � 2�rþ �a2 þ �Q2 þ �P2Þ � 0:

We will analyze for which values of the parameters E, �L,
�K, e, �P and �Q this inequality is satisfied.

1. General properties

The three parameters e, �Q, and �P appear only in the two
combinations e �Q ¼: Q and �Q2 þ �P2 ¼: P 2, which may
be considered instead. The function R has the following
symmetries:

(i) It depends quadratically on �P (andP ): Rj� �P ¼ Rj �P
(Rj�P ¼ RjP ).

(ii) A simultaneous change of sign of �Q and e results in
the same motion: Rj� �Q;�e ¼ Rj �Q;e.

(iii) Also, a simultaneous change of sign of �L, E and e
(or Q) results in the same motion: Rj�E;� �L;�e ¼
RjE; �L;e (Rj�E;� �L;�Q ¼ RjE; �L;Q).

Thus it suffices to consider �P � 0, �Q � 0, and e � 0 (or,
equivalently, P � 0 and Q � 0). Note that �K � 0 was a
necessary condition for the colatitudinal motion to be
possible at all and, therefore, this condition remains valid.

The sign of �C ¼ �K � ð �aE� �LÞ2 again encodes some
geometrical information. At �r ¼ 0 the polynomial
Rð0Þ ¼ �ð �Q2 þ �P2Þð �L� �aEÞ2 � ð �a2 þ �Q2 þ �P2Þ �C can
only be positive if �C � 0. Since �C � 0 needs to be satisfied
for an orbit to reach the equatorial plane, this implies that
�C ¼ 0 is necessary for an orbit to hit the ring singularity.
For �Q2 þ �P2 � 0 also �L� �aE ¼ 0 is necessary to hit the
singularity and, thus, also �K ¼ 0.

The zeros of the parabola ��ð �rÞ are the horizons �r� ¼
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �a2 þ �Q2 þ �P2
p

with ��ð �rÞ< 0 in between.
Therefore, the polynomial Rð�rÞ is always positive for �r 2

½�r�; �rþ�. This implies that there cannot be any turning
points or spherical orbits between the horizons. There is
a turning point at a horizon if Rð �r�Þ ¼ 0 [see Eq. (15)].
For a given set of parameters of the space-time and the

particle, different types of orbits may be possible, for
which we use the following terminologies:
(i) transit or T, if �r starts at �1 and ends at �1,
(ii) flyby or F, if �r starts and ends at þ1 or �1,
(iii) bound or B, if �r remains in a finite interval

½�rmin ; �rmax �.
We add an index þ, 0, or � to a flyby or bound orbit if it
stays at �r > 0, crosses �r ¼ 0, or stays at �r < 0. Also, a
superscript � will be added if the orbit crosses the horizons,
i.e. contains the interval ½�r�; �rþ�. For example, the orbit
F�þ comes from infinity, crosses the two horizons, turns at
some 0< �r < �r�, and goes back to infinity. See also
Table I. If more than one orbit is possible for a given set
of parameters, the actual orbit of the test particle is deter-
mined by the initial conditions.

2. Orbit configurations

We will now analyze which sets of the above introduced
orbit types are possible for given parameters. Geodesic
motion is only possible in regions of Rð�rÞ � 0 and, there-
fore, the possible orbit configurations are fully determined
by the number of real zeros of the polynomialR and its sign
at �1. The latter is determined by the sign of E2 � 1
(or the lower order coefficients if E2 ¼ 1, which we will
consider separately). This suggests that we introduce the
following classes of orbit configurations:
(I) Case E2 > 1 Here Rð�rÞ ! 1 for �r ! �1 and R

may have none, two, or four real zeros. For no
zeros there is a transit orbit, for two zeros there are
two flyby orbits, and for four zeros there are two
flyby and a bound orbit.

(II) Case E2 < 1 For such energies a test particle can
not reach �1, Rð�rÞ ! �1 for �r ! �1. As
Rð �rÞ> 0 between the horizons it has at least 2
real zeros and there is always one bound orbit
crossing the horizons. If R has four real zeros there
is an additional bound orbit.

(III) Case E2 ¼ 1 Here the behavior of R at infinity
depends on the sign of 1� e �Q. For 1� e �Q> 0
it is Rð �rÞ ! �1 for �r ! �1 and the other way
around for 1� e �Q< 0. In both cases R has
one or three real zeros. For one real zero there is
a flyby orbit which crosses the horizons and for
three real zeros there is a flyby and a bound orbit.
The flyby orbit reaches þ1 for 1� e �Q> 0 and
�1 for 1� e �Q< 0. If also 1� e �Q ¼ 0 one has
to consider the sign of the second order coefficient
and so on.

For an overview of this different orbit configuration for the
radial motion see Table III.
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3. Regions of orbit configurations
in parameter space

After considering the possible orbit configurations for

the radial motion we will now find the sets of parameters

for which a given orbit configuration changes to another.

The orbit configurations are fully determined by the signs

of Rð�1Þ as categorized above and the number of real

zeros of R, which changes if two zeros of R merge.

The latter occurs if the two conditions on double zeros

Rð�r0Þ ¼ 0 and dR
d�r ð�r0Þ ¼ 0 are fulfilled. Read as two con-

ditions on E and �L this implies

E1;2 ¼ e �Q

2�r0
� 1

2

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�r0Þð�r20 þ �KÞð�r0 ��ð�r0Þ þ ð �r0 � 1Þð �K þ �r20ÞÞ2

q
��ð �r0Þð�r20 þ �KÞ �r0

;

(28)

FIG. 5 (color online). Orbit configurations for the radial motion with �a ¼ 0:6, �K ¼ 1, and P 2 ¼ 0:4 for case (i). For a general
description see the text and Table III. The spherical orbits marked by the dark blue (green) solid lines starting at the dots and
approaching the light blue dashed (the black dash-dotted) lines are stable. In (b) also the orbits on the red solid line between the two
dots are stable. All other spherical orbits are unstable. Note that for the small e �Q of (a) regions of orbit configurations are only slightly
deformed by the transformation E ! �E, �L ! � �L but remain unchanged otherwise. Small plots on the top are enlarged details of the
lower plot.
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�L1;2 ¼ e �Qð �a2 � �r20Þ
2 �a�r0

� 1

2

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð �r0Þð�r20 þ �KÞð�r0 ��ð �r0Þ þ ð�r0 � 1Þð �K þ �r20ÞÞ2

q
��ð�r0Þð�r20 þ �KÞð�r0 ��ð�r0Þ þ ð �r0 � 1Þð �K þ �r20ÞÞ�r0 �a

	 ð �r0 ��ð �r0Þð �a2 � �KÞ
þ ð �K þ �r20Þð�r20 � �r0ð �P2 þ �Q2Þ � �a2ÞÞ: (29)

These expressions diverge at �r0 ¼ 0 and at the horizons
�r0 ¼ �r�. We consider these points separately, see below.

In addition, �L diverges also at �r0 ¼ �1, �L1;2 !
�signð �r0Þ�e �Q

2 �a
�r0 þOð1Þ for �r0 ! �1. This implies that for

e �Q> 1 other orbit configurations than for e �Q< 1 may
appear. At the limits �r0 ! �1 the energy E remains finite,
E1;2 ! �signð �r0Þ there.

Orbits at �r ¼ 0.—As the ring singularity is located at
�r ¼ 0, � ¼ �

2 only those orbits which are not equatorial do

not terminate at �r ¼ 0. From the discussion of the colati-
tudinal motion equatorial orbits occur for �K ¼ 0, �aE ¼ �L
or �K ¼ ð �aE� �LÞ2, e �P ¼ 0. If we exclude these para-

meters �r ¼ 0 is a multiple zero if and only if e �Q � 0, �K ¼
e2 �Q2 ��ð0Þ, and �aE� �L ¼ e �Q ��ð0Þ

�a . This can also be inferred

from the asymptotic behavior of E1;2 and �L1;2 at �r0 ¼ 0,
which is given by

E1;2 ¼
e �Q ��ð0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K ��ð0Þ

q
2 ��ð0Þ�r0

�
��ð0Þð1þ e2 �Q2Þ � e2 �Q2

2e �Q ��ð0Þ
þOð �r0Þ; (30)

�L1;2 ¼ �aE1;2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K ��ð0Þ

q
�a

þOð�r0Þ: (31)

Here the equation for E2 implies the following two facts:

First, at �K ¼ e2 �Q2 ��ð0Þ the regions of orbit configurations
essentially change because the sign of the r�1

0 term

changes and E2 switches between �1. Second, for

�K ¼ e2 �Q2 ��ð0Þ the expressions for E2, L2, and e �Q are
the same as (35)–(37) with �r0 ¼ 0, which correspond to
triple zeros.
Orbits at the horizons.—It was noted above that a hori-

zon is a turning point of the radial motion if Rð �r�Þ ¼ 0.
This implies that the horizons can not be multiple zeros
because of dR

d�r ð �r�Þ ¼ �2ð �r� � 1Þð�r2� þ �KÞ � 0 for

Rðr�Þ ¼ 0. (This is valid for massive test particles only.
For light rays a horizon is a multiple zero if �K ¼ 0 and
�a �L ¼ Eð �r2� þ �a2Þ � e �Q�r� but the corresponding orbit is
always unstable.) The asymptotic behavior of E1;2 and �L1;2

near the horizons is given by

lim
�r0!�rþ

E1;2 ! �
ffiffiffi
2

p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rþ � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2þ þ K

q
�rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r0 � �rþ

p þOð1Þ; (32)

lim
�r0!�r�

E1;2 ! �
ffiffiffi
2

p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r� � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2� þ K

p
�r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r0 � �r�

p þOð1Þ; (33)

lim
�r0!�r�

�L1;2 ! E1;2

�a
ð2�r� � �P2 � �Q2Þ þOð1Þ: (34)

Now let us turn back to the general case. The expressions
(28) and (29) depend linearly onQ ¼ eQ, and the parame-
ter �a can be removed by a rescaling of the other parameters

(
�L
�a ,

Q
�a ,

P
�a2
,

�K
�a2
) and the radial coordinate ( �r

�a ). (Note that also

distances measured in units ofM have to be rescaled). The
dependence on �K and P 2 ¼ �Q2 þ �P2 is less obvious. This
can be studied by solving (28) and (29) for these parame-
ters but the expressions are quite cumbersome and we do
not give them here. However, in Fig. 9 orbit configurations
for varying �K are shown and all possible orbit types already
appear in Figs. 5–8.
Let us now analyze where triple zeros occur, as they

mark transitions from stable to unstable orbits. Solving the

three conditions d2R
d�r2

ð�r0Þ ¼ dR
d�r ð �r0Þ ¼ Rð �r0Þ ¼ 0 for E, �L,

and Q ¼ e �Q yields

E1;2 ¼ � 1

2

�K ��2ð�r0Þ þ ð�r20 þ �KÞð3�r20 � 2�r0 þ �KÞ ��ð �r0Þ � ð�r20 þ �KÞ2ð�r0 � 1Þ2
ð �r20 þ �KÞ ��ð �r0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð �r20 þ �KÞ ��ð �r0Þ

q ; (35)

L1;2 ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð �r20 þ �KÞ ��ð �r0Þ

q
ð�r20 þ �KÞ2 ��2ð �r0Þ �a

½ �Kð3�r20 � �a2 þ 2 �KÞ ��2ð�r0Þ þ ð �r20 þ �KÞð�r40 � �Kð�r20 � 2�r0 þ �a2Þ � �a2ð3�r20 � 2�r0ÞÞ ��ð �r0Þ

þ ð �r20 þ �KÞ2ð �a2 � �r20Þð�r0 � 1Þ2�; (36)

Q1;2 ¼ � �r30
��2ð �r0Þ � ð�r20 þ �KÞð2�r30 � �r20 þ �KÞ ��ð�r0Þ þ ð �r20 þ �KÞ2 �r0ð �r0 � 1Þ2

ð �r20 þ �KÞ ��ð �r0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�r20 þ �KÞ ��ð�r0Þ

q : (37)

EVA HACKMANN AND HONGXIAO XU PHYSICAL REVIEW D 87, 124030 (2013)

124030-12



Here, again, the horizons �r� are singularities, and in
between triple zeros are not possible. Fourfold zeros may

only occur for �r < 0, given by E1;2 ¼ � 2�r�1

2
ffiffiffiffiffiffiffiffiffiffiffi
�rð�r�1Þ

p , �L1;2 ¼
� �r2�2�rP 2� �a2

2 �a
ffiffiffiffiffiffiffiffiffiffiffi
�rð�r�1Þ

p , Q1;2 ¼ � �rffiffiffiffiffiffiffiffiffiffiffi
�rð �r�1Þ

p , and �K ¼ �rð ��ð0Þ� �rÞ
�r�1 , or at

the ring singularity if E ¼ � 1ffiffiffiffiffiffiffi
��ð0Þ

p , �K ¼ 0, Q ¼ 1
E , and

�L ¼ �aE.
The regions of different orbit configurations are

visualized in Figs. 5–8. As the parameter space is six di-
mensional, we have to fix at least three parameters for
plotting. We always choose to fix �a and Q ¼ e �Q for the

reasons outlined above. Here Q ¼ �1 and Q ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K= ��ð0Þ

q
will separate quite different plot structures. At

Q ¼ �1 the behavior of �L1;2 at infinity changes, and at

Q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K= ��ð0Þ

q
the behavior of E at �r ¼ 0. We will

restrict here to positive values of Q but allow all values of
�L and E. The values e �Q< 0 are recovered by ðE; �LÞ !
ð�E;� �LÞ as noted in the section on general properties.
Therefore, we distinguish between the following four

different regions: (i) Q<minf1;
ffiffiffiffiffiffiffi
�K

��ð0Þ
q

g, (ii)
ffiffiffiffiffiffiffi
�K

��ð0Þ
q

<Q<1,

(iii) 1<Q<
ffiffiffiffiffiffiffi
�K

��ð0Þ
q

, and (iv) maxf1;
ffiffiffiffiffiffiffi
�K

��ð0Þ
q

g<Q. Note that

for e �Q ¼ 0 the polynomial R is unchanged by the trans-
formation ðE; �LÞ ! ð�E;� �LÞ and, therefore, regions of
orbit configurations differ only slightly from this symmetry
for small Q in region (i). However, if Q is larger than (37)

with �r0 ¼ 1
2 ð ��ð0Þ � �K �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ��ð0Þ � �KÞ2 þ 4 �K

q
Þ (local

minimum) the structure changes as an additional pair of
triple zeros appears, see Fig. 5(a).
For better comparison, we always plot �L over E and

indicate the dependence on �K and P ¼ �P2 þ �Q2 by slowly
varying them in a plot series. In each plot, we use the
following conventions:
(i) Solid lines indicate double zeros of R which

correspond to stable or unstable spherical orbits
of constant �r. We use red lines for orbits with
constant �r < 0, blue for constant 0< �r < �r�, and
green for constant �r > �rþ.

(ii) Dashed lines denote orbits with turning points at

�r ¼ 0 and are given by �L� ¼ �aE�
ffiffiffiffiffiffiffiffiffiffi
�K ��ð0Þ

p
�a . They

FIG. 6 (color online). Orbit configurations for the radial motion with �a ¼ 0:6, �K ¼ 0:5, P 2 ¼ 0:4, and e �Q ¼ 0:9,
ffiffiffiffiffiffiffi
�K

��ð0Þ
q

< e �Q< 1.
For a general description see the text and Table III. The spherical orbits on solid lines starting at a dot and approaching the black dash-
dotted lines or the light blue dashed lines are stable (two green lines, a dark blue line, and a red line). All other spherical orbits are
unstable. In the detailed plot on the upper right the solid blue line approaches the light blue dashed line so close from below that they
are hard to distinguish; the regions indicated there are meant to be between them. The same holds for the lower right plot with the red
solid line approaching from above.
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mark transitions between orbits with different in-
dices. Red or blue solid lines corresponding to
orbits with constant �r near �r ¼ 0 asymptotically
approach �L�.

(iii) The dash-dotted line marks E2 ¼ 1. Between E ¼
�1 no orbit can reach infinity. In addition, E ¼ �1
is asymptotically approached by red or green solid
lines with �r ! �1

(iv) Dotted lines are asymptotes to solid lines for
�r ! �r�. They do NOT separate different orbit
configurations.

(v) Single dots mark triple zeros which separate stable
from unstable orbits.

(vi) The labels T, F, and B indicated the orbit configu-
rations summarized in Table III. Solid, dashed, and
dash- dotted lines indicate transitions from one
orbit configuration to another.

IV. ANALYTICAL SOLUTIONS

We will now solve the equations of motion (11)–(14)
with the following initial conditions:

�ð�0Þ¼�0; �rð�0Þ¼ �r0; �ð�0Þ¼�0; tð�0Þ¼ t0: (38)

In addition the initial direction, i.e., the sign of dx
d� ð�0Þ for

x ¼ �, �r, has to be specified. We denote this by �x ¼
sgnðdxd� ð�0ÞÞ. The initial value problem is solved here in

terms of elliptic functions without any restriction on the
type of motion. A solution for special cases in terms of
elementary functions was given in [13].

A. � motion

The equation of motion (11) needs to be solved. We first

concentrate on the case in which the poles are not reached,

i.e. �ð�Þ 2 ð0; �Þ. Then it is convenient to substitute

� ¼ cos ð�Þ, compare (17), and solve the equivalent equa-

tion of motion,�
d�

d�

�
2 ¼ X4

i¼0

bi�
i ¼ ��ð�Þ; (39)

with �ð�0Þ ¼ �0 :¼ cos ð�0Þ and sgnðd�d� ð�0ÞÞ ¼ �� :¼
���. If ��ð�Þ has a zero of multiplicity two or more,

the solution can be solved by elementary functions.

In general,��ð�Þ is a polynomial of order four with simple

zeroes only and can be solved with the following procedure

FIG. 7 (color online). Orbit configurations for the radial motion with �a ¼ 0:6, P 2 ¼ 0:4, �K ¼ 1, and e �Q ¼ 1:1, 1< e �Q<
ffiffiffiffiffiffiffi
�K

��ð0Þ
q

. For
a general description see the text and Table III. The spherical orbits on solid lines starting at a dot and approaching the black dash-
dotted lines or the light blue dashed lines are stable (two dark blue lines, a green line, and a red line). All other spherical orbits are
unstable. In the detailed plot on the upper right one of the solid red lines approaches the light blue dashed line so close from below that
they are hard to distinguish; the regions indicated there are meant to be between them.
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that uses the Weierstrass elliptic function } (see [22,24].

We transform the equation to the Weierstrass form by the

substitution � ¼ ð 4a3 � a2
3a3

Þ�1 þ ��, where �� is an arbi-

trary zero of �� and ai ¼ 1
ð4�iÞ!

dð4�iÞ��

d�ð4�iÞ ð��Þ. This leads to�
d

d�

�
2 ¼ 43 � g�2� g�3; (40)

with

g�2 ¼ 1

12
a22 �

1

4
a1a3;

g�3 ¼ � 1

216
a32 þ

1

48
a1a2a3 � 1

16
a0a

2
3:

(41)

The initial conditions are ð�0Þ ¼ 0 :¼ 1
4 ð a3

�0���
þ a2

3 Þ and
sgnðdd�ð�0ÞÞ¼� :¼�sgnða3Þ��. The solution of Eq. (40)

can now be expressed in terms of the Weierstrass elliptic

} function,

ð�Þ ¼ }ð�� ��;in; g�2; g�3Þ; (42)

where ��;in is a constant such that }ð�0 � ��;inÞ ¼ 0 and

sgnð}0ð�0 � ��;inÞÞ ¼ �. This is e.g. fulfilled by ��;in ¼
�0 � �

R01 d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3�g�2
�g�3

p (with the principal branch of the

square root). The solution for � is then given by

�ð�Þ ¼ arccos

�
a3

4}ð�� ��;in;g�2;g�3Þ � a2
3

þ ��

�
: (43)

Let us now consider orbits that reach the poles. First, let �ð�Þ
be in the open interval ð0; �Þ for � 2 ð�1; �2Þ, but on the

endpoints �1;2 the orbit may reach the poles, �ð�1;2Þ 2
f0; �g. Then the solution on ð�1; �2Þ, given by Eq. (43), is

also valid on the complete interval ½�1; �2� because the

right-hand side of Eq. (43) is continuous on the whole closed

interval with limits �ð�1;2Þ as � approaches �1;2. In general,

let �i, i � 1 be the parameters with �ð�iÞ 2 f0; �g and

�i < �iþ1. Define �i :¼ �j½�i�1;�i� and solve the

differential equation in each interval with the condition

�ið�i�1Þ¼�i�1ð�i�1Þ, sgnðd�id� ð�i�1ÞÞ¼�sgnðd�i�1

d� ð�i�1ÞÞ.

FIG. 8 (color online). Orbit configurations for the radial motion with �a ¼ 0:6, �K ¼ 1, P 2 ¼ 0:4, and 1<
ffiffiffiffiffiffiffi
�K

��ð0Þ
q

< e �Q. For a general
description see the text and Table III. The spherical orbits on the blue (green) solid lines starting at a dot and approaching the light blue
dashed (black dash-dotted) lines are stable. In addition, the spherical orbits on the lower red solid line are stable but all others are
unstable. Small plots on the top are enlarged details of the lower plot.
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The switch in sign of d�i
d� in �i canonically identifies � on

½0; ��.

B. �r motion

The procedure to solve the equation of motion for the �r,
see (12),�

d�r

d�

�
2 ¼ R2ð�rÞ � ð	�r2 þ �KÞ ��ð �rÞ ¼ Rð�rÞ; (44)

is analogous to that in the previous section. Again, the
right-hand side is a polynomial of fourth order. If it
has a zero of multiplicity two or more, the differential
equation can be solved in terms of elementary functions.
The general case can be solved with the substitution
�r ¼ c3ð4� c2

3 Þ�1 þ �rR, where �rR is a zero of R and

ci ¼ 1
ð4�iÞ!

dð4�iÞR
d�rð4�iÞ ð�rRÞ. This leads to

�rð�Þ ¼ c3
4}ð�� ��r;in; g�r2; g�r3Þ � c2

3

þ �rR; (45)

with g�r2, g �r3 given as in (41) with ai ¼ ci and
g �ri ¼ g�i. The parameter ��r;in only depends on the initial

conditions, }ð�0 � ��r;in; g�r2; g �r3Þ ¼ 1
4 ð c3

�r0��rR
þ c2

3 Þ and

sgnð}0ð�0 � ��r;in; g�r2; g�r3ÞÞ ¼ �sgnðc3Þ��r, e.g. ��r;in ¼
�0 þ sgnðc3Þ� �r

R01 d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3�g�r2
�g �r3

p .

C. � motion

The equation describing the � motion, see (13), can be
rewritten as

�ð�Þ ¼ �0 þ
Z �

�0

�aRð �rÞ
��ð �rÞ d��

Z �

�0

T ð�Þ
sin 2�

d�; (46)

where the right-hand side is separated in a part that only
depends on �r and one that only depends on �. We will now
treat both integrals separately.

1. The �-dependent integral

Let us start with the integral

I��
ð�Þ ¼

Z �

�0

T ð�Þ
sin 2�

d�: (47)

If we insert the expression for � given by Eq. (43), which
we write symbolically as � ¼ �ð}ð�� ��;inÞÞ, we get

FIG. 9 (color online). Orbit configurations for the radial motion with �a ¼ 0:6, P 2 ¼ 0:4, e �Q ¼ 0:3 and varying �K. For a general
description see the text. Note that at �K ¼ 0:0684, the plots change from case (ii) to (i).
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I��
ð�Þ ¼

Z �

�0

T ð�ð}ð�� ��;inÞÞ
sin 2�ð}ð�� ��;inÞÞ

d�

¼
Z �

�0

R��ð}ð�� ��;inÞÞd�; (48)

with R�ð�ð}ð�� ��;inÞÞ a rational function of

}ð�� ��;inÞ. A partial fraction decomposition then yields

I��
ð�Þ ¼

Z �

�0

�� þ ��1

}ð�� ��;inÞ � ��1

þ ��2

}ð�� ��;inÞ � ��2

d�; (49)

with

�� ¼ �aEþ e �P�� � �L

1� �2
�

; ��1;2 ¼ 1

8

ðe �P� �LÞa4
ð�� � 1Þ2 ;

��1;2 ¼ � 1

12

3a4 � a3 � ��a3
�� � 1

: (50)

The integral over each summand in Eq. (49) can be ex-
pressed in terms of the Weierstrass � ¼ �ð
;g�2; g�3Þ and
� ¼ �ð
;g�2; g�3Þ function (see [22,24]),

I��
ð�Þ ¼ ��ð�� �0Þ

þ ��1

}0ðv1Þ
�
ln

�ð�� v1Þ
�ð�0 � v1Þ � ln

�ð�þ v1Þ
�ð�0 þ v1Þ

þ 2ð�� �0Þ�ðv1Þ
�
þ ��2

}0ðv2Þ
�
ln

�ð�� v2Þ
�ð�0 � v2Þ

� ln
�ð�þ v2Þ
�ð�0 þ v2Þ þ 2ð�� �0Þ�ðv2Þ

�
; (51)

where v1, v2 need to be chosen such that }ðv1 þ ��;inÞ ¼
��1, and }ðv2 þ ��;inÞ ¼ ��2.

2. The �r-dependent integral

The procedure to solve the �r-dependent integral,

I��r
ð�Þ ¼

Z �

�0

�aRð�rÞ
��ð�rÞ d�;

is analogous to the previous section. We substitute �r ¼
�rð}ð�� ��r;inÞÞ of Eq. (45) and obtain a rational function as

FIG. 10 (color online). Orbit configurations for the radial motion with �a ¼ 0:6, �K ¼ 0:8, e �Q ¼ 1:2 and varying P 2. For a general
description see the text. Note that at P 2 � 0:1956 the plots change from case (iii) to (iv).

P2 = 0.5 P2 = 0.627 P2 = 0.63

FIG. 11 (color online). Orbit configurations for the radial motion with �a ¼ 0:6, �K ¼ 0:8, e �Q ¼ 0:9 and varying P 2. For a general
description see the text. Note that at P 2 � 0:6277 the plots change from case (i) to (ii).
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integrand, R ��r of }ð�� ��r;inÞ, which we decompose into

partial fractions,

I��r
ð�Þ ¼

Z �

�0

R ��rð}ð�� ��r;inÞÞd� (52)

¼
Z �

�0

� �r þ � �r1

}ð�Þ � ��r1

þ ��r2

}ð�Þ � ��r2

d�: (53)

Here the constants are given by

��r ¼ �a
Rð�rRÞ
��ð�rRÞ

;

��r1;2 ¼ c3
12

þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c24ð�1þ �a2 þ �Q2 þ �P2Þ

q
� c4 �rþ c4

4 ��ð �rÞ ;

(54)

and � �r1;2; the coefficients of the partial fraction

decomposition. The solution has the form of Eq. (51)
with ��1;2 ¼ ��r1;2, ��1;2 ¼ ��r1;2 and v1, v2 such that

}ðv1 þ ��r;inÞ ¼ � �r1 and }ðv2 þ ��r;inÞ ¼ ��r2. Also the },
� , and � functions refer to the parameters g�r2, g �r3.

D. t motion

The solution to the differential equation describing
the t motion, see (14), can be found in a similar way as
for the � motion. An equivalent formulation of the differ-
ential equation is

tð�Þ ¼ t0 þ
Z �

�0

ð �r2 þ �a2ÞRð�rÞ
��ð �rÞ d��

Z �

�0

�aT ð�Þd�; (55)

where the right-hand side is a again separated in an �r and a
� dependent part. We treat these integrals separately.

1. The �-dependent integral

We solve the integral

It�ð�Þ :¼
Z �

�0

�aT ð�Þd�;

with the same ansatz as in the foregoing section. First,
we substitute � ¼ �ð}ð�� ��;inÞÞ of Eq. (43) and then

decompose the integrand Rt� which is a rational function

of }ð�� ��;inÞ in partial fractions,

It�ð�Þ ¼
Z �

�0

Rt�ð}ð�� ��;inÞÞd�

¼
Z �

�0

�� þ ��1

}ð�Þ � ��

þ ��2

ð}ð�Þ � ��Þ2
d�; (56)

where

�� ¼ � �a �L� �a2E�2
� þ �a2Eþ �ae �P��; �� ¼ 1

12
a3;

��1 ¼ � 1

4
�aa4ð2 �aE�� � e �PÞ; ��2 ¼ � 1

16
�a2Ea24:

(57)

The solution written in terms of � ¼ �ð
; g�2; g�3Þ and
� ¼ �ð
;g�2;g�3Þ is given by

It�ð�Þ¼��ð���0Þþ ��1

}0ðvÞ
�
ln

�ð��vÞ
�ð�0�vÞ

� ln
�ð�þvÞ
�ð�0þvÞþ2ð���0Þ�ðvÞ

�

þ ��2

}02ðvÞ
�
��ð��vÞþ�ð�0�vÞ��ð�þvÞ

þ�ð�þvÞ�}ðvÞð���0Þ� }00ðvÞ
2}0ðvÞ

	
�
ln

�ð��vÞ
�ð�0�vÞ� ln

�ð�þvÞ
�ð�0þvÞþ2ð���0Þ�ðvÞ

��
;

(58)

where v such that }ðvþ ��;inÞ ¼ ��.

2. The �r-dependent integral

Now the integral

I �tr :¼
Z �

�0

ð �r2 þ �a2ÞRð �rÞ
��ð�rÞ d� (59)

will be solved. The substitution �r ¼ �rð}ð�� ��r;inÞÞ of

Eq. (45) again leads to a rational function R �tr of
}ð�� ��r;inÞ, which becomes, after a partial fraction de-

composition,

I �tr ¼
Z �

�0

R� �rð}ð�� ��r;inÞÞd�

¼
Z �

�0

� �r þ � �r1

}ð�Þ � ��r1

þ � �r2

}ð�Þ � ��r2

d�: (60)

Here ��r, ��r1;2 are defined as in Eq. (54), and � �r1;2 are the

coefficients of the partial fraction decomposition. The
solution has the form of Eq. (51) with ��1;2 ¼ ��r1;2,

��1;2 ¼ ��r1;2 and v1, v2 such that }ðv1 þ ��r;inÞ ¼ ��r1

and }ðv2 þ ��r;inÞ ¼ ��r2. The }, � , and � functions here

refer to g �r2 and g�r3.

E. Examples

The analytical solutions to the equations of motion are
given by (43), (45), (51), and (58), respectively, with the
appropriate constants (54). Here, we use these results to
exemplify the orbit structure in Kerr-Newman space-time,
see Figs. 12 and 13.
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F. Periastron shift and Lense-Thirring effect

In General Relativity, bound orbital motion can be much
more complicated then the closed ellipses of Newtonian
gravity. However, in the weak field they are quite similar
and the deviation can be characterized by a precession of
the orbital ellipse, called the periastron shift, and the
orbital plane, called the Lense-Thirring effect. They are
caused by a mismatch between the periodicity of rð’Þ
and �ð’Þ with 2�. These notions may be generalized to
orbits in the strong field as demonstrated by Schmidt [25]
and Fujita and Hikida [21] for Kerr space-time.

An analogous treatment is also possible in Kerr-Newman
space-times.
For bound orbits, the radial and colatitudinal periods �r

and �� with respect to Mino time are defined by the
smallest nonzero real value with rð�þ �rÞ ¼ rð�Þ and
�ð�þ ��Þ ¼ �ð�Þ, giving [see (12) and (11)]

�r ¼ 2
Z �ra

�rp

d�rffiffiffiffiffiffiffiffiffi
Rð �rÞp ; �� ¼ 2

Z �max

�min

d�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp ; (61)

where �rp is the periapsis and �ra the apoapsis. To determine

the periodicity with respect to ’, we need to know the

FIG. 12 (color online). Charged particle orbit in Kerr-Newman space-time. Here a Bþ orbit in the northern hemisphere (N orbit) with
�a ¼ 0:6, �P ¼ 0:47, �Q ¼ 0:16, e ¼ 158:11, E ¼ 1:98, �L ¼ �62:62, �K ¼ 33:33 is shown. Left: three-dimensional plot. The gray
spheres correspond to the horizons. Right: projection on ðx; zÞ plane. The dotted lines correspond to extremal � values.

FIG. 13 (color online). Charged particle orbit in Kerr-Newman space-time. Here a F�þ orbit which crosses the equatorial plane
(E orbit) with �a ¼ 0:6, �P ¼ 0:47, �Q ¼ 0:16, e ¼ 158:11, E ¼ �11:83, �L ¼ �5:18, �K ¼ 33:33 is shown. Left: three-dimensional plot.
The gray spheres correspond to the horizons. Middle: projection on ðx; zÞ plane. The dotted lines correspond to extremal � values.
Right: projection on ðx; yÞ plane. Dotted lines correspond to the horizons. Note that �ð�Þ diverges at the horizons at some finite �0. In
this plot we stopped at some �0 � �� (�� small) and continued with �0 þ�� on the other side of the horizon.
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secular accumulation of ’ with respect to the Mino time.
This can be achieved by setting

’ð�Þ ¼ h�ðr; �Þi��þ�r
oscðrÞ þ��

oscð�Þ; (62)

where �ðr; �Þ ¼ �rðrÞ þ��ð�Þ is the right-hand side
of (13). Here

�’ :¼ h�ðr; �Þi� :¼ lim
ð�2��1Þ!1

1

2ð�2 � �1Þ
I �2

�1

�ðr; �Þd�

(63)

is an infinite Mino time average and �x
oscðxÞ represent

oscillatory deviations from this average. Using the aver-
aged ’ð�Þ ¼ �’�, the periodicity of rð’Þ (�ð’Þ) is then
given by �’�r (�’��). Accordingly, the periastron shift

and the Lense-Thirring effect per revolution can be com-
puted by

�P ¼ �’�r � 2�; �LT ¼ �’�� � 2�: (64)

For neutral test particles and small �a, the periastron
shift and the Lense-Thirring effect were calculated to first
order in [26].

V. SUMMARYAND CONCLUSIONS

In this paper we discussed the motion of charged parti-
cles in the gravitational field of Kerr-Newman space-times,
describing stationary rotating black holes with electric and
magnetic charge. We demonstrated that it is sufficient to
consider test particles with electric charge only as an addi-
tional magnetic charge would only lead to reparametriza-
tion. After that we classified the orbits in radial and
colatitudinal direction. For both, a large variety of orbit
configurations were identified, as summarized in Tables II
and III. In particular, we also identified orbits crossing the
horizons or r ¼ 0. These configurations were then as-
signed to regions in the parameter space pictured in several
figures. The boundaries of these regions are among others
given by parameter combinations that represent orbits of
constant r or �, which were discussed in detail. For all orbit

configurations, analytical solutions to the equations of
motion were presented in terms of elliptic functions de-
pendent on the Mino time.
For the sake of completeness, we considered here a

black hole endowed with magnetic charge, although such
was not found until now. This has a big impact on the
motion in � direction in contrast to electric charge, which
does not influence the colatitudinal motion at all. Not only
does the motion deviate from the symmetry to the equato-
rial plane for a nonvanishing magnetic charge but also
additional types of orbits appear. For example, stable off-
equatorial circular orbits outside the horizon do exist in this
case, which are not possible elsewhere [14]. They are given
by the intersection of a red solid line with E2 < 1 as in
Fig. 1 and a green solid line with E2 < 1 as in Fig. 5. (E.g.
�a ¼ 0:5, Q ¼ 0:3, P ¼ 0:6, e �P � 2:1, �K ¼ 1, E � 0:9,
and �L � 2:4 results in an orbit with constant �r ¼ 3 and
cos� � 0:8.) On the contrary, the magnetic charge does
not influence the radial motion as it appears only in the
combination �P2 þ �Q2. Still, to our knowledge the discus-
sion of the radial motion in this paper is the most complete
so far for Kerr-Newman space-times.
The analytical solution presented here is largely based

on the 19th-century mathematics of elliptic functions al-
ready used by Hagihara [18] to solve the geodesic equation
in Schwarzschild space-time. However, a key ingredient
here is the introduction of the Mino time which decouples
the radial and colatitudinal equations of motion. We pre-
sented the results here in terms of Weierstrass elliptic
functions, which may be rewritten in terms of Jacobian
elliptic functions. The advantage of our presentation is that
one formula is valid for all orbit configurations.
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[13] Z. Stuchlı́k, J. Bičák, and V. Balek, Gen. Relativ. Gravit.

31, 53 (1999).
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In general relativity, the rotation of a gravitating body like the Earth influences the motion of orbiting test
particles or satellites in a non-Newtonian way. This causes, e.g., a precession of the orbital plane known as
the Lense-Thirring effect and a precession of the spin of a gyroscope known as the Schiff effect. Here, we
discuss a third effect first introduced by Cohen and Mashhoon called the gravitomagnetic clock effect. It
describes the difference in proper time of counterrevolving clocks after a revolution of 2π. For two clocks
on counterrotating equatorial circular orbits around the Earth, the effect is about 10−7 s per revolution,
which is quite large. We introduce a general relativistic definition of the gravitomagnetic clock effect which
is valid for arbitrary pairs of orbits. This includes rotations in the same direction and different initial
conditions, which are crucial if the effect can be detected with existing satellites or with payloads on
nondedicated missions. We also derive the post-Newtonian expansion of the general relativistic expression
and calculate the effect for the example of a satellite of a global navigation satellite system compared to a
geostationary satellite.

DOI: 10.1103/PhysRevD.90.044059 PACS numbers: 04.20.-q, 04.20.Cv, 04.80.Cc

I. INTRODUCTION

Within Einstein’s general relativity, the rotation of an
astronomical object like the Earth has a purely relativistic
effect on the motion of orbiting objects which is usually
referred to as “frame dragging.” Maybe better terminology
can be found in analogy to electrodynamics by denoting the
effects due to mass currents as “gravitomagnetic.” Both
terms summarize at least two well-known effects. First, the
Lense-Thirring effect calculated in 1918 [1,2], which, in
the weak field, can be interpreted as a precession of the
longitude of the ascending node. Solar System measure-
ments of the Lense-Thirring precession were achieved with
the LAGEOS mission and will be further improved using
the LARES satellite, see, e.g., [3]. Second, the Schiff effect
calculated in 1960 [4,5], which describes the precession of
a gyroscope orbiting a rotating object. This effect was
measured by the Gravity Probe B experiment [6,7].
In this paper, we are interested in another effect caused by

the rotation of the gravitating object, the so-called grav-
itomagnetic clock effect. It refers to different time measure-
ments of two clocks orbiting a rotating astronomical object,
one in the direction of rotation, i.e., on a prograde orbit, and
the other against the direction of rotation, i.e., on a retrograde
orbit. There are several versions of this clock effect which
differ in the details of their definitions [8–10]. Here, we
discuss what the authors of [8] call the observer-dependent

two-clock clock effect. This is the difference of the proper
times of two clocks, one on a pro- and the other on a
retrograde orbit, after a complete revolution of 2π. Note that
the proper time measured by a clock on a geodesic is
invariant. The observer enters the discussion through the
notion of a “full revolution” which depends on the frame of
reference [11]. Alternative definitions of the gravitomag-
netic clock effect include, e.g., the difference in the proper
time of the two clocks after a fixed coordinate time of an
observer [9] or the difference in proper time of the two clocks
at their meeting point [10].
The gravitomagnetic clock effect considered here was

first correctly derived and studied in detail by Cohen and
Mashhoon [12] following an idea shortly mentioned in
[13,14]. For two counterrevolving clocks on circular orbits
of the same radius in the equatorial plane of the Earth,
Cohen and Mashhoon found that the effect is of the order of
10−7 s per revolution, independent of the radius of the two
clocks. Compared to the increasing accuracies of space-
based clocks, this seems to be quite large. A generalization
to the parametrized post-Newtonian formalism also includ-
ing the effects of the nonspherical shape of the Earth was
considered in [15]. Eccentric and inclined orbits were
discussed in [9,16], but the requirement of identical initial
orbital parameters, apart from the sense of rotation, was so
far not removed. A dedicated satellite mission to measure
this effect called Gravity Probe Clock was proposed by
Gronwald et al. [17]. Gravitational and nongravitational
error sources for such a mission were also discussed
[17–21]. From these analyses, it can be concluded that
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the most challenging task for a mission to measure the clock
effect is not the stability of the orbiting clocks but the precise
tracking of the two satellites. This is needed because of the
imperfect cancellation of the Keplerian periods of the two
clocks, which induces large errors in the measurement.
In this paper, we find a fully general relativistic definition

of the gravitomagnetic clock effect in Kerr spacetime,
which also generalizes the clock effect to two arbitrary
geodesics, including rotations in the same direction and
different initial orbital parameters (see, also, [22]). We use
for this definition the fundamental frequencies of bound
orbits in Kerr spacetime given by Schmidt [23] and
elaborated by Fujita and Hikida [24]. This procedure is
completely analogous to the definition of the perihelion
shift and the Lense-Thirring effect in terms of fundamental
frequencies [24,25]. The generalization of the gravitomag-
netic clock effect to two arbitrary geodesics would, in
principle, allow to use existing satellites for a measurement
of the effect as long as they carry stable clocks and can be
tracked with sufficient accuracy. We also derive a post-
Newtonian expansion of the generalized gravitomagnetic
clock effect, which can be handled more conveniently than
the fully general relativistic expression and should still be
sufficiently accurate for orbits in the gravitational field of
the Earth. This expression is then applied to a spacecraft of
a global navigation satellite system (GNSS) compared to a
geostationary satellite. The paper closes with a summary.

II. FUNDAMENTAL FREQUENCIES IN
KERR SPACETIME

We start with a review and an extension of the funda-
mental frequencies in Kerr spacetime given by Schmidt
[23] and by Fujita and Hikida [24]. The Kerr metric in
Boyer-Lindquist coordinates reads

ds2 ¼ Δr

ρ2
ðcdt − asin2θdφÞ2 − ρ2

Δr
dr2 − ρ2dθ2

−
sin2θ
ρ2

ðacdt − ðr2 þ a2ÞdφÞ2; ð1Þ

where ds2¼c2dτ2 with the proper time τ, Δr ¼ r2 þ
a2 − 2Mr, ρ2 ¼ r2 þ a2cos2θ with M ¼ Gm=c2 and
a ¼ J=ðmcÞ, where m is the mass and J > 0 is the angular
momentum of the gravitating object. Here, G is the
gravitational constant and c the speed of light.
The geodesic equation in Kerr spacetime can be com-

pletely separated due to the existence of four constants
of motion. This is the specific energy ~E and the specific
angular momentum in the direction of the symmetry
axes ~Lz,

~E ¼ gtt_tþ gtφ _φ ≕ c2E; ð2Þ
~Lz ¼ −gφφ _φ − gtφ_t ≕ cLz; ð3Þ

where the dot denotes a derivative with respect to τ. The
two remaining constants are the normalization gμν _xμ _xν ¼
ϵc2 with ϵ ¼ 1 for massive test particles and the Carter
constant K [26]. There are some alternative forms of the
Carter constant; we use here K such that K ¼ ðaE − LzÞ2
for motion in the equatorial plane.
With these constants of motion, we get the equations of

motion in the form [27]�
dr
dλ

�
2

¼ R2 − Δrðϵr2 þ KÞ ≕ R; ð4Þ

�
dθ
dλ

�
2

¼ K − ϵa2cos2θ −
T 2

sin2θ
≕ Θ; ð5Þ

dφ
dλ

¼ a
Δr

R −
T

sin2θ
≕ ΦrðrÞ þ ΦθðθÞ; ð6Þ

c
dt
dλ

¼ r2 þ a2

Δr
R − aT ≕ TrðrÞ þ TθðθÞ; ð7Þ

where

R ¼ ðr2 þ a2ÞE − aLz; ð8Þ

T ¼ aEsin2θ − Lz: ð9Þ

Here, λ is the “Mino time,”which is connected to the proper
time by cdτ ¼ ρ2dλ. It is an auxiliary parameter introduced
to completely decouple the equations of motions. Note that
the equations of motions can be rewritten in a dimension-
less form by dividing each by the appropriate power of M
and redefining

r̄ ¼ r=M; t̄ ¼ ct=M; ā ¼ a=M;

L̄z ¼ Lz=M; K̄ ¼ K=M2; λ̄ ¼ λM: ð10Þ

In general, the motion of test particles in Kerr spacetime
neither has the form of a conic section nor lies in an orbital
plane. This is due to a mismatch of the periodicities of the
radial and latitudinal motion, which, in general, differ from
each other and from 2π [23,24]. Let us consider a bound
orbit of a massive test particle (i.e., ϵ ¼ 1) which does not
cross a horizon. In this case, the radial motion oscillates
between the periapsis rp and the apoapsis ra. Also, the test
particle oscillates around the equatorial plane between two
extremal values θmin;max with θmax ¼ π − θmin. The radial
and latitudinal periods Λr;θ are then given by

Λr ¼ 2

Z
r̄p

r̄p

dr̄ffiffiffiffiffiffiffiffiffi
Rðr̄Þp ; ð11Þ

Λθ ¼ 2

Z
θmax

θmin

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ð12Þ
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i.e., r̄ðλ̄þ ΛrÞ ¼ r̄ðλ̄Þ and θðλ̄þ ΛθÞ ¼ θðλ̄Þ for all λ̄.
The conjugate fundamental frequencies are defined as
ϒr ¼ 2π=Λr and ϒθ ¼ 2π=Λθ.
As the φ, t, and τ motions are not periodic, we have to

use a somewhat different approach to define the corre-
sponding fundamental frequencies. We write the coordinate
as a part which is linear in λ plus perturbations in r and θ,

φðλ̄Þ ¼ ϒφλ̄þ Φr
oscðr̄Þ þ Φθ

oscðθÞ; ð13Þ

ϒφ ≔ hΦrðr̄Þ þ ΦθðθÞiλ̄; ð14Þ

where

h·iλ̄ ≔ lim
ðλ̄2−λ̄1Þ→∞

1

λ̄2 − λ̄1

Z
λ̄2

λ̄1

·dλ̄ ð15Þ

is an infinite time average with respect to λ̄. The functions
Φr

oscðr̄Þ and Φθ
oscðθÞ represent oscillatory deviations from

the average. They are defined by

Φr
oscðr̄Þ ¼

Z
Φrðr̄Þdλ̄ − hΦrðr̄Þiλ̄λ̄; ð16Þ

Φθ
oscðθÞ ¼

Z
ΦθðθÞdλ̄ − hΦθðθÞiλ̄λ̄ ð17Þ

and have periods Λr and Λθ, respectively.
As ϒφ contains r̄- and θ-dependent parts, which are

periodic functions with respect to λ̄, the integral (15) can be
reduced to an integral over one period. Therefore, we find

ϒφ ¼ 2

Λr

Z
r̄a

r̄p

Φrðr̄Þdr̄ffiffiffiffiffiffiffiffiffi
Rðr̄Þp þ 2

Λθ

Z
θmax

θmin

ΦθðθÞdθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp : ð18Þ

Analogously, we may define

ϒt ¼
2

Λr

Z
r̄a

r̄p

Trðr̄Þdr̄ffiffiffiffiffiffiffiffiffi
Rðr̄Þp þ 2

Λθ

Z
θmax

θmin

TθðθÞdθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ð19Þ

ϒτ ¼
2

Λr

Z
r̄a

r̄p

r̄2dr̄ffiffiffiffiffiffiffiffiffi
Rðr̄Þp þ 2

Λθ

Z
θmax

θmin

a2cos2θdθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp : ð20Þ

III. GENERAL DEFINITION OF THE
GRAVITOMAGNETIC CLOCK EFFECT

The gravitomagnetic clock effect considered here was
studied already in 1993 by Cohen and Mashhoon [12].
They showed that two clocks on circular equatorial orbits of
the same radius but orbiting in different directions show
after a revolution of 2π a time difference of

τþ − τ− ≈ 4π
J

mc2
; ð21Þ

where τþ is the proper time of the corotating and τ− of the
counterrotating clock. Here, J is the angular momentum of
the Kerr black hole, as before. For satellites orbiting the
Earth, this yields an effect of the order of 10−7 s per
revolution, which is surprisingly large. The key element is
here the measurement after a full revolution of 2π. For
measurements after a specific coordinate time or at the
meeting point of the clocks, the effect is much smaller
[9,10]. The result (21) was generalized to spherical orbits
with small inclination in [9] and further to orbits with small
eccentricity in [16] [their Eq. (31)],

tþ − t− ≈ 4π
J cos i
mc2

�
−3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p þ 4 − 2cos2φ0tan2i
ð1þ e cosðφ0 − gÞÞ2

�
;

ð22Þ

where i is the inclination measured from the equatorial
plane, e is the eccentricity, g is the argument of the
pericenter, and φ0 − g is the true anomaly at t ¼ 0. As
remarked in [16], at the considered level of approximation,
the coordinate times used in (22) may be replaced by the
proper times. Note that the expression (22) depends on the
initial position of the two clocks.
Here, we introduce a fully general relativistic expression

for the gravitomagnetic clock effect based on fundamental
frequencies. As outlined in Sec. II, the functions φðλ̄Þ, t̄ðλ̄Þ,
and τ̄ðλ̄Þ can be written as a part which is linear in λ̄ plus
periodic perturbations. As only the linear parts contribute
to the average secular increase of the coordinate, we may
use this to define observable quantities like the perihelion
shift and the Lense-Thirring effect [24,25]. Analogously,
for the gravitomagnetic clock effect, we may define a
function τ̄∶ φ ↦ τ̄ðλ̄ðφÞÞ by using the linearized functions
λ̄ðφÞ ¼ ϒ−1

φ φ, τ̄ðλ̄Þ ¼ ϒτλ̄,

τ̄ðφÞ ≔ ϒτϒ−1
φ φ: ð23Þ

In the Newtonian limit, τð2πÞ [as well as the corresponding
tð2πÞ] reduces to the Keplerian time of revolution 2π

ffiffiffiffiffiffi
d3
Gm

q
,

where d is the semimajor axis; see (29) below.
Assume now two clocks moving along arbitrary geo-

desics with given periapsides rp;n, apoapsides ra;n, and
maximal inclinations θmax;n, n ¼ 1, 2. For each orbit, we
may calculate the proper time for a revolution of�2π using
(23), τ̄nð�2π; aÞ, where the sign in front of 2π indicates
pro- (þ) or retrograde (−) motion, and the additional
argument indicates the dependence of τ̄ on the Kerr rotation
parameter a > 0. We may also calculate the corresponding
value in case the rotation of the central object would vanish,
τ̄nð�2π; 0Þ. To extract the purely gravitomagnetic effect,
we define a new observable

Δτ̄gm ≔ τ̄1ð�2πÞ þ ατ̄2ð�2πÞ; ð24Þ
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where the factor of proportionality α is calculated such that
the usual gravitoelectric effects just cancel each other. This
condition determines α via Δτ̄gm ¼ 0 for a ¼ 0,

0 ¼ τ̄1ð�2π; 0Þ þ ατ̄2ð�2π; 0Þ; ð25Þ
and, therefore,

α ¼ −
τ̄1ð�2π; 0Þ
τ̄2ð�2π; 0Þ : ð26Þ

The sign in front of 2π has to be chosen for each orbit
according to its sense of rotation, i.e., þ2π (−2π) for
prograde (retrograde) orbits.
The actual calculation procedure for Δτgm is then as

follows: for both clocks, calculate the energies En, the
angular momenta Lz;n, and the Carter constants Kn, n ¼ 1,
2 by using dr

dλ ðrp;aÞ ¼ 0 in (4) and dθ
dλ ðθmaxÞ ¼ 0 in (5). As

one may choose E > 0 without loss of generality, for each
orbit this gives two solutions, one for a prograde orbit with
Lz > 0 and one for a retrograde orbit with Lz < 0, from
which we choose according to their sense of rotation. Note
that the values En, Lz;n, and Kn depend on the rotation
parameter a of the central object,En¼EnðaÞ,Lz;n¼Lz;nðaÞ,
Kn ¼ KnðaÞ. The corresponding values Enð0Þ, Lz;nð0Þ,
Knð0Þ can be determined by setting a ¼ 0 in (4) and (5).
Then use (18) and (20) (or the corresponding expressions
in terms of Jacobian elliptic integrals given in Appendix A)
to calculate τ̄nð�2π; aÞ and τ̄nð�2π; 0Þ, which gives α
and Δτ̄gm.
Note that the value of the clock effect (24) depends on

the numeration of the two clocks. If we denote by Δτ̄ð2;1Þgm ,
the clock effect with reversed clock labels as compared to

Δτ̄ð1;2Þgm , we find

Δτ̄ð2;1Þgm ¼ −
τ̄2ð�2π; 0Þ
τ̄1ð�2π; 0ÞΔτ̄

ð1;2Þ
gm : ð27Þ

This ambiguity can be removed if Δτ̄gm is referred to the
Schwarzschild orbit time of the first clock,

Δτ̄gm
τ̄1ð�2π; 0Þ ¼

τ̄1ð�2π; aÞ
τ̄1ð�2π; 0Þ −

τ̄2ð�2π; aÞ
τ̄2ð�2π; 0Þ : ð28Þ

The absolute value of this quantity does not change if the
two clocks interchange their labels.

IV. POST-NEWTONIAN EXPANSION

We explore now the definition (24) by deriving an
expansion, where we assume that the rotation parameter
a and the mass parameterM are small compared to the radii
of the clock orbits. This holds for the exterior gravita-
tional field of the Earth where M=r≲ 7 × 10−10 and
a=r≲ 6 × 10−7.

Let us assume that the orbital parameters rp, ra, and θmax
are fixed for both orbits. Therefore, to derive the expansion
of τð�2πÞ for small a we need the expansions of the
constants of motions in terms of a, which are given with
some additional details in Appendix B. We find

τð�2πÞ ≈ 2π

ffiffiffiffiffiffiffiffi
d3

Gm

r �
1 −

3ð1þ e2Þ
2ð1 − e2Þ

M
d

�

� 2πðcos ið3e2 þ 2eþ 3Þ − 2e − 2Þ
ð1 − e2Þ32

a
c
; ð29Þ

where d is the semimajor axis, e is the eccentricity, and i
is the inclination, which are defined via rp ¼ dð1 − eÞ,
ra ¼ dð1þ eÞ, and θmax ¼ π=2þ i. The sign in (29) has
to be chosen according to the sense of rotation, the plus
(minus) sign for prograde (retrograde) motion.
Consider now the gravitomagnetic clock effect for two

clocks on geodesics with identical orbital parameters rp, ra,
and θmax, one on a pro- and the other on a retrograde orbit.
Here, α ¼ −1 and with τþ ¼ τðþ2πÞ and τ− ¼ τð−2πÞ, we
find

τþ − τ− ≈
4πJ
mc2

cos ið3e2 þ 2eþ 3Þ − 2e − 2Þ
ð1 − e2Þ32 ; ð30Þ

which for circular equatorial geodesics (e ¼ 0, i ¼ 0)
reduces to the formula (21) derived in [12]. For fixed
values of the inclination, the effect is visualized in Fig. 1.
At a fixed eccentricity, the clock effect (30) vanishes if

cos i ¼ 2ð1þ eÞ
3e2 þ 2eþ 3

ð31Þ

and gets negative for larger inclinations; see, also, Fig. 1.
Note that the expansion (29) is not valid for polar orbits; see
Appendix B. However, for nearly polar orbits, the expres-
sion (29) holds, and the clock effect (30) approaches a
maximal absolute value,

τ− − τþ →
8πJ
mc2

1þ e

ð1 − e2Þ32 : ð32Þ

Equation (30) differs from the expression (22) in a key
aspect: it does not depend on the initial position of the
clocks. This is due to the definition via fundamental
frequencies, which are given by averages over infinite
Mino time. This procedure is completely analogous to the
derivation of the Lense-Thirring effect ΩLT in the fully
general relativistic setting [24,25],

ΩLT ¼ ϒφΛθ − 2π; ð33Þ

which in the post-Newtonian expansion (see Appendix B
for details) reduces to ΩLT ≈ 4π=ðdð1 − e2ÞÞ32ÞaM1

2, which
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is the classical result [1] if it is referred to the Newtonian
orbit time 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d3=ðGmÞ

p
.

Also, (30) is valid for any 0 ≤ e < 1 and 0 ≤ i < π=2,
whereas (22) assumes small eccentricities and inclinations.
But also in the limit of small e or small i, the expressions
(30) and (22) differ. This is, of course, natural as (30) is
independent of the initial conditions.
For two general orbits, we derive a post-Newtonian

expression of α [see (26)],

α ≈ −
d

3
2

1

d
3
2

2

−
3d

1
2

1

2d
5
2

2

�
d1ð1þ e22Þ
1 − e22

−
d2ð1þ e21Þ
1 − e21

�
M ð34Þ

and from (29) the post-Newtonian expansion of the
gravitomagnetic clock effect to lowest order,

Δτgm ≈
a
c

�
s1

2πðcos i1ð3e21 þ 2e1 þ 3Þ − 2e1 − 2Þ
ð1 − e21Þ

3
2

− s2
2πd

3
2

1ðcos i2ð3e22 þ 2e2 þ 3Þ − 2e2 − 2Þ
d

3
2

2ð1 − e22Þ
3
2

�
;

ð35Þ
where the indices indicate the first/second clock. Here, s1
and s2 are equal to þ1 (prograde motion) or −1 (retrograde
motion) according to the sense of rotation of the respective
orbit. Note that the expressions (35) and (29) diverge for
e → 1, which is not surprising as rp ¼ dð1 − eÞ > rB,
where rB is the radius of the central body, requires
d → ∞ for e → 1. Therefore, in this limit the orbit time
itself diverges, and it does not make sense to consider the
clock effect.

V. APPLICATION TO SATELLITES OF THE GNSS

We apply now the post-Newtonian expression (35) for
the calculation the gravitomagnetic clock effect to satellites
of the GNSSs, which carry very stable clocks with
frequency stabilities of about 10−14 over ten thousand
seconds. For a detection of the effect, the proper times
of the satellite clocks after a revolution of 2π have to be
communicated to an observer on the ground, who also
determines the orbital parameters d, e, and i for each clock.
Note that the expression (29) relates these parameters and,
therefore, may be used for a consistency check. Using d
and e of both clocks, we then calculate α by (34) and then
the gravitomagnetic clock effect (24).
As all GNSS satellites are on nearly circular prograde

orbits, we need a pair of satellites with different inclinations.
TheGPS andGalileo satellite systems operate onvery similar
inclination (55° and 56°, respectively), whereas the
GLONASS system operates at slightly larger inclination
(65°), which is still quite close to the GPS and Galileo
systems. The Chinese COMPASS system, however, includes
geostationary satellites. Therefore, we compare here a geo-
stationaryorbitwith aGalileo and aGLONASS satellite orbit.
For the Galileo satellites, we assume an inclination of

iGa ¼ 56°, an eccentricity of e ¼ 0, and a semimajor axis of
dGa¼29593km, and for theGLONASS system, iGL¼64.8°,
e ¼ 0, and dGL ¼ 25471 km. As orbital parameters of
the geostationary satellite, we take iGe ¼ 0, e ¼ 0, and
dGe ¼ 42157 km.
We insert this into the expression (35) together with the

mass and rotation parameters of the Earth, M ≈ 4.4346 ×
10−3 m and a

c ≈ 1.317 × 10−8 s. For the Galileo satellite
(clock 1) compared to the geostationary satellite (clock 2),
we find

Δτgm ≈ −7.54 × 10−8 s: ð36Þ
Referred to the Schwarzschild orbit time of the Galileo
satellite, we get

FIG. 1 (color online). The gravitomagnetic clock effect (30)
around the Earth. Top: The solid line is for equatorial orbits, the
dashed line for inclination i ¼ π=4, and the dotted line indicates
the limit values for i → π=2. Bottom: The solid line is for
spherical orbits, the dashed line for eccentricity e ¼ 0.2, and
the dotted line for e ¼ 0.5.

GENERALIZED GRAVITOMAGNETIC CLOCK EFFECT PHYSICAL REVIEW D 90, 044059 (2014)

044059-5



Δτgm
τGað�2π; 0Þ ≈ −1.49 × 10−12: ð37Þ

For the GLONASS satellite, we find

Δτgm ≈ −9.87 × 10−8 s: ð38Þ
Δτgm

τGLð�2π; 0Þ ≈ −2.44 × 10−12: ð39Þ

In principle, the clocks on board the GNSS satellites,
including the geostationary COMPASS satellite, should be
able to detect this effect. However, we assumed here
geodesic motion in a Kerr spacetime in the absence of
any disturbing forces. Therefore, a careful analysis of the
influence of gravitational and environmental perturbations
has to be carried through to judge the measurability of the
effect. An analysis of disturbing effects for the situation of
identical but counterrevolving clock orbits can be found in
[17–21]. Let us only note two major points here. First, the
gravitomagnetic clock effect is quite large compared to the
sensitivity of the clocks but tiny compared to the measured
proper times for a full revolution; see, also, [21]. If we
assume an uncertainty in the semimajor axis of Δd, then
Δτ=τ ≈ 3=2Δd=d, which implies that in the above exam-
ples, the semimajor axes must be known with an accuracy
of about 10 μm. As the gravitomagnetic clock effect
accumulates over every revolution, this stringent require-
ment can be relaxedwith sufficiently longobservation times.
Another theoretical possibility to achieve a high accuracy for
thevalue ofdwould be to use a second clock in each satellite,
whose position with respect to the first clock is very well
known. If themeasured proper time of this second clock, say,
τ0ð�2πÞ, is inserted in Eq. (29), we may calculate its
semimajor axis d0, assuming e0 and i0 for this clock are
known to sufficient precision. If d0 ¼ dþ δd, where δd is
very well known, we may calculate the semimajor axis d of
the first clock which is used to detect the gravitomagnetic
effect. Second, the high accuracy for the inclination men-
tioned in [20] does not apply for the situation considered
here, as we assumed different inclinations for the two
satellites. If we assume an uncertainty of Δðcos iÞ, we find
for orbits of eccentricity e ¼ 0 that Δτ ≈ 6π a

cΔðcos iÞ,
which implies that the inclinations in the examples above
should be known to an accuracy of at least 0.03 deg.

VI. SUMMARY

We presented a generalization of the gravitomagnetic
clock effect [12] for two clocks moving on arbitrary
geodesics in the Kerr spacetime. The definition uses the
concept of fundamental frequencies of bound orbits in Kerr
spacetime introduced by Schmidt [23] and elaborated by
Fujita and Hikida [24] based on a formulation of the
geodesic equations in terms of the Mino time [27]. We also
derived the post-Newtonian expansion of the effect which
yields a more convenient formula and should still be

sufficiently accurate for clocks moving in the gravitational
field of the Earth. For the example of a GNSS-like satellite
orbit compared to a geostationary orbit, we found that the
effect is of the order of 10−8 s per revolution and relative to
the orbit time of order 10−12.
The novel aspect of this generalized definition of the

gravitomagnetic clock effect is that the two clocks may
have arbitrary initial conditions and may follow completely
different geodesics. This point is crucial if the effect should
be tested with existing satellites or with a piggyback
payload on another scientific mission. It also enables
one to consider the effect for astronomical objects. If,
for example, two pulsars orbiting Sagittarius A� would be
found, the gravitomagnetic clock effect could provide a
consistency check of orbital data or of the value of the
rotation parameter of the central black hole.
Here we considered geodesic motion in the Kerr space-

time, which is, of course, a very idealized situation. For a
more realistic treatment, it is certainly necessary to consider
numerous perturbing effects, both of gravitational and
nongravitational origin. Besides the stable clocks needed
for a measurement of the gravitomagnetic clock effect, a
precise tracking of the clocks will be crucial.
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APPENDIX A: CALCULATION OF
FUNDAMENTAL FREQUENCIES

The radial and latitudinal periods Λr and Λθ as well as
the fundamental frequencies ϒφ, ϒt, and ϒτ can be
expressed in terms of Jacobian elliptic integrals. These
are implemented in several computer algebra systems like
MATHEMATICA or MAPLE and can be calculated easily and
quickly. In general, every integral of the form

Z
b

a

QðzÞdzffiffiffiffiffiffiffiffiffi
PðzÞp ; ðA1Þ

where Q is a rational function and P is a polynomial of
degree 3 or 4, can be expressed in terms of elliptic integrals.
If P has only real zeros and a, b are two neighbouring zeros

of P, then a substitution of the form z ¼ αnx2þβ
nx2þ1

can be used
to transform the above integral to the form

C
Z

1

0

QðzðxÞÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2x2Þ

p ; ðA2Þ
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where C is a constant and 0 < k < 1. Now, QðzðxÞÞ can be
decomposed in partial fraction, and the integral can be
expressed in terms of complete elliptic integrals of the first,
second, and third kind,

KðkÞ ¼
Z

1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2x2Þ

p ;

EðkÞ ¼
Z

1

0

ð1 − k2x2Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2x2Þ

p ;

Πðn; kÞ ¼
Z

1

0

dx

ð1 − nx2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2x2Þ

p : ðA3Þ

In our case, we encounter the polynomials Rðr̄Þ [see (4)]
and with ν ¼ cos2 θ in (5),�
dν
dλ̄

�
2

¼4ā2ð1−E2Þν3þ4ðK̄−ðāE− L̄zÞ2Þν

þ4ð2āEðāE− L̄zÞ−K̄−ϵā2Þν2≕ΘνðνÞ: ðA4Þ

For bound orbits, R has four real zeros r̄1 < r̄2 < r̄p < r̄a.
All radial integrals can then be transformed to Jacobian

elliptic integrals by the substitution r ¼ αnx2þβ
nx2þ1

with α ¼ r̄2,

β ¼ r̄p, and n ¼ − r̄a−r̄p
r̄a−r̄2

. The radial period is then given by

Λr ¼
4KðkrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − E2Þðr̄p − r̄1Þðr̄a − r̄2Þ
q ;

k2r ¼
ðr̄a − r̄pÞðr̄2 − r̄1Þ
ðr̄a − r̄2Þðr̄p − r̄1Þ

: ðA5Þ

For bound orbits, Θν has three real zeros 0 ¼ ν0 <

νmax < 1 < ν1. With ν ¼ αnx2þβ
nx2þ1

where β ¼ νmax, α ¼ ν1,
and n ¼ − νmax

ν1
, we find

Λθ ¼
4KðkθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ā2ð1 − E2Þν1
p ; k2θ ¼

νmax

ν1
: ðA6Þ

In the same way, we may transform the integrals
appearing in the definitions of ϒφ (18), ϒt (19), and ϒτ

(20). We find

ϒφ ¼ 1

KðkrÞ
Z

1

0

ΦrðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2rx2Þ

p
þ 1

KðkθÞ
Z

1

0

ΦθðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2rx2Þ

p ; ðA7Þ

where

ΦrðxÞ ¼
āðr̄p − r̄2Þ
ðh1 − h2Þ

X2
i¼1

ðr̄p − hiÞ−1ð−1ÞiRðhiÞ
ðr̄2 − hiÞð1 − Nr;ix2Þ

þ āRðr̄2Þ
Δr̄2

;

Nr;i ¼
ðr̄a − r̄pÞðr̄2 − hiÞ
ðr̄a − r̄2Þðr̄p − hiÞ

; ðA8Þ

with the horizons h1;2 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ā2

p
and

ΦθðxÞ ¼
T ðν1Þ
ν1 − 1

þ L̄ðν1 − νmaxÞ
ðν1 − 1Þð1 − νmaxÞð1 − Nθx2Þ

;

Nθ ¼
νmaxð1 − ν1Þ
ν1ð1 − νmaxÞ

: ðA9Þ

In terms of Jacobian elliptic integrals, this reads

ϒφ ¼ āðr̄p − r̄2Þ
ðh1 − h2Þ

X2
i¼1

ð−1ÞiRðhiÞ
ðr̄2 − hiÞðr̄p − hiÞ

ΠðNr;i; krÞ
KðkrÞ

þ āRðr̄2Þ
Δr̄2

þ T ðν1Þ
ν1 − 1

þ L̄ðν1 − νmaxÞ
ðν1 − 1Þð1 − νmaxÞ

ΠðNθ; kθÞ
KðkθÞ

: ðA10Þ

Analogously, we get

ϒτ ¼ ā2
�
ν1 −

ðν1 − νmaxÞ
1 − k2θ

EðkθÞ
KðkθÞ

�
þ r̄22 þ 2r̄2ðr̄p − r̄2Þ

ΠðNr;3; krÞ
KðkrÞ

−
ðr̄p − r̄2Þ2
2ð1 − Nr;3Þ

�
1 −

Nr;3EðkrÞ
ðNr;3 − k2rÞKðkrÞ

þ ðN2
r;3 þ 3k2r − 2Nr;3 − 2Nr;3k2rÞΠðNr;3; krÞ

ðNr;3 − k2rÞKðkrÞ
�

ðA11Þ

and

ϒt ¼ āT ðν1Þ −
ā2Eðν1 − νmaxÞ

1 − k2θ

EðkθÞ
KðkθÞ

þ ðr̄22 þ ā2ÞRðr̄2Þ
Δr̄2

þ āðr̄p − r̄2Þ
ðh1 − h2Þ

X2
i¼1

ð−1Þiðh2i þ ā2ÞRðhiÞ
ðr̄2 − hiÞðr̄p − hiÞ

ΠðNr;i; krÞ
KðkrÞ

−
Eðr̄p − r̄2Þ2
2ð1 − Nr;3Þ

�
1 −

Nr;3EðkrÞ
ðNr;3 − k2rÞKðkrÞ

þ ðN2
r;3 þ 3k2r − 2Nr;3 − 2Nr;3k2rÞΠðNr;3; krÞ

ðNr;3 − k2rÞKðkrÞ
�

þ 2Eðr̄p − 2Þðr̄2 þ 1ÞΠðNr;3; krÞ
KðkrÞ

; ðA12Þ

where
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Nr;3 ¼
r̄a − r̄p
r̄a − r̄2

: ðA13Þ

APPENDIX B: DETAILS OF THE
POST-NEWTONIAN EXPANSION

To determine the post-Newtonian expansion of the
general gravitomagnetic clock effect (24), we first need
an expansion for small ā of the constants of motion E, L̄z,
and K̄ as well as the zeros r̄1, r̄2, and ν1. To find this
expansion, we consider them as functions of ā and compare
the coefficients in

0 ¼ Rðr̄Þ − ð1 − E2Þðr̄a − r̄Þðr̄ − r̄pÞðr̄ − r̄2Þðr̄ − r̄1Þ; ðB1Þ

0 ¼ ΘνðνÞ − 4ā2ð1 − E2Þνðνmax − νÞðν1 − νÞ; ðB2Þ

taking into account that ν1 ¼ c2ā−2 þ c1ā−1 þOðā0Þ for
some constants c2, c1. Without loss of generality, E can be
assumed as positive, and we find

E ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1 − e2Þ þ p̄ðp̄ − 4Þ

p̄ðp̄ − 3 − e2Þ

s
∓ ā

ð1 − e2Þ2 cos i
p̄ðp̄ − 3 − e2Þ32 ; ðB3Þ

L̄z ≈ � p̄ cos iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄ − 3 − e2

p ∓ ā
ð3þ e2Þcos2i
p̄

1
2ðp̄ − 3 − e2Þ32

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 2Þ2 − 4e2

q
; ðB4Þ

K̄ ≈
p̄2

p̄ − 3 − e2
� ā

2p̄
3
2 cos i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 2Þ2 − 4e2

p
ðp̄ − 3 − e2Þ2 ; ðB5Þ

r̄2 ≈
2p̄

p̄ − 4
∓ ā

4 cos i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄ððp̄ − 2Þ2 − 4e2Þ

p
ðp̄ − 4Þ2 ; ðB6Þ

r̄1 ¼ Oðā2Þ; ðB7Þ

ν1 ≈
p̄3

ā2ðp̄ − 4Þð1 − e2Þ ∓
8p̄

3
2 cos i

āð1 − e2Þðp̄ − 4Þ2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 2Þ2 − 4e2

q
; ðB8Þ

where r̄p¼p̄ð1þeÞ−1, r̄a ¼ p̄ð1 − eÞ−1, and νmax ¼ sin2i.
Here the upper sign corresponds to prograde and the lower
sign to retrograde motion.
These expansions must then be inserted in the expres-

sions (A10) and (A11) to derive the post-Schwarzschild
expansion of the gravitomagnetic clock effect. To first order
in ā we get

ϒφ ≈� p̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄ − 3 − e2

p þ ā

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 2Þ2 − 4e2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄ − 3 − e2

p �
p̄

1
2

4
−
p̄

1
2ðp̄ − 6 − 2eÞΠðn1; kÞ
4ðp̄ − 2 − 2eÞKðkÞ −

p̄ − 3 − e2 þ cos ið3þ e2Þ
p̄

1
2ðp̄ − 3 − e2Þ

�
; ðB9Þ

ϒτ ≈
p̄2

ðp̄ − 4Þð1 − e2Þ
�
12p̄ − 4e2 − p̄2 − 28

2ðp̄ − 4Þ þ ðp̄ − 6þ 2eÞEðkÞ
2KðkÞ þ ðp̄ − 6 − 2eÞðp̄ − 3 − e2ÞΠðn3; kÞÞ

ðp̄ − 4Þð1þ eÞKðkÞ
�

� ā
p̄

3
2 cos i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 2Þ2 − 4e2

p
ðp̄ − 4Þð1 − e2Þ

�
12e2 þ p̄2 − 12p̄þ 20

2ðp̄ − 4Þ2 −
ðp̄ − 6þ 2eÞEðkÞ

ðp̄ − 4ÞKðkÞ þ ðp̄ − 6þ 2eÞE2ðkÞ
2ðp̄ − 6 − 2eÞK2ðkÞ

−
ðp̄ − 6 − 2eÞðp̄ − 3e2 − 1ÞΠðn3; kÞÞ

ðp̄ − 4Þ2ð1þ eÞKðkÞ þ ðp̄ − 3 − e2ÞΠðn3; kÞEðkÞ
ðp̄ − 4Þð1þ eÞK2ðkÞ

�
; ðB10Þ

where cos i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − νmax

p ¼ sin θmax and

k2 ¼ k2rðā ¼ 0Þ ¼ 2e
p̄ − 6þ 2e

; ðB11Þ

n1 ¼ Nr;1ðā ¼ 0Þ ¼ 16e
ðp̄ − 2e − 2Þðp̄ − 6þ 2eÞ ; ðB12Þ

n3 ¼ Nr;3ðā ¼ 0Þ ¼ 2eðp̄ − 4Þ
ð1þ eÞðp̄ − 6þ 2eÞ : ðB13Þ

Note that the expansion (B9) is not valid for polar orbits.
For this special case, it is Lz ¼ 0, and we find from the
definition (14),

ϒφ ¼ 2

Λr

Z
r̄a

r̄p

Φrðr̄Þdr̄ffiffiffiffiffiffiffiffiffi
Rðr̄Þp − āE: ðB14Þ

For ā ¼ 0, we, therefore, get for polar orbits ϒφ ¼ 0, as
expected. It is, therefore, not possible to interchange the
limits νmax → 1 and ā → 0 in ϒφ.
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Subsequently, we insert p̄ ¼ p=M in (B9) and (B10) and consider the limit M → 0 to derive the post-Newtonian
expansion (29) of τð�2πÞ.
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I. INTRODUCTION

Extreme mass ratios in astrophysical situations, for
example as found in the Galactic center, allow for an
approximate analytic description of the motion in certain
parameter regimes. The steadily improving observational
situation of the Galactic center [1–3] may soon enable us to
test different competing theoretical approaches to model
the motion of astrophysical objects in the theory of General
Relativity.
In this work we study the motion of extended spinning

test bodies in a Kerr background. Our starting point is an
explicit velocity formula based on the multipolar descrip-
tion [4–8] of pole-dipole test bodies, with the help of which
we classify the orbital motion in the equatorial plane of a
Kerr black hole for aligned and anti-aligned test body spin.
An exact expression for the periastron shift is given and
compared with corresponding post-Newtonian results. We
provide an estimate of the test body spin corrections for
orbits around the black hole in the Galactic center.
The structure of the paper is as follows. In Sec. II we

provide the equations of motion for spinning test bodies
and derive a general formula which relates the momentum
and the velocity of the test body. The motion of spinning
test bodies is then studied in a Kerr background in Sec. III.
These equations of motion are of a mathematical structure
which allows for an analytic solution [9,10] and a system-
atic classification of different orbit types in Sec. IV. In
Sec. Va general formula for the periastron shift is given and
compared to corresponding post-Newtonian results. Our
conclusions are drawn in Sec. VI. In Appendixes A and B
we provide some supplementary material and a summary of
our conventions.

II. EQUATIONS OF MOTION OF
SPINNING TEST BODIES

The equations of motion of spinning extended test bodies
up to the pole-dipole order have been derived in several
works [4–8,11] by means of different multipolar approxi-
mation techniques and are given by the following set of
equations:

Dpa

ds
¼ 1

2
RabcdubScd; ð1Þ

DSab

ds
¼ 2p½aub�: ð2Þ

Here ua ≔ dYa=ds denotes the 4-velocity of the body
along its world line (normalized to uaua ¼ 1), pa the
momentum, Sab ¼ −Sba the spin, D

ds the covariant deriva-
tive along ua, and Rabcd is the Riemannian curvature.
Equation (2) implies that the momentum is given by

pa ¼ mua þDSab

ds
ub; ð3Þ

where m ≔ paua. Note that in order to close the system of
equations (1)–(2) a supplementary condition has to be
imposed.

A. Conserved quantities

If ξa is a Killing vector, i.e.∇ðbξaÞ ¼ 0, then the quantity,

Eξ ¼ paξ
a þ 1

2
Sab∇aξb; ð4Þ

is conserved (see e.g. [11,12] for a derivation).
Other conserved quantities depend on the supplementary

condition. In the pole-dipole case, the spin length S
given by
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S2 ≔
1

2
SabSab ð5Þ

is conserved for the two well-known supplementary
conditions of Tulczyjew,

paSab ¼ 0; ð6Þ

and Frenkel,

uaSab ¼ 0: ð7Þ

Apart from m one may define a mass m by m2 ≔ papa.
In the pole-dipole case m is conserved if one chooses
Tulczyjew’s spin supplementary condition (6). However,
for the Frenkel condition (7) the massm is conserved in the
pole-dipole case.

B. Velocity-momentum relation

For either of the two supplementary conditions (6) or (7)
the following relation, see [13] for a derivation, between the
velocity and the momentum holds,

ua ¼ð6Þ∨ð7Þ
p̂a þ 2SacSdeRdecb

4m2 þ ScdSefRcdef
p̂b; ð8Þ

where

p̂a ≔
m
m2

pa −
1

m2

D
ds

ðSabpbÞ: ð9Þ

From the velocity formula (8) and the normalization
condition uaua ¼ 1, we obtain—for the Tulczyjew
condition—(6) an explicit expression for the mass m of
the following form,

m ¼ð6Þ m
2

μ
; ð10Þ

where we introduced auxiliary quantities,

μ2 ¼ m2 þ A2
1S

abScdRcdbepeSafSghRghfipi; ð11Þ

A1 ¼
2

4m2 þ SabScdRcdab
: ð12Þ

In flat spacetime we have m ¼ μ ¼ m. Resubstituting (10)
back into (8), we obtain an expression for the velocity,

ua ¼ð6ÞKa
bpb; ð13Þ

Ka
b ¼

1

μ
ðδab − A1SaeScdRbecdÞ; ð14Þ

as a function of the momentum, the mass m, and the spin,
i.e. ua ¼ uaðm;pa; Sab; RabcdÞ.

C. Nonlinear dynamics of spin

For the Tulczyjew condition (6) we define the spin vector
Sa as

Sa ≔
1

2m
ffiffiffiffiffiffi−gp εabcdpbScd;

Sab ¼ 1

m
ffiffiffiffiffiffi−gp εabcdpcSd: ð15Þ

Here εabcd is the totally antisymmetric Levi-Civita symbol;
the only nontrivial component is equal ε0123 ¼ 1. It is
straightforward to derive the equation of motion for the
vector of spin:

DSa

ds
¼ papb

m2

DSb

ds
: ð16Þ

By construction, we have the orthogonality

paSa ¼ 0; ð17Þ

and noticing that SabSb ¼ 0 from (15), we use (13) and (14)
to verify another orthogonality property,

uaSa ¼ 0: ð18Þ

Substituting the velocity-momentum relation (13) and (14)
into (1) and (16), we derive the closed system of dynamical
equations for the momentum and spin vectors,

Dpa

ds
¼ 1

2
Ke

aRebcdpbScd; ð19Þ

DSa

ds
¼ −

papb

2m2
Ke

fRebcdScdSf: ð20Þ

Contracting (16) or (20) with Sa, we verify that the length
of the spin vector is constant by making use of (17). From
(15) we find

SaSa ¼ −
1

2
SabSab ¼ −S2; ð21Þ

where we recall the definition of the spin length (5). The
vector of spin is therefore spacelike.
The dynamical equations (19) and (20) are highly

nonlinear in spin. Indeed, the right-hand sides of these
equations contain
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Ka
b ¼

1

μ

�
δab − 2A1

�
δac −

papc

m2

�
ðS2δcd þ ScSdÞ

×

�
Rd

b þ Rd
kbn

�
pkpn

m2
−
SkSn

S2

���
: ð22Þ

Furthermore, we explicitly have

μ2 ¼ m2 þ 4A2
1½S2ðRabpaSbÞ2

−
1

m2
ðS2Rabpapb − RacbdpapbScSdÞ2

þ ðS2Rab − RaebfSeSfÞpbðS2Rac − RakcnSkSnÞpc�;
ð23Þ

1

A1

¼ 2½m2 − RacbdSaSbpcpd=m2

− RabðSaSb þ gabS2=2þ papb=m2Þ�: ð24Þ

Here Rab is the Ricci tensor.
The analysis of the nonlinear system (19) and (20) is a

complicated problem, in general. A perturbation scheme
was developed in [14–17] to deal with the full nonlinear
system. In this approach, one linearizes the equations of
motion to obtain

Dpa

ds
≈

1

2
RabcdpbScd; ð25Þ

DSa

ds
≈ 0; ð26Þ

and the solution of the full system is then constructed as a
series in the powers of spin S, which is used as a
perturbation parameter. In the linearized case, we again
have m ¼ μ ¼ m and hence pa ≈ mua. It is worthwhile to
note that the Gravity Probe B experiment [18,19] is actually
based on the linearized equations of motion (25) and (26).
In this paper, we analyze the complete nonlinear equa-

tions of motion without using approximations and pertur-
bation theory.

III. EQUATIONS OF MOTION IN A KERR
BACKGROUND

In the following, we are going to study test bodies
endowed with spin in the gravitational field of a rotating
source described by the Kerr metric. This problem was
investigated in the past for the Tulczyjew supplementary
condition (see [17,20], e.g.), as well as for the Frenkel
condition [21,22]. In view of the complexity of the
problem, the solution in most cases was obtained numeri-
cally and/or approximately with the help of perturbation
theory.
Here we will specialize to the integrable case for which

we obtain an exact and analytical result. The full nonlinear

equations of motion are considered, no linearization
or other approximation is made. Since the Kerr metric
satisfies the vacuum Einstein field equation, Rab ¼ 0, the
formulas (22)–(24) become significantly simpler.

A. The Kerr metric

In Boyer-Lindquist coordinates ðt; r; θ;ϕÞ, the Kerr
metric takes the form

ds2 ¼
�
1−

2Mr
ρ2

�
dt2þ 4aMrsin2θ

ρ2
dtdϕ−

ρ2

Δ
dr2

− ρ2dθ2− sin2θ

�
r2þa2þ 2a2Mrsin2θ

ρ2

�
dϕ2; ð27Þ

where M is the mass parameter, a the Kerr parameter, and

Δ ≔ r2 − 2Mrþ a2; ð28Þ

ρ2 ≔ r2 þ a2cos2θ: ð29Þ

The Kerr metric allows for two Killing vector fields given
by

ξa
E
¼ δat ; ξa

J
¼ δaϕ: ð30Þ

Furthermore, we have

ffiffiffiffiffiffi
−g

p
≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgabÞ

p
¼ ρ2 sin θ: ð31Þ

B. Equatorial orbits for polar spin

Let us assume that the spin vector of a test body has only
one, namely polar, component:

Sa ¼ Sθδaθ : ð32Þ

In view of the orthogonality relations (17) and (18) the
polar ansatz (32) yields

pθ ¼ 0; uθ ¼ 0: ð33Þ

Recalling uθ ¼ dθ=ds, we thus conclude that the polar
angle is fixed, θ ¼ const. Therefore, we can focus on
equatorial orbits, i.e.

θ ¼ π

2
: ð34Þ

The consistency of the equatorial setup (32)–(34) was
analyzed earlier in [23]. It is worthwhile to note that the
assumption (32) on the equatorial plane means that the spin
of a test body is aligned with the spin of the Kerr source.
Let us now turn to the integration of the equations of

motion (19) and (20). The polar ansatz (32) and its

MOTION OF SPINNING TEST BODIES IN KERR SPACETIME PHYSICAL REVIEW D 90, 064035 (2014)

064035-3



corollary (33) leave us with the four unknowns
fpt; pr; pϕ; Sθg, which should be determined from the
equations of motion. Fortunately, we have exactly four
integrals of motion and we can find the nontrivial compo-
nents of the vectors of momentum and spin from the
following set of equations,

S2 ¼ −SaSa; ð35Þ

m2 ¼ papa; ð36Þ

E ¼ pa

�
ξa
E
þ εabcd

2m
ffiffiffiffiffiffi−gp Sb∇cξd

E

�
; ð37Þ

−J ¼ pa

�
ξa
J
þ εabcd

2m
ffiffiffiffiffiffi−gp Sb∇cξd

J

�
; ð38Þ

in terms of the mass m, the spin length S, the energy E, and
the angular momentum J.
From the length conservation of spin (35), we immedi-

ately find Sθ ¼ S=
ffiffiffiffiffiffiffiffiffiffi−gθθ

p
. For completeness we can use

(15) to write down the nontrivial components of the spin
tensor in the equatorial plane:

Srt ¼ −
Spϕ

mr
; Sϕt ¼ Spr

mr
; Sϕr ¼ −

Spt

mr
: ð39Þ

The algebraic system (37) and (38) can be solved for the
momentum components pt and pϕ in terms of the constants
of motion:

pt ¼
E − MS

mr3 ðJ − aEÞ
1 − MS2

m2r3
; ð40Þ

pϕ ¼
−J − aMS

mr3 ½aEð1 − r3

a2MÞ − J�
1 − MS2

m2r3
: ð41Þ

The remaining component pr is obtained from (36).

C. Orbital equation of motion

With the help of (13), (22)–(24), (40), and (41) we can
derive explicit expressions for the velocity components in
terms of the constants of motion and the parameters of the
test body, i.e. ua ¼ uaðm; S; E; J; a;MÞ. From this we
derive an explicit expression for ur̄=uϕ,

dr̄
dϕ

¼ Δ̄ðr̄3 þ S̄2Þ
r̄ Q̄

ffiffiffiffiffiffi
P̄ā

q
; ð42Þ

where we introduced the dimensionless quantities,

r̄ ¼ r
M

; ā ¼ a
M

; J̄ ¼ J
mM

;

Ē ¼ E
m
; S̄ ¼ S

mM
; ð43Þ

and

P̄ā¼ðĒ2−1Þr̄8þ2r̄7þðā2ðĒ2−1Þ−ðS̄Ē−J̄Þ2Þr̄6
þ2ððS̄Ē−J̄Þ2þ S̄ðS̄−ĒJ̄Þþ āĒðāĒþ3S̄Ē−2J̄ÞÞr̄5
−4S̄2r̄4þ2āS̄ðJ̄2−ĒS̄J̄þā2Ē2þĒ2S̄ā−2āJ̄ ĒþS̄āÞr̄3
þ S̄2ððāĒ−J̄Þ2− S̄2Þr̄2þ2S̄4r̄− ā2S̄4; ð44Þ

Q̄¼ðJ̄− S̄ĒÞr̄6
þðS̄Ē þ āĒ−J̄Þð2r̄5þ S̄ðāþ2S̄Þr̄3−4S̄2r̄2þ3ā2S̄2r̄Þ
þ S̄3āðāĒ−J̄Þ; ð45Þ

with Δ̄ ¼ r̄2 − 2r̄þ ā2. In the following all quantities with
a bar are always dimensionless.

D. Integration

The equation of motion (42) can be integrated analyti-
cally in a parametric form. First we notice that the
corresponding integral equation,

ϕ − ϕ0 ¼
Z

r̄

r̄0

r̄ Q̄

Δ̄ðS̄2 þ r̄3Þ
ffiffiffiffiffiffi
P̄ā

p dr̄; ð46Þ

contains on the right-hand side a hyperelliptic integral of
genus three and the third kind. The corresponding problem
for genus two was recently solved analytically [24] in a
parametric form by introducing a new affine parameter λ,
which may be considered as an analogue of the Mino time
[25]. Together with the analytic solution of integral
equations involving hyperelliptic integrals of genus three
and the first kind [9], the solution r̄ðλÞ and ϕðλÞ can be
found analytically. However, we will not elaborate this here
but rather focus on the related classification of the orbits,
and on the periastron shift in Sec. V.

IV. CLASSIFICATION OF ORBITAL MOTION

Wewill now analyze the orbital motion in the considered
setting of equatorial motion with aligned spin. Observe that
the substitutions ðā; J̄; S̄Þ → ð−ā;−J̄;−S̄Þ and ðĒ; J̄Þ →
ð−Ē;−J̄Þ only change the sign of the equation of motion,
dr̄
dϕ → − dr̄

dϕ. Therefore, this only reverses the direction but
leaves the type of orbit unchanged, so we choose ā ≥ 0

and Ē ≥ 0.
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A. Circular motion

From Eq. (42) it can be inferred that the expression under
the square root given by (44) has to be positive to get
physical meaningful results. Only if P̄ā ≥ 0 motion is
possible for the given parameters of the spacetime and
the particle. The points P̄ā ¼ 0 define the turning points of

the motion. Coinciding turning points correspond to
circular orbits and are given by double zeros of P̄ā,

P̄ā ¼ 0;
dP̄ā

dr̄
¼ 0: ð47Þ

Solving this two conditions for Ē and J̄ yields

Ē1;2;3;4 ¼ �
ffiffiffī
r

p
ffiffiffi
2

p
r̄3V̄ā

fV̄āðR̄ā � Δ̄½Ū2
āð9ā2S̄4 þ 6S̄r̄2ðS̄2 þ 2r̄3Þāþ r̄ð4r̄6 þ 13r̄3S̄2 − 8S̄4ÞÞ�12Þg1

2; ð48Þ

J̄1;2;3;4 ¼
1

r̄3ĒŪā
fð3r̄S̄5 þ 3r̄7ð2Ē2 − 1ÞS̄Þā3 þ ðS̄6 þ r̄3ðĒ2 − 3r̄þ 6ÞS̄4 þ 3r̄6ðr̄Ē2 þ r̄ − 2þ 4Ē2ÞS̄2

þ r̄9ð2Ē2 − 1ÞÞā2 þ ðr̄2ðr̄ − 4ÞS̄5 − r̄5ð3r̄2Ē2 − 9Ē2 − 4r̄ − 4r̄Ē2 þ 4ÞS̄3 þ r̄8ð8r̄Ē2 − 5r̄þ 8ÞS̄Þa − r̄S̄6

− r̄4ð2r̄ − 3Þðr̄þ r̄Ē2 − 4ÞS̄4 þ r̄7ðr̄2 þ 9 − 7r̄þ 3r̄Ē2ÞS̄2 − r̄10ð−3r̄Ē2 þ r̄2Ē2 þ 4r̄ − 4 − r̄2Þg; ð49Þ

where

V̄ā ¼ −6S̄ r̄ðS̄2 þ 2r̄3ÞΔ̄ āþðð3r̄ − 4ÞS̄4 þ r̄3ð6r̄ − 19ÞS̄2 − 4r̄6Þā2 þ r̄ð2r̄ − 3Þ2S̄4 þ r̄4ð4r̄2 − 27r̄þ 36ÞS̄2 þ r̄7ðr̄ − 3Þ2;
ð50Þ

R̄ā ¼ −18S̄3ā5r̄4 þ ð3S̄6 þ 3ð3r̄ − 4Þr̄3S̄4 þ 18S̄2r̄6Þā4 þ ð8r̄2S̄5 − 2r̄5ð27r̄ − 67ÞS̄3 − 2r̄8ð9r̄ − 19ÞS̄Þā3
þ ð5r̄ðr̄ − 2ÞS̄6 þ r̄4ð15r̄2 þ 87 − 70r̄ÞS̄4 þ r̄7ð12r̄2 þ 30 − 37r̄ÞS̄2 − 2r̄10ð3r̄ − 5ÞÞā2
− ð4r̄3ðr̄2 þ 5 − 4r̄ÞS̄5 þ 2r̄6ð−77r̄þ 14r̄2 þ 94ÞS̄3 þ 2r̄9ð11r̄2 − 41r̄þ 40ÞS̄Þā
þ 2r̄2ð3 − 2r̄ÞS̄6 þ ð8r̄3 − 56r̄2 þ 145r̄ − 126Þr̄5S̄4 þ ð8r̄3 − 65r̄2 þ 160r̄ − 126Þr̄8S̄2 þ 2r̄11ðr̄ − 3Þðr̄ − 2Þ2; ð51Þ

Ūā ¼ 6S̄r̄4ā2 þ ðS̄4 þ 12r̄3S̄2 − 3r̄4S̄2 þ 2r̄6Þā − S̄r̄2ð4S̄2r̄ − r̄4 − 9S̄2Þ: ð52Þ

If in addition to the conditions (47) also d2P̄ā
dr̄2 < 0 holds,

then the circular orbit is stable against radial perturbations.
The radius of the innermost stable circular orbit (ISCO)

with d2P̄ā
dr̄2 ¼ 0 is of particular importance as it marks the

transition from bound motion to infalling orbits. In Fig. 1
the radius of the innermost radially stable circular orbit is
plotted as a function of the spin S̄ for fixed values of the
Kerr rotation parameter ā. Note that in general radially

FIG. 1 (color online). Radius of the innermost radially stable circular orbit as a function of the spin S̄ for different values of the Kerr
parameter ā. The blue solid lines correspond to prograde orbits ā J̄ > 0 and the red dashed lines to retrograde orbits ā J̄ < 0. The event
horizon is indicated by the black dotted line.
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stable orbits may still be unstable against perturbations in
the θ-direction. Suzuki and Maeda [26] have shown that
radially stable circular orbits become unstable in the θ
direction for large positive spin values S̄ ≳ 0.9, but they
only considered prograde motion (ā J̄ > 0). However, from
Fig. 1 we infer that radially stable retrograde circular orbits
with negative spins may come closer to the horizon than the
corresponding prograde orbits (see also [27]). Therefore, it
would be interesting to analyze whether the same insta-
bilities as reported in [26] also appear for retrograde orbits
with negative spins.

B. General orbits

For given values of the parameters of the spacetime and
the particle all possible types of motion are given by the
regions where P̄ā ≥ 0, which can be directly inferred from
the number of turning points P̄ā ¼ 0 and the asymptotic
behaviour of P̄ā at infinity. If we continuously vary the
values of the parameters, the number of turning points
changes at that set of parameters which correspond to

double zeros, and which are given by (48) and (49). The
asymptotic behaviour of P̄ā changes at Ē2 ¼ 1. Therefore,
we may already infer all possible types of orbits from the
analysis above. In Fig. 2, orbit types in parameter space are
shown for fixed ā and S̄. Note that we only consider orbits
which start at a radius r̄ > r̄þ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ā2

p
(motion

outside the horizons).

C. Schwarzschild spacetime

In Schwarzschild spacetime (ā ¼ 0) the quotient of the
velocity components simplifies to

dr̄
dϕ

¼ ðr̄3 þ S̄2Þ
ffiffiffiffiffiffiffiffiffiffi
P̄ā¼0

p
r̄2ðr̄3 − 2S̄2ÞðJ̄ − S̄ ĒÞ : ð53Þ

With ā ¼ 0 the polynomial in (44) does not reduce its
degree, but r̄ ¼ 0 is always a zero. The conditions (47) for
ā ¼ 0 are solved by

Ē1;2;3;4 ¼ �
ffiffiffī
r

p h
V̄ā¼0ðR̄ā¼0 � r̄ðr̄ − 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ū2

ā¼0r̄ð4r̄6 þ 13r̄2S̄2 − 8S̄4Þ
q

Þ
i1
2

ffiffiffi
2

p
r̄3V̄ā¼0

; ð54Þ

J̄1;2;3;4 ¼
S̄6 þ r̄3ð2r̄ − 3Þðr̄Ē2 þ r̄ − 4ÞS̄4 − r̄6ðr̄2 þ 3r̄Ē2 − 7r̄þ 9ÞS̄2 þ r̄9ðr̄2ðĒ2 − 1Þ − 3r̄Ē2 þ 4ðr̄ − 1ÞÞ

−r̄2ĒŪā¼0

; ð55Þ

Note that ðS̄; ĒÞ → ð−S̄;−ĒÞ does not change the equation of motion, so we may choose Ē ≥ 0. Also ðĒ; J̄Þ → ð−Ē;−J̄Þ
only changes the sign, dr̄

dϕ → − dr̄
dϕ. Therefore, this only reverses the direction but leaves the type of orbit unchanged, hence

we choose J̄ ≥ 0. In Fig. 3 orbit types in parameter space are shown for fixed S̄.

FIG. 2 (color online). Orbit types in parameter space for Kerr spacetime. The blue and black lines divide the plot in different regions of
orbit types. Here, B denotes a bound and F a flyby orbit. A star indicates that the particle crosses the horizon. If more than one type of
orbit is possible, the initial conditions determine the actual orbit. On the blue lines the orbits are circular and the dots indicate the
innermost radially stable circular orbit. Only on the blue line approaching Ē ¼ 1 the circular orbits are radially stable. (Note that here
only r̄ ≥ r̄þ is considered; there are also combinations of Ē and J̄ where circular orbits between r̄ ¼ 0 and r̄ ¼ r̄− are possible.)
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V. PERIASTRON SHIFT

Let us consider the bound orbit of a spinning particle in
the equatorial plane with turning points r̄p < r̄a. In this case
P̄ā has at least four real zeros r̄1 < r̄2 < r̄3 < r̄4 with r̄3 ¼
r̄p and r̄4 ¼ r̄a. The periastron shift Δω ¼ 2πðK − 1Þ is
then given by the difference of the periodicity of the radial
motion r̄ðϕÞ and 2π, i.e.

K ¼ 1

π

Z
r̄a

r̄p

fffiffiffiffiffiffi
Pā

p dr̄; ð56Þ

where f ¼ r̄ Q̄
Δ̄ðr̄3þS̄2Þ.

Let us write Pā ¼ ðĒ2 − 1ÞQ8
i¼1ðr̄ − r̄iÞ where r̄1 <

� � � < r̄4 ∈ R with r̄3 ¼ r̄p, r̄4 ¼ r̄a, and r̄5;…; r̄8 ∈ C. If

we introduce a new variable z by r̄ ¼ ðr̄a−r̄1Þðr̄p−r̄1Þ
zðr̄a−r̄pÞþr̄p−r̄1

þ r̄1 the

expression (56) transforms to

K ¼ ðr̄a − r̄1Þ2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − Ē2ÞQ8

i¼5ðr̄a − r̄iÞðr̄p − r̄1Þðr̄a − r̄2Þ
q

×
Z

1

0

P
2
i¼0 Cizi þ

P
5
j¼1

Bj

1−bjzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞQ5

i¼1ð1 − lizÞ
q dz; ð57Þ

where the constants Ci, Bj are the coefficients of a partial
fraction expansion of fðr̄ðzÞÞ=ðr̄ðzÞ − r̄1Þ2, which are
given in Appendix B, together with the characteristics

bj. The parameter ~l ¼ ðl1;…; l5Þ is defined as

l1 ¼
ðr̄a − r̄pÞðr̄2 − r̄1Þ
ðr̄p − r̄1Þðr̄a − r̄2Þ

; ð58Þ

li ¼
ðr̄a − r̄pÞðr̄iþ3 − r̄1Þ
ðr̄p − r̄1Þðr̄a − r̄iþ3Þ

; i ¼ 2;…; 5: ð59Þ

The expression (57) can now be rewritten in terms of
Lauricella’s hypergeometric FD function, which is given in
terms of a power series and can be calculated quite easily,
see Appendix B for details,

K ¼ ðr̄a − r̄1Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − Ē2ÞQ8

i¼5ðr̄a − r̄iÞðr̄p − r̄1Þðr̄a − r̄2Þ
q

×

�
3C2

8
FD

�
5

2
; ~β; 3;~l

�
þ C1

2
FD

�
3

2
; ~β; 2;~l

�

þ C0FD

�
1

2
; ~β; 1;~l

�
þ
X5
j¼1

BjFD

�
1

2
; ~β�; 1; ~l�bj

��
;

ð60Þ

where ~β ¼ ðβ1;…; β5Þ with βj ¼ 1=2 for all j,
~β� ¼ ðβ1;…; β5; 1Þ, and ~l�bj ¼ ðl1;…; l5; bjÞ.
For S̄ ¼ 0 expression (60) reduces to the known exact

expressions for the periastron shift of equatorial motion of a
spinless test body in Kerr spacetime. For S̄ ¼ 0 we see that
five zeros of P̄ā coincide, r̄1 ¼ 0 ¼ r̄i for 5 ≤ i ≤ 8, and,
therefore, the expressions (59) vanish. In addition, Ci ¼ 0,
i ¼ 0, 1, 2, and B3 ¼ B4 ¼ B5 ¼ 0 for S̄ ¼ 0. Then

FDð12 ; ~β�; 1; ~l�bjÞ ¼ 2Πðbj;
ffiffiffiffi
l1

p Þ=π, j ¼ 1, 2, where Π is

the complete elliptic integral of the third kind, and we find

KðS̄ ¼ 0Þ ¼
X2
j¼1

2BjΠðbj;
ffiffiffiffi
l1

p Þ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − Ē2Þr̄pðr̄a − r̄2Þ

q : ð61Þ

FIG. 3 (color online). Orbit types in parameter space for Schwarzschild spacetime. The blue and black lines divide the plot in four
regions of different orbit types. Here, B denotes a bound and F a flyby orbit. A star indicates that the particle crosses the horizon. If more
than one type of orbit is possible, the initial conditions determine the actual orbit. On the blue lines the orbits are circular and the dot
indicates the innermost circular orbit which is stable in the radial direction. Only on the blue line from the dot approaching Ē ¼ 1 the
circular orbits are radially stable.
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If in addition ā ¼ 0 we find B2 ¼ 0, B1 ¼ J̄, and b1 ¼ 0
which gives

KðS̄ ¼ 0; ā ¼ 0Þ ¼ 2J̄Kð ffiffiffiffi
l1

p Þ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − Ē2Þr̄pðr̄a − r̄2Þ

q ; ð62Þ

whereKð ffiffiffiffi
l1

p Þ ¼ Πð0; ffiffiffiffi
l1

p Þ is the complete elliptic integral
of the first kind.
For spinning black hole binaries in quasicircular orbits

the post-Newtonian expansion of the periastron precession
was determined in [28], see also [29]. In [28] the test
particle limit in the pole-dipole-quadrupole approximation
[their Eq. (24)] was considered, which reads for the
periastron shift,

K ¼
�
1 −

6

r̄
þ 8āþ 6S̄

r̄
3
2

−
3ā2 þ 6ā S̄

r̄2

−
18S̄

r̄
5
2

þ 30ā S̄
r̄3

−
12ā2S̄

r̄
7
2

þOðS̄2Þ
�
−1
2

: ð63Þ

Our expression (60) for r̄a ¼ r̄p reduces to

Kðr̄a ¼ r̄pÞ ¼ C0 þ
X5
j¼1

Bj: ð64Þ

A comparison of these expressions is visualized in Fig. 4.
In the region of large r, where the post-Newtonian
approximation is valid, the two expressions coincide very
well. For smaller values of r, say around r ¼ 500M in
Fig. 4, the approximate formula (63) works still quite well
for vanishing spin but shows already quite significant
deviations for larger values of S̄. Here the quadratic effects
of the spin, which are neglected in (63), apparently become
already important, at least in combination with the post-
Newtonian approximation.
Let us apply the exact expression (60) to a stellar orbit

around Sagittarius A*, the massive black hole at the center
of our Galaxy, to get an impression about the magnitude of
the spin effects. We consider here SO-2 which has well
known orbital parameters and a very short orbital period.
From [1] we take the eccentricity eS2 ¼ 0.88, the semi-
major axis dS2 ¼ 0.123 mas, the mass of the black hole as
MBH ¼ 4.31×106MSun and its distance as RBH ¼ 8.33 kpc.
WithMSun ≈ 1476.9 m we derive from this the normalized
peri- and apastron of SO-2 as

r̄a ≈ 45.27 × 103; ð65Þ

r̄p ≈ 2.89 × 103: ð66Þ

If we assume that SO-2 moves in the equatorial plane of a
Kerr black hole we may use (60) to derive the relativistic
periastron precession including the effect of a possible spin

FIG. 4 (color online). Comparison of post-Newtonian and exact
expression for the periastron shift of quasicircular orbits. Here the
difference δK (multiplied by 106), i.e. the exact expression (64)
minus the post-Newtonian expression (63), is shown as a function
of the radius r of the quasicircular orbit (r in units of M). We
chose the spin of the Kerr black hole as ā ¼ 0.9. The black solid
line corresponds to a spin zero test particle, the blue long dashed
line to S̄ ¼ 0.1, the red short dashed line to S̄ ¼ 0.2, the green
dash dotted line to S̄ ¼ −0.1, and the orange dotted line to
S̄ ¼ −0.2.

FIG. 5. The relativistic periastron shift of a spinning SO-2 in the
equatorial plane of a Kerr black hole with rotation ā ¼ 0.95. Here
the difference between the periastron shift of a non-spinning
SO-2 in a prograde orbit, denoted by ΔωK, and the periastron
shift including the spin, denoted by Δωspin, is shown in 10−3 rad
as a function of the dimensionless spin S̄.
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of SO-2. The usual post-Newtonian formula for the
relativistic precession per orbital period is

ΔωPN ¼ 6πMBH

dS2ð1 − e2S2Þ
≈ 3.47 × 10−3 rad ≈ 11.90: ð67Þ

This value is in good agreement with (60) for ā ¼ 0 and
S̄ ¼ 0, Δωðā¼ 0; S̄¼ 0Þ−ΔωPN ≈ 3×10−6 rad [remember
Δω¼2πðK−1Þ]. If we assume a black hole spin of ā¼0.95
and a non-spinning SO-2 in a prograde orbit we get a
correction of Δωðā¼0.95;S̄¼0Þ−ΔωPN≈−5.94×10−5 rad.
In Fig. 5 we see the effect of a non vanishing spin of
SO-2 as compared to the case of S̄ ¼ 0. For large SO-2
spins the correction is nearly of the same order as the
correction due to the black hole spin, approximately
∓4.65 × 10−5 radians per orbital period for S̄ ¼ �1.
For a comparison of Newtonian and post-Newtonian
contributions see also [30].

VI. CONCLUSIONS

In this paper we derived an explicit velocity formula
for particles in the equatorial plane of a Kerr black hole
with spin aligned or anti-aligned with the rotation of the
black hole. We classified the radial motion of such particles
outside the horizons and also plotted the location of the
innermost radially stable circular orbit. From Fig. 1 it can
be inferred that not only prograde orbits but for large
negative spins also retrograde orbits may come very close
to the outer black hole horizon. It would be interesting to
analyze whether such retrograde orbits also become unsta-
ble in the θ-direction as shown for prograde orbits in [26].
We then used the explicit velocity formula to derive an

exact expression for the periastron shift of a spinning
particle. A comparison with a post-Newtonian expression
for quasicircular orbits up to first order in the spin given in
[28] showed that the quadratic spin contributions should be
included before adding even higher order post-Newtonian
terms to this expression. In order to get an idea about the
magnitude of spin corrections to the periastron shift we
considered as an example the orbit of SO-2 around the
Galactic center black hole. Assuming prograde equatorial
motion and an (anti-)aligned spin of SO-2 we found that the
corrections due to a spinning SO-2 may become nearly as
large as the corrections due to the spin of the black hole.
Therefore, this effect may become relevant for tests of
General Relativity in the vicinity of the central black hole
using stellar orbits.
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APPENDIX A: CONVENTIONS AND SYMBOLS

The dimensions of the different quantities appearing
throughout the work are displayed in Table I. We set c ¼ 1,
the dimension of the gravitational constant then becomes
½G� ¼ m=kg. Table II contains a list with the most impor-
tant symbols used throughout the text. Latin indices denote
four-dimensional indices and run from a ¼ 0;…; 3, the
signature is (+,–,–,–).

APPENDIX B: LAURICELLA’S FD FUNCTION

The four functions FA, FB, FC, and FD of Lauricella are
hypergeometric functions of multiple variables generaliz-
ing the hypergeometric functions of Gauss and Appell.
They were introduced in 1893 [31] and given as a
hypergeometric series

FDðα; ~β; γ; ~xÞ ¼
X∞
~ι¼0

ðαÞj~ιjð~βÞ~ι
ðγÞj~ιj~ι!

~x~ι; ðB1Þ

where ~ι is a multi-index, jxιn j < 1 for all n, and ð·Þ is the
Pochhammer symbol. Here j~ιj ¼ P

nιn, ~ι! ¼
Q

nιn!, and

ð~βÞ~ι ¼
Q

nðβnÞιn . The function FD can be extended to other
values of ~x by analytic continuation. It can also be rewritten
as a simple series which is much more convenient for
computations [32],

TABLE I. Dimensions of the quantities.

Dimension (SI) Symbol

Geometrical quantities

1 gab,
ffiffiffiffiffiffi−gp

, δab, ε
abcd, θ, ϕ, dθ, dϕ

m s, Ya, t, r, dt, dr, ρ, Δ, M, a, r�,
MBH, MSun, RBH

m−2 Rabcd

½Eξ� kg−1 ξa

Matter quantities

1 ua, K, eS2, dS2
kg m, m, pa, E
kg m Sab, Sa, S, J
rad Δω, ΔωPN

Auxiliary quantities

1 p̂a, P̄ā, Q̄, V̄ā, R̄ā, Ūā, r̄1;…;8, z,

C0;…;2, B1;…;5, b1;…;5, l1;…;5, ~β, ~β�, ~l, ~l�bj
kg μ
kg−2 A1

Operators and functions

1 FD, Γ, Π, K
m−1 ∂a, ∇i, D

ds ¼ “_”
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FDðα; ~β; γ; ~xÞ ¼ 1þ
X∞
m¼1

ðαÞm
ðγÞm

Λm; ðB2Þ

where

Λm ¼
X
j~ιj¼m

ð~βÞ~ι
~ι!

~x~ι

¼
X

f ~m∈Nnj
P
j

mj¼mg

Yn
j¼1

ðβjÞmj

mj!
x
mj

j : ðB3Þ

In this paper the FD function is used because it can be
represented in an integral form

FDðα; ~β; γ; ~xÞ ¼
ΓðγÞ

ΓðαÞΓðγ − αÞ
×
Z

1

0

tα−1ð1 − tÞγ−α−1
Y
n

ð1 − xntÞ−βndt

ðB4Þ

for ReðγÞ > ReðαÞ > 0, where Γ denotes the gamma
function. It is a generalization of the Jacobian elliptic
integrals, e.g. πFDð1=2; 1=2; 1; k2Þ ¼ 2KðkÞ, where K is
the complete elliptic integral of the first kind.
The constants appearing in front of FD in (60) are due to

a partial fraction decomposition of fðr̄ðzÞÞ=ðr̄ðzÞ − r̄1Þ2
and given by

B1;2 ¼
āðr̄a − r̄1Þ

2Δ̄ðr̄1Þ3ðā2 þ r̄aðr̄1 − 2Þ þ ðr̄a − r̄1Þr�Þð1 − r�Þ
½ðJ̄ − S̄ ĒÞā7 − 2Ēðr� þ 4r̄1 − 2Þā6

þ ½ð2J̄ − Ē S̄−4ðJ̄ − Ē S̄Þr̄1Þr� − 6ðJ̄ − Ē S̄Þr̄21 þ 4ð2J̄ − Ē S̄Þr̄1 − 4J̄�ā5 þ 2S̄ā2ðJ̄ − ā ĒÞð2ðr̄1 − 1Þ3
þ 2r�ðr̄1 − 1Þ2 þ r�r̄21 þ 2r̄1 − 2Þ þ r̄31ðJ̄ − Ē S̄Þð4þ r̄1Þā3 − 2r̄31ðr̄1 þ 8ÞĒr�ā2
þ ½ð12Ēr̄21 − J̄ S̄Þr� þ 8Ēr̄31 − 4J̄ S̄ r̄1 þ 4J̄ S̄�ā4 − r̄41ð2J̄ − 3Ē S̄Þr�āþ r̄41ð8Ē − J̄ S̄Þr�� ðB5Þ

Bj ¼ fS̄2bjðā ĒþS̄ Ē−J̄Þðr̄a − r̄1Þðr̄p − r̄1Þ=ðS̄2 þ r̄31Þ3ðr̄a − r̄pÞ
× ½ðr̄a − r̄p þ bjðr̄p − r̄1ÞÞ2S̄2 þ r̄1ðr̄1ðr̄p − r̄aÞ þ r̄abjðr̄p − r̄1ÞÞ2�g
× ½ðr̄a − r̄pÞ2r̄21ð10S̄4 − 16S̄2r̄31 þ r̄61Þ þ ðr̄a − r̄pÞðr̄p − r̄1Þr̄1ð5ðr̄a þ 3r̄1ÞS̄4 − 4r̄31ð5r̄a þ 3r̄1ÞS̄2 þ 2r̄ar̄61Þbj
þ ðr̄p − r̄1Þ2ððr̄2a þ 3r̄ar̄1 þ 6r̄21ÞS̄4 − r̄31ð7r̄a þ 6r̄ar̄1 þ 3r̄21ÞS̄2 þ r̄2a r̄61Þb2j �; ðB6Þ

where j ¼ 3, 4, 5 and r� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ā2

p
are the horizons, and the characteristics bj are solutions of the equations

TABLE II. Directory of symbols.

Symbol Explanation

Geometrical quantities

gab Metricffiffiffiffiffiffi−gp
Determinant of the metric

δab Kronecker symbol
ξa Killing vector
t, r, θ, ϕ Coordinates
s Proper time
Ya World line
Rabcd Curvature
M, a Kerr (mass, parameter)
rþ, r− (outer, inner) horizon
MBH, MSun Mass (black hole, Sun)
RBH Distance to black hole

Matter quantities

ua Velocity
m, m Mass (Frenkel, Tulczyjew)
pa Generalized momentum
Eξ General conserved quantity
Sab, Sa, S Spin (tensor, vector, length)
E, J Energy, angular momentum
r̄a, r̄p Apastron, periastron
K, Δω, ΔωPN Periastron advance (dimensionless,

in rad, in PN-approximation)
eS2, dS2 SO-2 eccentricity, semimajor axis

Operators and functions

εabcd Permutation symbol
∂i, ∇i, D

ds ¼ “_” (Partial, covariant, total) derivative
“¯” Dimensionless quantity
FD Lauricella function
Γ Gamma function
K, Π Complete elliptic integrals

(first and third kind)
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0 ¼ 2ðr̄a − r̄pÞðr̄p − r̄1Þðā2 − r̄a − r̄1 þ r̄1r̄aÞbj þ ðr̄p − r̄1Þ2Δ̄ðr̄aÞb2j þ ðr̄a − r̄pÞ2Δ̄ðr̄1Þ; ðB7Þ

for j ¼ 1, 2 and

0 ¼ ðr̄a − r̄p þ bjðr̄p − r̄1ÞÞ3S2 þ ðr̄1ðr̄a − r̄pÞ þ bjr̄aðr̄p − r̄1ÞÞ3; ðB8Þ

for j ¼ 3, 4, 5. Furthermore we have

C2 ¼
ðr̄a − r̄pÞr̄1

Δ̄ðr̄1ÞðS̄2 þ r̄31Þðr̄a − r̄1Þ2ðr̄p − r̄1Þ2
½3ĒS̄2r̄1ā3 þ ðĒS̄2ð1þ 3r̄1Þ − 3S̄ J̄ r̄1 þ Ēr̄31ÞS̄ā2

− ðS̄3J̄ þ S̄2Ēr̄21ð4 − 3r̄1Þ þ S̄ J̄ r̄31 − 2Ēr̄51Þāþ r̄21ðr̄1 − 2Þðr̄31 − 2S̄2ÞðJ̄ − Ē S̄Þ�; ðB9Þ

C0 ¼
1

Δ̄ðr̄1Þ3ðS̄2 þ r̄31Þ3ðr̄a − r̄1Þ2
½3ĒS̄2ðr̄aS̄4 þ ð15r̄ar̄1 − 7r̄2a − 6r̄21ÞS̄2 þ r̄61ðr̄2a þ 3r̄21 − 3r̄ar̄1ÞÞā7

þ ðr̄aĒ S̄ðS̄6 þ ð45r̄1 þ 3Þr̄31S̄4 þ 3ð1 − 3r̄1Þr̄61S̄2 þ r̄91Þ − 9r̄aS̄2J̄r̄41ð5S̄2 − r̄31Þ
− S̄2ðJ̄ − Ē S̄Þð3r̄2a S̄4 − 3r̄31S̄

2ð7r̄2a þ 6r̄21Þ þ 3r̄61ðr̄2a þ 3r̄21ÞÞÞā6
þ ðr̄1Ēðð2r̄21 þ 9r̄1r̄2a − 12r̄2a − 6r̄ar̄1ÞS̄6 − 3r̄31ð18r̄31 − 45r̄ar̄21 − 38r̄21 þ 96r̄ar̄1 þ 21r̄1r̄2a − 48r̄2aÞS̄4
þ 3r̄71ð3r̄2a þ 12r̄a − 16r̄1 − 9r̄ar̄1 þ 9r̄21ÞS̄2 þ 2r̄91ð3r̄2a þ r̄21 − 3r̄ar̄1ÞÞ − J̄ S̄ r̄aðS̄2 þ r̄31Þ3Þā5
þ fĒð8r̄ar̄31 þ r̄31 þ 3r̄2a r̄21 − 6r̄ar̄1 − 15r̄1r̄2a þ 2r̄2a − 3r̄41ÞS̄7 − J̄r̄1ð−6r̄ar̄1 þ 2r̄21 þ 8r̄ar̄21 þ 3r̄1r̄2a − 3r̄31 − 12r̄2aÞS̄6
− 3Ēr̄31ð27r̄2a r̄21 − 45r̄1r̄2a þ 6r̄ar̄1 þ 21r̄41 − 2r̄2a − 37r̄31 − 53r̄ar̄31 þ 90r̄ar̄21ÞS̄5
þ 3J̄r̄41ð27r̄1r̄2a þ 21r̄31 − 48r̄2a þ 96r̄ar̄1 − 53r̄ar̄21 − 38r̄21ÞS̄4 þ 3r̄81J̄ð−6r̄21 þ 3r̄2a þ r̄ar̄1 − 12r̄a þ 16r̄1ÞS̄2
− 3Ēr̄61ð6r̄ar̄1 − 6r̄41 − 2r̄2a þ 17r̄31 þ 3r̄1r̄2a þ 3r̄2a r̄21 þ r̄ar̄31 − 18r̄ar̄21ÞS̄3
− Ēr̄91ð3r̄41 þ 6r̄2a r̄21 − r̄31 − 3r̄1r̄2a þ 6r̄ar̄1 − 2r̄2a − 8r̄ar̄31ÞS̄þ J̄r̄101 ð6r̄1r̄2a − 6r̄2a − 2r̄21 þ 3r̄31 − 8r̄ar̄21 þ 6r̄ar̄1Þgā4
þ fĒr̄21ð−6r̄121 þ 4r̄ar̄101 þ 4S̄6r̄ar̄1 − 42S̄2r̄2a r̄71 − 126S̄2r̄91 − 216S̄4r̄51 þ 108S̄2r̄81 − 504S̄4r̄ar̄51 þ 552S̄4r̄ar̄41

þ 144S̄2r̄ar̄81 − 96S̄2r̄ar̄71 − 12r̄2a r̄91 − 6S̄6r̄31 − 2r̄2a r̄101 þ 12S̄6r̄ar̄21 þ 135S̄4r̄ar̄61 − 63S̄4r̄2a r̄51

− 27S̄2r̄ar̄91 þ 9S̄2r̄2a r̄81 þ 27S̄2r̄101 þ 12r̄ar̄111 − 54S̄4r̄71 þ 9S̄6r̄2a r̄21 þ 24S̄6r̄2a þ 246S̄4r̄2a r̄41 − 38S̄6r̄2a r̄1

þ 198S̄4r̄61 − 288S̄4r̄2a r̄31Þ þ J̄ S̄ðS̄2 þ r̄31Þ3ð−6r̄ar̄21 þ 6r̄ar̄1 − 2r̄2a þ 3r̄1r̄2a þ r̄31Þgā3
þ fĒr̄21ð6r̄ar̄1 − 9r̄ar̄21 þ 24r̄2a − 21r̄1r̄2a þ r̄41 þ 3r̄31 þ 4r̄1 þ 6r̄2a r̄21 − 6r̄21ÞS̄7 − J̄r̄21ð−22r̄1r̄2a þ 24r̄2a þ 4r̄ar̄1

þ r̄41 þ 6r̄2a r̄21 − 6r̄ar̄21ÞS̄6 − 3Ēr̄51ð17r̄41 þ 189r̄ar̄21 − 45r̄ar̄31 − 186r̄ar̄1 − 99r̄1r̄2a þ 96r̄2a þ 24r̄2a r̄21 − 4r̄1

− 75r̄31 þ 78r̄21ÞS̄5 þ 3J̄r̄51ð−45r̄ar̄31 − 98r̄1r̄2a þ 72r̄21 þ 24r̄2a r̄21 − 72r̄31 − 184r̄ar̄1 þ 96r̄2a þ 17r̄41 þ 186r̄ar̄21ÞS̄4
þ 3Ēr̄91ð−30r̄a − 33r̄21 þ 4þ 27r̄ar̄1 þ 30r̄1 þ 10r̄31 − 9r̄ar̄21 þ 3r̄2aÞS̄3 − 3J̄r̄91ð2r̄2a − 32r̄a þ 36r̄1 − 36r̄21

þ 30r̄ar̄1 þ 10r̄31 − 9r̄ar̄21ÞS̄2 − Ēr̄111 ð−3r̄31 þ 12r̄2a − r̄41 − 15r̄1r̄2a þ 6r̄21 þ 3r̄2a r̄21 − 4r̄1 − 6r̄ar̄1 þ 9r̄ar̄21ÞS̄
þ J̄r̄111 ð−r̄41 − 14r̄1r̄2a þ 3r̄2a r̄21 þ 12r̄2a − 4r̄ar̄1 þ 6r̄ar̄21Þgā2
þ fr̄31ð4r̄121 þ 2r̄ar̄121 þ 36S̄2r̄2a r̄71 þ 120S̄2r̄91 þ 144S̄4r̄51 − 72S̄2r̄81 þ 504S̄4r̄ar̄51 − 360S̄4r̄ar̄41 − 144S̄2r̄ar̄81

þ 72S̄2r̄ar̄71 þ 9S̄2r̄111 − 18S̄4r̄81 þ 2S̄6r̄ar̄31 þ 8r̄2a r̄91 þ 4S̄6r̄31 − 12S̄6r̄ar̄21 − 264S̄4r̄ar̄61 þ 126S̄4r̄2a r̄51

þ 60S̄2r̄ar̄91 − 18S̄2r̄2a r̄81 − 54S̄2r̄101 − 12r̄ar̄111 þ 108S̄4r̄71 − 18S̄6r̄2a r̄21 − 21S̄4r̄2a r̄61 þ 45S̄4r̄ar̄71 þ 3S̄6r̄2a r̄31

− 9S̄2r̄ar̄101 þ 3S̄2r̄2a r̄91 − 16S̄6r̄2a − 252S̄4r̄2a r̄41 þ 36S̄6r̄2a r̄1 − 204S̄4r̄61 þ 192S̄4r̄2a r̄31ÞĒ − r̄31J̄ S̄ð2r̄a − 3r̄ar̄1

þ r̄2a þ 3r̄21 þ 4 − 6r̄1ÞðS̄2 þ r̄31Þ3gā
− r̄31ðr̄1 − 2Þ3ð−r̄2a r̄91 þ 9S̄2r̄81 − 9S̄2r̄ar̄71 − 18S̄4r̄51 þ 45S̄4r̄ar̄41 − 24S̄4r̄2a r̄31 þ 2S̄6r̄2aÞðJ̄ − Ē S̄Þ�; ðB10Þ
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C1 ¼
ðr̄a − r̄pÞ

Δ̄ðr̄1Þ2ðS̄2 þ r̄31Þ2ðr̄a − r̄1Þ2ðr̄p − r̄1Þ
½3ĒS̄2r̄1ð2r̄aS̄2 þ 3r̄41 − 2r̄ar̄31Þā5

þ ðĒS̄4ðr̄a þ r̄1 þ 6r̄ar̄1Þ− 6J̄r̄1r̄aS̄3 þ Ēr̄31ð9r̄21 þ 2r̄1 þ 2r̄a − 3r̄ar̄1ÞS̄2 þ 3J̄r̄41ðr̄a − 3r̄1ÞS̄þ Ēr̄61ðr̄a þ r̄1ÞÞS̄ā4
þ ð2Ēr̄21ðr̄61ð3r̄a − r̄1Þ þ ð9r̄21 − 20r̄1 þ 12r̄a − 3r̄ar̄1Þr̄31S̄2 − S̄4ð9r̄a þ r̄1 − 6r̄ar̄1ÞÞ− J̄ S̄ðS̄2 þ r̄31Þ2ðr̄a þ r̄1ÞÞā3
þ ðĒð2r̄21 þ r̄1 − 19r̄a þ 8r̄ar̄1 − 4ÞS̄5 − 2J̄ðr̄21 − r̄1 − 9r̄a þ 4r̄ar̄1ÞS̄4 þ 2Ēr̄31ð11r̄21 − 17r̄1 þ 11r̄a − 7r̄ar̄1 − 4ÞS̄3
− 2J̄r̄31ð11r̄21 − 20r̄1 þ 12r̄a − 7r̄ar̄1ÞS̄2 þ Ēr̄61ð2r̄21 þ r̄1 þ 5r̄a − 4r̄ar̄1 − 4ÞS̄− 2J̄r̄61ðr̄21 − r̄1 þ 3r̄a − 2r̄ar̄1ÞÞr̄21ā2
þ ðĒr̄1ð2ðr̄21 þ 3r̄ar̄21 þ 8r̄a − 11r̄ar̄1ÞS̄4 þ r̄31ð9r̄31 − 32r̄21 − 3r̄ar̄21 þ 16r̄ar̄1 þ 36r̄1 − 28r̄aÞS̄2 þ 2r̄61ðr̄21 þ r̄ar̄1 − 4r̄aÞÞ
þ J̄ S̄ðS̄2 þ r̄31Þ2ðr̄a − 3r̄1 þ 4ÞÞr̄21ā− r̄31ðr̄1 − 2Þ2ðJ̄ − Ē S̄Þð9S̄2r̄41 þ r̄að4S̄2 þ r̄31ÞðS̄2 − 2r̄21ÞÞ�: ðB11Þ
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We consider the motion of test particles in the regular black hole space-time given
by Ayón-Beato and García [Phys. Rev. Lett. 80, 5056 (1998)]. The complete set
of orbits for neutral and weakly charged test particles is discussed, including for
neutral particles the extreme and over-extreme metric. We also derive the analytical
solutions for the equation of motion of neutral test particles in a parametric form and
consider a post-Schwarzschild expansion of the periastron shift to second order in the
charge. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913882]

I. INTRODUCTION

In the context of General Relativity (GR), many observable effects can be predicted which are
not present in Newtonian physics. Einstein showed that the “anomalous” shift of Mercury’s perihe-
lion is a relativistic effect, and also the bending of light of distant stars in the gravitational field of
the Sun was predicted correctly by GR. Most of the exact black hole solutions of the Einstein field
equations possess a curvature singularity, e.g., the Schwarzschild and the Kerr solution. The phys-
ical nature of such singularities is not really understood and, by the cosmic censorship conjecture,
they should be hidden behind an event horizon so that the physics outside is not influenced by the
singularity.

Assuming that the gravitational field of a gravitating object is described by the Reissner-
Nordström solution, then its charge has an additional effect on the periapsis shift of neutral and
charged particles.1–6 It is to be expected that the charge of regular black hole solutions will
also couple to the motion of test particles. This influence will in general be different from the
Reissner-Nordström case, in particular close to the gravitating object where the two metrics strongly
deviate. Therefore, the observation of the motion of massive test particles and of light near the
central object is a very useful tool for extracting information about the nature of the gravitational
field.

In 1968, Bardeen was the first to propose a regular model which avoids such problems.7–9

Others picked up that idea and a number of models were created which are commonly known
as “Bardeen black holes.”10–12 However, these models were not obtained as exact solutions of the
Einstein field equation coupled to some known physical sources. Other black hole models with
regular center exist.13,14 Nevertheless, such models, although they satisfy the condition T0

0 = T1
1 of

spherical symmetry, cannot be derived from a Lagrangian in general relativity.14 Another kind of
them involves exotic scalar matter, i.e., scalar matter whose kinetic term is negative.13

In 1998, Ayón-Beato and García found an exact solution to the Einstein equation coupled to a
nonlinear electrodynamics with a physically reasonable source. This solution does not possess any
curvature singularity and, therefore, is regular in this sense.15–18 In the following, we call this as
the Ayón-Beato–García space-time. It is uniquely described by two parameters: the mass M and the
electric charge Q. Asymptotically, it approaches the Reissner-Nordström space-time, and for Q = 0
it reduces to the Schwarzschild space-time. Later on, it was shown by Ayón-Beato and Garcia that
the Bardeen model is indeed a solution of the Einstein equation coupled to a nonlinear magnetic
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monopole.19 Recently, various rotating regular black hole models have been presented.20–23 How-
ever, it is still under debate whether one of them can be interpreted as a solution of the Einstein field
equations coupled to a nonlinear electrodynamics, see, e.g., Ref. 24.

In this paper, we will analyze the motion of massive test particles in the Ayón-Beato–García
space-time. We will use analytical methods to completely characterize the motion of uncharged and
weakly charged massive test-particles. In addition, we will present the analytical solution for the
equation of motion of neutral test particles.

For most of the common space-times, e.g., Schwarzschild, Reissner-Nordström, or Kerr, analyt-
ical solutions to the equations of motions can be given in terms of elliptic functions. The motion of test-
particles in Schwarzschild space-time was extensively discussed by Hagihara in 193125 using Weier-
strass elliptic functions. Analytical solutions for bound timelike geodesics in Reissner-Nordström
space-time were given by Gackstatter2 and for general timelike geodesics by Slezáková26 in terms of
Jacobian elliptic functions and integrals. In Ref. 27, analytical solutions for general timelike geodesics
were given in terms of Weierstrass elliptic functions. A complete account on the motion of (magnet-
ically and electrically) charged particles was given recently by Grunau and Kagramanova,6 see also
Ref. 5. References to further work on geodesics in Schwarzschild and Reissner-Nordström space-time
may be found in Ref. 28. A compact treatment of motion in Schwarzschild and Reissner-Nordström
space-time is given in the book of Chandrasekhar.29 For the regular Bardeen model, the motion of
massive test particles was discussed by Zhou et al.30 and gravitational lensing by Eiroa and Sendra.31

Note that an interesting aspect of solutions in non-linear electrodynamics is the fact that photons
propagate along the null geodesics of an effective metric instead of the space-time metric.32–34 For the
Ayón-Beato–García space-time, the propagation of photons has been studied by Novello et al.35 The
effective metric for photons is quite complex and in particular exhibits singularities at finite distances
from the center.

It is clear that the study of orbits around charged black holes is important from conceptual
and theoretical points of view. However, since it is the general belief that astrophysical black
holes possess a small or null charge, the astrophysical importance of such studies is considered to
be of limited applications. However, there are some discussions in the situation that black holes
embedded in an external (e.g., galactic) magnetic field and surrounded by a plasma may accrete
some charge.36–38 Despite this limitation, there are quite a few studies of astrophysical implica-
tions of charged black holes.39 The orbits of neutral and charged point particles around charged
Reissner-Nordström and Kerr-Newman black holes have been completely given by Refs. 6 and 40,
and the circular orbits in these space-times have been extensively discussed in Refs. 41 and 42.
In addition, the orbits in extreme Reissner-Nordström dihole space-times have been presented in
Ref. 43. In Ref. 39, rational orbits and their influence on the creation of gravitational waves have
been discussed (see also Refs. 44 and 45).

While the charge of black holes may modify the physics of matter in the vicinity of black
holes, charged black holes within some nonlinear electrodynamics theory may also change essen-
tially the properties of space and time.15,46 Within such a framework, gravitational lensing by
Einstein-Born-Infeld black holes has been calculated,47 see also Ref. 31 which is applied to observa-
tions at the supermassive black hole at the center of our galaxy. A further motivation for our study
could be that, since there is no singularity at r = 0, a material source might exist for this geometry
that could evolve from one asymptotically flat region to another. It is known that such sources do not
exist for the Reissner-Nordström black hole because shell crossings block the passage through the
throat between the r = 0 singularities, see Refs. 48–50.

It is also clear that the charge of black holes either for singular or regular black holes will be of
importance in the understanding of physics of the accretion of plasma and the creation of jets.

The outline of the paper is as follows: First, we review some general properties of the Ayón-
Beato–García space–time and derive the equations of motions in Secs. II and III. In Sec. IV, we
discuss all types of orbital motion for neutral test particles, including the over-extreme case without
horizons. We also analyze the stability of circular orbits and show the position of the innermost
stable circular orbit as a function of the charge Q. The special case of weakly charged particles in a
black hole space-time is also considered. In Sec. V, we derive the analytical solution to the equation
of motion for neutral test particles in terms of Weierstrass elliptic functions. For this, we introduce
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a new affine parameter analogously to the Mino time.51 Finally, we discuss the periastron shift for
neutral test particles and close with a summary.

II. THE AYÓN-BEATO–GARCÍA SPACE-TIME

In this section, we review some of the basic properties of the Ayón-Beato–García space-time,
which is regular in the sense that it has no curvature singularity. This regularity is achieved by
coupling to a general model of non-linear electrodynamics.

A. The action

To obtain electrically charged solutions of the Einstein-Plebański class of non-linear electrody-
namics32,18,52 equations, one starts from the action

S =


d4x


1
16π

R − 1
4π
L(F)


, (1)

where R is the scalar curvature and L is a function of F = 1
4 FµνFµν.15 One can also describe the

system under consideration by means of the function H (P) obtained from the following Legendre
transformation:32,53

H ≡ 2FLF − L. (2)

Defining

Pµν ≡ LFFµν, (3)

it follows thatH is a function of

P ≡ 1
4

PµνPµν = (LF)2F. (4)

The specific functionH employed for the regular black hole solution15 is given as

H (P) = P

(
1 − 3


−2 Q2P

)
(
1 +


−2 Q2P

)3 −
3

2 Q2s
*
,


−2 Q2P

1 +

−2 Q2P

+
-

5/2

, (5)

where s = |Q|/2m and the invariant P is a negative quantity,

P = −Q2

2r4 , (6)

where the integration constant Q plays the role of the electric charge. The components of Pµν =

LFFµν are just the electromagnetic field excitations D.18,52

B. The metric and the electric field

The metric of the regular spherically symmetric space-time we are considering is given by
Ref. 15

ds2 = gttdt2 − grrdr2 − r2 �dϑ2 + sin2ϑdϕ2� , (7)

where

gtt =
1
grr
= 1 − 2Mr2

(r2 +Q2) 3
2
+

Q2r2

(r2 +Q2)2 . (8)

Asymptotically, that is for r → ∞, this metric behaves as a Reissner–Nordström metric. At the
center, r = 0, the metric is regular

grr ≈ 1 − 1
3
Λr2 , Λ = 3

|Q| − 2
|Q|3 . (9)
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FIG. 1. Left: The metric function g tt of the Ayón-Beato–García space–time for the parameters Q = 0, 0.035M , 0.05M , Qcrit,
0.8M , and 2M (from bottom to top). Right: For comparison, the metric function g tt for Reissner–Nordström space–times. For
large r , both metrics approach each other; for small r , the Reissner–Nordström metric tends to infinity yielding a singularity
while the Ayón-Beato–García metric approaches g tt= 1.

The electric field is given by

Er = Q r4 *
,

r2 − 5 Q2

(r2 +Q2)4 +
15
2

M

(r2 +Q2) 7
2

+
-
. (10)

Er vanishes at the origin. As pointed out in Ref. 35, Er does not have finite positive zeros as long
as |Q| < 3

2 M . Above that value, Er possesses one finite positive zero. Also, for Q > 2M , the energy
density becomes negative for small values of r .

C. The horizons

The horizons are given by the vanishing of the metrical coefficient gtt = 0, i.e., by the real
solutions of

r8 + 2(3Q2 − 2M2)r6 +Q2(11Q2 − 4M2)r4 + 6Q6r2 +Q8 = 0 . (11)

As r and Q appear only quadratically, it suffices for solving this equation to consider the positive
solutions and Q > 0. According to Descartes’ rule of signs, this polynomial has two or no positive
zeros. The above expression has a double zero at Qcrit ≈ 0.634M which corresponds to the extremal
case with a horizon at rcrit ≈ 1.005M . For Q < Qcrit, there are two horizons; for Q > Qcrit, there
are no horizons. If Q = 0, the Schwarzschild case r = 2M is recovered. As in Reissner–Nordström
space-times, the electromagnetic field acts repulsive in the metrical sector. Examples of gtt are
shown in Fig. 1.

In the case of a black hole space–time, we have two horizons. The corresponding Carter–Penrose
diagrams of the black hole space-time and the extreme and over-extreme cases are shown in Fig. 2.
The diagrams look very similar to the Reissner-Nordström case except that in our case, the vertical
lines r = 0 do not indicate a singularity but represent simply a regular part of the space-time analogous
to the spatial origin r = 0 in Minkowski space-time. In particular, in the right diagram, there are no
horizons and, thus, there is no black hole, and the space-time possesses the topology of Minkowski
space-time.

III. THE EQUATIONS OF MOTION

The equations of motion for (charged) test particles are given by

qFµ
ν

dxν

ds
=

d2xµ

ds2 +
� µ
ρσ

	 dxρ

ds
dxσ

ds
, (12)

where F is the electromagnetic field strength (Ftr = Er , Fµν = 0 else), s is the proper time, q is the
specific charge, and

� µ
ρσ

	
= 1

2g
µν

�
∂ρgσν + ∂σgρν − ∂νgρσ

�
. Since the space-time and the electro-

magnetic field are spherically symmetric we may restrict without loss of generality the motion to the
equatorial plane θ = π/2.
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FIG. 2. The Carter–Penrose diagrams of the various types of Ayón-Beato–García space–times: (a) black hole, (b) extremal
black hole, (c) no black hole. Please note that the vertical lines r = 0 do not represent a singularity as in Reissner-Nordström
space-times but, instead, represent a regular part of the space-time analogous to the origin in Minkowski space-time.

A. Neutral test particles

Let us first consider the case q = 0. For the metric above, we have two conserved quantities,
energy and angular momentum

E = gtt
dt
ds

, L = r2 dϕ
ds

. (13)

In addition, gµν dxµ

ds
dxν

ds
= ϵ , where ϵ = 1 for massive point particles and ϵ = 0 for null geodesics

(which correspond to the high energy limit of massive test particles and are different from photon
orbits). Then, the geodesic equation gives the following ordinary differential equations(

dr
ds

)2

=
1

gttgrr

(
E2 − gtt

(
ϵ +

L2

r2

))
, (14)(

dr
dϕ

)2

=
r4

L2

1
gttgrr

(
E2 − gtt

(
ϵ +

L2

r2

))
, (15)(

dr
dt

)2

=
1
E2

gtt

grr

(
E2 − gtt

(
ϵ +

L2

r2

))
. (16)

In our case, gttgrr = 1 and with the dimensionless quantities s̄ = s/M , r̄ = r/M , Q̄ = Q/M , and
L̄ = L/M , the first equation reduces to(

dr̄
ds̄

)2

= E2 − *
,
1 − 2r̄2

(r̄2 + Q̄2) 3
2
+

Q̄2r̄2

(r̄2 + Q̄2)2
+
-

(
ϵ +

L̄2

r̄2

)
C R(r̄) . (17)
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From (17), we read off an effective potential

Veff = gtt

(
ϵ +

L2

r2

)
− ϵ = *

,
1 − 2r̄2

(r̄2 + Q̄2) 3
2
+

Q̄2r̄2

(r̄2 + Q̄2)2
+
-

(
ϵ +

L̄2

r̄2

)
− ϵ . (18)

From the square on the left hand side of (17), it is necessary that E2 − ϵ ≥ Veff for a solution to exist.
This is equivalent to R(r̄) ≥ 0. Instead of discussing the effective potential, we will consider this
condition later on. For Q̄ = 0, we recover the usual Schwarzschild effective potential.

In order to get rid of the square root appearing in the Eq. (17), we introduce a new variable
u = 1/


r̄2 + Q̄2. This restricts u to 0 ≤ u ≤ Q̄−1 and simplifies the equation to(

du
ds̄

)2

= u4P6(u) , (19)

where P6 is a polynomial of degree six,

P6(u) = Q̄2αu6 − 2αu5 − Q̄2βu4 + 2βu3 − (E2Q̄2 + L̄2)u2 + 2uϵ + E2 − ϵ , (20)

with α = Q̄2(L̄2 − ϵQ̄2), β = (L̄2 − 2ϵQ̄2). Written as an integral equation, this reads

s̄ − s̄0 =

 u

u0

du

u2


P6(u)
, (21)

where u(s̄0) = u0 are the initial values. The right hand side is a hyperelliptic integral of the third
kind. We will analytically solve this equation in a parametric form later on.

B. Charged test particles

Now, consider the case q , 0. The electrostatic potential is

A0 = −Q
r5

(r2 +Q2)3 +
3
2

M
Q

r5

(r2 +Q2) 5
2
. (22)

Here, we cannot perform the limit Q → 0 which is no problem since the potentials have no physical
meaning. For the corresponding field strength, this problem does not occur. However, the fact that
A0 is an odd function of r has strong consequences for the effective equations of motion, as we will
discuss below.

The constants of motions are modified due to the charge to

E = uµξ
µ

(t) + qA0 = gtt
dt
ds

, (23)

L = −uµξ
µ

(ϕ) = −gϕϕ
dϕ
ds
= r2 dϕ

ds
, (24)

1 = gµνuµuν = gtt

(
dt
ds

)2

− grr

(
dr
ds

)2

− gϕϕ
(

dϕ
ds

)2

, (25)

where u is the four-velocity and ξ(t) and ξ(ϕ) are the Killing vectors, resulting in(
dr
ds

)2

= (E − qA0)2 − gtt

(
1 +

L2

r2

)
. (26)

If we use the dimensionless quantities introduced above and q̄ = qQ̄−1, this can be written as(
dr̄
ds̄

)2

= R(r̄) + q̄E *
,

2Q̄2r̄5

(r̄2 + Q̄2)3 −
3r̄5

(r̄2 + Q̄2) 5
2

+
-

+ q̄2 *
,

Q̄4r̄10

(r̄2 + Q̄2)6 −
3Q̄2r̄10

(r̄2 + Q̄2) 11
2
+

9
4

r̄10

(r̄2 + Q̄2)5
+
-
C Rq̄(r̄) , (27)
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with R(r̄) as in (17) and Rq̄=0 = R. With the substitution u = 1/


r̄2 + Q̄2 as above, this simplifies to(
du
ds̄

)2

= u4�P6(u) + q̄E(2Q̄2u − 3)(1 − Q̄2u2) 7
2

+ q̄2
(
Q̄4u2 − 3Q̄2u +

9
4

)
(1 − Q̄2u2)6� C u4U(u), (28)

with P6 as in (19). Unfortunately, this substitution does not eliminate all roots, which apparently
cannot be avoided for charged particles. This type of equation has the same structure as the equation
of motion for the Kehagias-Sfetsos black hole in Hořava-Lifshitz gravity.54 To our knowledge, an
analytical solution is not known. However, the topology of orbits can be analyzed, which will be
done below for weakly charged test particles in black hole space-times.

IV. TYPES OF ORBITS

The equation of motion (17) is invariant under changes in sign of E, L̄, and Q̄ whereas (27) is
invariant under changes of sign of q̄E, L̄, and Q̄. Therefore, we choose L̄ > 0 and Q̄ > 0, as well as
E > 0 for neutral test particles and q̄ > 0 for charged particles. Due to the square on the left hand
sides of (17) and (27), a necessary condition for the existence of a solution is that R(r̄) ≥ 0 and
Rq̄(r̄) ≥ 0. In the following, we will discuss these conditions separately.

A. Massive neutral test particles

Let us consider whether R(r̄) ≥ 0 is fulfilled at r̄ = 0,∞. First, we observe that R(r̄) → E2 − ϵ
for r̄ → ∞ which implies that only for E2 ≥ ϵ infinity may be reached. For r̄ → 0, it is R(r̄) =
− L̄2

r̄2 + E2 − ϵ + L̄2

Q̄3 (Q̄ − 2) + O(r̄2) implying that r̄ = 0 may only be reached for L̄ = 0 and E2 ≥ ϵ .
Furthermore, in black hole space-times, R is always positive between the horizons due to gtt < 0
there.

Once we know the behavior of R(r̄) at the origin and at infinity, all possible types of orbits
(i.e., regions of R(r) ≥ 0) can be inferred from the number of positive real zeros. Suppose that for
a given set of parameters, all types of orbits have been identified. If now the constants of motion
are varied, the number of real zeros of R changes at those sets of parameters where double zeros
occur, which correspond to circular orbits. Therefore, the analysis of circular orbits is the key
element for identifying all possible types of orbits. For this analysis, we switch to the coordinate
u = 1/


r̄2 + Q̄2, see (19). Solving P6(u) = 0, dP6

du
(u) = 0 for E2 and L̄2 yields

E2 =
1

A(u) (Q̄
4u4 − 2Q̄2u3 − Q̄2u2 + 2u − 1)2 ,

L̄2 =
1

uA(u) (2Q̄4u3 − 3Q̄2u2 − Q̄2u + 1)(1 − Q̄2u2)2 ,
(29)

where A(u) B 2Q̄6u6 − 3Q̄4u5 − 4Q̄4u4 + 6Q̄2u3 + 2Q̄2u2 − 3u + 1. Note that for u → 0, the expres-
sion for L̄2 diverges but E2 = 1 − u + O(u2). Near u = Q̄−1, we get L̄2 = 4(Q̄ − 2)Q̄3(u − Q̄−1)2 +
O((u − Q̄−1)3), E2 → 1 and, therefore, circular orbits near r̄ = 0 may exist for Q̄ > 2. In the limit
Q̄ = 0, Eqs. (29) reduce to the well known Schwarzschild expressions E2 =

(1−2u)2
1−3u =

(r−2)2
r (r−3) , L̄2 =

1
u(1−3u) =

r2

r−3 .
From Eqs. (29), two necessary conditions for the existence of circular orbits can be derived:

the polynomial in the denominator of E2 has to be positive, A(u) > 0, and accordingly B(u) B
2Q̄4u3 − 3Q̄2u2 − Q̄2u + 1 ≥ 0 is also necessary. Let us consider the first condition: A(u) has a dou-
ble zero in [0,Q̄−1] at approximately Q̄c ≈ 0.691, uc ≈ 0.582 (r̄c ≈ 1.572). For Q̄ < Q̄c, there are
two zeros a1 < a2 in [0,Q̄−1] with positive A for 0 ≤ u < a1 and a2 < u ≤ Q̄−1. If Q̄ > Q̄c, then A(u)
is positive in the complete range [0,Q̄−1]. Concerning the second condition, B may have up to two
positive real zeros (by Descartes’ rule of signs) and B(0) = 1, B(Q̄−1) = Q̄ − 2. From that, we infer
that for Q̄ < 2 the polynomial B is positive in 0 ≤ u ≤ b1 < Q̄−1 for the smallest positive zero b1
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FIG. 3. Analysis of A(u) and B(u). Left: in the admissible range, A(u) has two zeros a1 < a2 for Q̄ < Q̄c, a double zero at
Q̄ = Q̄c, and A(u) > 0 for all u ∈ [0, Q̄−1] if Q̄ > Q̄c. Right: in the admissible range, B(u) has a single zero b1 if Q̄ < 2 and
two zeros b1 < b2 if Q̄ ≥ 2.

of B. For a graphical summary of these findings, see Fig. 3. As A(b1) < 0 if Q̄ < Q̄crit, b1 = a2 if
Q̄ = Q̄crit, and A(b1) > 0 with b1 > a2 if Q̄crit < Q̄ < Q̄c, we conclude that a1 < b1 < a2 if Q̄ < Q̄crit
and a2 ≤ b1 if Q̄crit ≤ Q̄ ≤ Q̄c. Summarized,

• 0 ≤ Q̄ < Q̄crit: for all black hole space-times, there may be circular orbits only for 0 ≤ u < a1

or, equivalently, (a−2
1 − Q̄2) 1

2 < r̄ ≤ ∞;
• Q̄crit ≤ Q̄ ≤ Q̄c: circular orbits exist in 0 ≤ u < a1 and a2 < u ≤ b1 or, equivalently, (a−2

1 −
Q̄2) 1

2 < r̄ ≤ ∞ and (b−2
1 − Q̄2) 1

2 ≤ r̄ < (a−2
2 − Q̄2) 1

2 ;

• Q̄c ≤ Q̄ < 2: circular orbits exist for 0 ≤ u ≤ b1 or, equivalently, (b−2
1 − Q̄2) 1

2 ≤ r̄ ≤ ∞;
• Q̄ ≥ 2: an additional inner region with circular orbits appears, b2 ≤ u < Q̄−1, where b2 is the

largest zero of B, i.e., circular orbits exist in (b−2
1 − Q̄2) 1

2 ≤ r̄ ≤ ∞ and 0 ≤ r̄ ≤ (b−2
2 − Q̄2) 1

2 .

The stability of the circular orbits can be analyzed by considering the second derivative of P6
(see Eq. (19)). If P6 has a maximum, then the circular orbit is stable and else unstable. Inserting (29)
in d2P6

du2 (u) yields

d2P6

du2 (u) = −2u3

A(u)T(u) , (30)

T(u) = 4Q̄10u9 − 9Q̄8u8 + 6Q̄6(1 − 2Q̄2)u7 + 27Q̄6u6 − 6Q̄4(3 − 4Q̄2)u5 − 42Q̄4u4

+ 6Q̄2(3 − 2Q̄2)u3 + 15Q̄2u2 − 6u + 1 . (31)

As d2P6
du2 (u) → −2u3 + O(u4), there are always stable circular orbits for large r , and because of

d2P6
du2 (Q̄−1) = 8(2−Q̄)

Q̄3 , stable circular orbits near r = 0 are possible if Q̄ > 2. The expression diverges
at the zeros of A(u), i.e., only for Q̄ < Q̄c at a1,2. Also, T(u) has double zeros at Q̄t ≈ 0.747,
ut ≈ 0.353, and Q̄crit, ucrit. Together with T(b1) > 0 for Q̄ > Q̄crit and T(b2) < 0 for Q̄ > 2, we infer:

• 0 ≤ Q̄ ≤ Q̄crit: There is a single triple zero uISCO in [0,a1] which corresponds to the inner-
most stable circular orbit with stable circular orbits for r̄ > r̄ISCO B (u−2

ISCO − Q̄2) 1
2 and unstable

orbits for r̄ < r̄ISCO.
• Q̄crit < Q̄ ≤ Q̄c: Here also a triple zero ut1 exists in [0,a1], but in addition d2P6

du2 (u) < 0 for u ∈
[a2,b1]. Therefore, stable circular orbits exist in r̄ > (u−2

t1
− Q̄2) 1

2 and (b−2
1 − Q̄2) 1

2 ≤ r̄ < (a−2
2 −

Q̄2) 1
2 .
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FIG. 4. Radii of circular orbits for neutral test particles in Ayón-Beato–García space-times as a function of the charge Q̄.
The black vertical line marks Q̄ = Q̄crit and the grey dashed line the outer horizon. Left: The dark grey regions correspond to
stable and the light grey to unstable circular orbits. In the white regions, no circular orbits are possible. Right: Radius of the
innermost stable circular orbit. The first jump occurs at Q̄crit from (a−2

1 −Q̄
2) 1

2 to (b−2
1 −Q̄

2) 1
2 due to the vanishing horizons.

At Q̄ = 2, an additional maximum in the effective potential appears which causes the second jump to r̄ = 0.

• Q̄c < Q̄ ≤ Q̄t: Two triples zeros ut1 ≤ ut2 are located in [0,b1] with stable circular orbits for
r̄ > (u−2

t1
− Q̄2) 1

2 and (b−2
1 − Q̄2) 1

2 ≤ r̄ < (u−2
t2
− Q̄2) 1

2 .
• Q̄t < Q̄ ≤ 2: Here, ut1,2 vanish and all possible circular orbits are stable, i.e., for r̄ ≥ (b−2

1 −
Q̄2) 1

2 .
• 2 < Q̄: A triple zero ut3 is located in the inner range [b2,Q̄−1] and, therefore, stable circular

orbits exist for r̄ ≥ (b−2
1 − Q̄2) 1

2 as before and 0 ≤ r̄ < (u−2
t3
− Q̄2) 1

2 .

For a graphical representation of this analysis, see Fig. 4, which also shows the radius of the inner-
most stable circular orbit as a function of Q̄. For the comparison with the circular orbits in Reissner-
Nordström space-times, see Fig. 10. There are more circular orbits in the Ayón-Beato–García black
hole space-time than in a Reissner-Nordström space-time.

With this analysis of circular orbits, we can identify all possible orbits’ types in parameter
space. In Fig. 5, the orbit types for massive neutral particles in Ayón-Beato–García space-times are
shown. In regions marked with F, there is a flyby orbit (rp ≤ r ≤ ∞, rp the periapsis), B denotes
a bound orbit (rp ≤ r ≤ ra, ra the apoapsis), and an indexed star means that the orbit crosses both
horizons. There are also regions where no motion is possible (R(r) < 0 for all r) marked by 0. If
more than one type is possible, the actual orbit is determined by the initial conditions.

As compared to the complete set of orbits of the Reissner-Nordström space-time (see the Ap-
pendix), we find here a richer variety of orbits. For the black hole case, however, the structure of
orbits is the same: we find (i) bound orbits crossing both horizons, (ii) two bound orbits where one
crosses both horizons (the other then is like a standard planetary orbit), (iii) a flyby orbit crossing
both horizons, and (iv) a standard flyby orbit together with a bound orbit crossing the horizons.
Only in the case of charges larger than the critical charge, the manifold of orbits becomes richer and
is different as can be seen from comparison of Fig. 5 with Fig. 9. In particular, for large charges, we
here have bound orbits for energies E > 1, and the energy interval below E = 1 for which we have
bound orbits is independent of L̄2.

As a consequence, while for large charges we have particular types of orbits for orbital param-
eters which are not existent in the Reissner-Nordström case, for small charges for which we have
black holes, a difference between the two types of charged black hole space-times can only be
observed through the value of, e.g., the perihelion shift. This is what we will calculate later in this
paper.
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FIG. 5. Orbit types for massive neutral test particles in Ayón-Beato–García space-times. The black vertical lines mark E = 1,
and the other red solid lines mark circular orbits. They divide different types of orbit configurations. Blue dots denote the
innermost stable circular orbit r̄ISCO and green boxes the boundaries of regions of unstable circular orbits between r̄ISCO and
r̄ =∞. (a) Q̄ = 0.3 (Q̄ < Q̄crit). (b) Q̄ = 0.65 (Q̄crit < Q̄ < Q̄c). (c) Q̄ = 0.7 (Q̄c < Q̄ < Q̄t). (d) Q̄ = 0.8 (Q̄t < Q̄ < 2). (e)
Q̄ = 5 (2 < Q̄).
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FIG. 6. The value Q̄c(q̄) as a function of the charge of the particle q̄. The blue horizontal line denotes the critical value
Q̄crit.

B. Weakly charged test particles in black hole space-times

From Eq. (27), it is a necessary condition for charged test particles that Rq̄(r̄) ≥ 0 for a solution
to exist. Let us first consider the cases r̄ → 0,∞. At r̄ → ∞, we have Rq̄(r̄) → E2 − 1 − 3q̄(E − 3

4 q̄)
what implies that for 3

2 q̄ − 1 ≤ E ≤ 3
2 q̄ + 1, infinity may not be reached. For r̄ → 0, the limit is not

influenced by q̄ as Rq̄(r̄) → − L̄2

r̄2 + E2 − 1 + L̄2

Q̄3 (Q̄ − 2), i.e., r̄ = 0 may again only be reached for
L̄ = 0 and E2 ≥ 1.

We now turn to the simpler equation (28). It is necessary that U(u) ≥ 0 for the existence of a
solution. This means that the type of orbit is determined by the values of U at the boundaries of the
physical meaningful region u ∈ [0,Q̄−1] and the number of real zeros in between. As noted above,
the sign of U at u = 0 changes at E = 3

2 q̄ ± 1 whereas U is negative at u = Q̄−1 as long as L̄ , 0. The
number of real zeros of U in [0,Q̄−1] changes for varying constants of motion if double zeros occur,
which correspond to circular orbits. Solving U(u) = 0 and dU

du
(u) = 0 for E and L̄2 yields

E1,2 =
1

4A(u)
�
q̄(1 − Q̄2u2) 5

2 D(u) ± gtt(u)


16A(u) + q̄2C(u)�,

L̄2
1,2 =

(1 − Q̄2u2)2B(u)
uA(u) +

q̄Q̄2gtt(u)
8uA2(u) (12Q̄2u2 − 15u − 2)

×
�
q̄Q̄2(1 − Q̄2u2)6(12Q̄2u2 − 15u − 2)u ∓ (1 − Q̄2u2) 7

2


16A(u) + q̄2C(u)�,

(32)

where gtt(u) is the metric function under the substitution u = 1/


r̄2 + Q̄2, C(u) = u2Q̄4(1 − Q̄2u2)5
(12Q̄2u2 − 15u − 2)2 and

D(u) = 4Q̄8u7 − 15Q̄6u6 + 2Q̄4(6 + Q̄2)u5 − 5Q̄4u4 − 6Q̄2(3Q̄2 − 1)u3

+ 35Q̄2u2 − 2(9 + Q̄2)u + 6 . (33)

For E and L̄ to be real, the expression under the square root has to be positive, 16A(u) + q̄2C(u) ≥ 0.
From the discussion of neutral particles, we know that A(u) > 0 for all u ∈ [0,Q̄−1] if Q̄ > Q̄c.
In addition, C(u) ≥ 0 for all u in the admissible range. Let us denote the smallest charge Q̄
for which 16A(u) + q̄2C(u) ≥ 0 for all u ∈ [0,Q̄−1] by Q̄c(q̄) (i.e., Q̄c(q̄ = 0) = Q̄c). The value
of Q̄c(q̄) as a function of q̄ is shown in Figure 6. Above Q̄c(q̄), the expressions for E1,2 and
L̄2

1,2 from (32) are real for all u ∈ [0,Q̄−1]. Below it, 16A(u) + q̄2C(u) has two zeros ã1,2 with
16A(u) + q̄2C(u) ≥ 0 for 0 ≤ u ≤ ã1 and ã2 ≤ u ≤ Q̄−1. As a second necessary condition, L̄2 has
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FIG. 7. Orbit types for charged test particles in Ayón-Beato–García space-times. Here, Q̄ = 0.4 and q̄ = 0.1. The red lines
mark circular orbits and the black lines E = 3

2 q̄±1. They divide different types of orbit configurations, which are denoted in
the same way as for neutral test particles.

also to be greater or equal to zero. At the boundaries, we have L̄2
1,2 = (1 ± q̄Q̄2)u−1 + O(u0) and

L̄2
1,2 = 4Q̄3(Q̄ − 2)(u − Q̄−1)2 + O((u − Q̄−1)3). This means that near u = 0 (r = ∞), L̄2

1 is always
positive but L̄2

2 is positive only if q̄Q̄2 < 1. Near u = Q̄−1 (r = 0), L̄2
1,2 is negative if Q̄ < 2. From the

discussion of neutral test particles, we know that for q̄ = 0 the expression L̄2 is positive in the range
[0,a1]. This remains valid for small q̄ until that value of q̄(Q̄) is reached where L̄2

2 has a double
zero in [0,a1]. We therefore assume here that the test-particle is weakly charged in the sense that
q̄Q̄2 < 1 with q̄ that small that L̄2

2 is positive in the range [0, ã1]. Numerical analysis indicates that
q̄ < Q̄crit seems to be sufficient. Note that in this case, always Q̄c(q̄) > Q̄crit. A typical example of
orbit configurations for fixed Q̄ and q̄ is shown in Figure 7.

V. ANALYTICAL SOLUTION FOR MOTION OF NEUTRAL TEST PARTICLES

In this section, we derive the analytical solution to the equation of motion (15) in the Ayón-
Beato–García space-time. With the dimensionless quantities used throughout the paper and the
substitution u = 1/


r̄2 + Q̄2, this equation reads(

du
dϕ

)2

=
(1 − Q̄2u2)2

L2 P6(u). (34)

This ordinary differential equation can be solved in terms of algebro-geometric methods. It corre-
sponds to a hyperelliptic curve of genus two. This situation is similar to the structure of the geodesic
equation in Schwarzschild-de Sitter space-time, where an analytical solution can be found in terms
of derivatives of the Riemann θ-function in two complex variables restricted to the theta-divisor, see
Ref. 55. However, here the differential is of the third kind, which introduces an additional compli-
cation, which can be handled in the following way: by introducing a parameter λ with dλ

ds̄
= u2,

λ(s̄0) = 0 in Eq. (34), we split the problem in two parts,(
du
dλ

)2

= P6(u) , (35)

dϕ
dλ

=
L̄

1 − Q̄2u2
, (36)
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with u(0) = u0, ϕ(0) = ϕ0. This new affine parameter λ can be seen as an analog of the Mino time.51

Let us first consider (35). With the substitution u = ± 1
x
+ uP where P6(uP) = 0, the problem is

transformed to the standard form(
x

dx
dλ

)2

= c5

5
i=0

ci
c5

xi = c5P5(x) , ci =
(±1)i
(6 − i)!

d(6−i)P6

du(6−i) (uP) . (37)

Here, the sign in the substitution should be chosen such that c5 is positive and, therefore, depends on
the choice of uP. The solution to this equation is given by Refs. 56, 57, and 55

x(λ) = −σ1

σ2
(λσ) , (38)

where σi is the i-th derivative of the Kleinian sigma function in two variables

σ(z) = Cez
tκzθ[K∞]((2ω)−1z; τ), (39)

which is given by the Riemann θ-function with characteristic K∞. A number of parameters enter
here: the symmetric Riemann matrix τ, the period-matrix (2ω,2ω′), the period-matrix of the second
kind (2η,2η ′), the matrix κ = η(2ω)−1, and the vector of Riemann constants with base point at
infinity 2K∞ = (0,1)t + (1,1)tτ. The constant C can be given explicitly, see, e.g., Ref. 56, but does
not matter here. In Eq. (38), the argument λσ is an element of the one-dimensional sigma divisor:
λσ = ( f (√c5λ − λin),√c5λ − λin)t where λin =

 ∞
x0

xdx√
P5(x)

with x0 = ±(u0 − uP)−1 depends only on

the initial values and the function f is given by the condition σ(λσ) = 0. For more details on the
construction of such solutions, see, e.g., Ref. 56. With (38), the solution for r̄ is given by

r̄2(λ) = σ2
1(λσ)

(σ2(λσ) ∓ uPσ1(λσ))2 − Q̄2 , P6(uP) = 0 , σ(λσ) = 0 . (40)

Let us now turn to Eq. (36) for ϕ. It can be written in the form

ϕ − ϕ0 =

 λ

λ0

L̄dλ
1 − Q̄2u2

=
L̄
√

c5

 x

x0

xdx

(1 − Q̄2u2(x))P5(x)
, (41)

=
L̄
√

c5

  x

x0

2Q̄2uPdx

(1 − Q̄2u2
P)2


P5(x)

+

 x

x0

xdx

(1 − Q̄2u2
P)


P5(x)

+

2
i=1

 x

x0

Cidx

(x − ui)


P5(x)

, (42)

where u1,2 =
∓Q̄

1±Q̄uP
and Ci = (−1)i u3

i

2Q̄ . The first two terms can be expressed directly in terms of λ, x

x0

xdx
P5(x)

=
√

c5λ = (λσ − λσ,λ=0)2 , (43)

 x

x0

dx
P5(x)

=

 ∞

x0

dx
P5(x)

+

 x

∞

dx
P5(x)

= − f (−λin) + f (√c5λ − λin) = (λσ − λσ,λ=0)1 . (44)

The summands of the last term can be rewritten as56 x

x0

dx

(x − ui)


P5(x)
=

1
P5(ui)

1
2

log
σ(Σ+(λ))
σ(Σ−(λ)) −

1
2

log
σ(Σ+(0))
σ(Σ−(0))

− (λσ − λσ,λ=0)t *
,

 u+
i

u−
i

dr j
+
- j=1,2


, (45)

where Σ±(λ) j = (λσ) j − 2
 u±

i
∞

x j−1dx√
P5(x)

and dr j =
5− j

k= j
(k + 1 − j) ck+1+ j

c5
xkdx

4
√

P5(x)
with ci as in (37).

Here, the sign in u±i indicates the branch of the square root. This means
 u+

i

u−
i

dr j = ±2
 ei
ui

dr j
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FIG. 8. Orbits for neutral massive particles in a space-time with Q̄ = 0.3. Left: bound orbit for E2= 0.98, L̄2= 40. Right:
flyby orbit for E2= 1.05, L2= 20. The small black circles indicate the horizons.

(modulo periods), where ei is a zero of P5 close to ui . Summarized this gives

ϕ(λ) = L̄
√

c5


2Q̄2uP( f (√c5λ − λin) − f (−λin))

(1 − Q̄2u2
P)2

+

√
c5λ

1 − Q̄2u2
P

+

2
i=1

Ci
P5(ui)

×

×
1
2

log
σ(Σ+(λ))
σ(Σ−(λ)) −

1
2

log
σ(Σ+(0))
σ(Σ−(0)) − (λσ − λσ,λ=0)t *

,

 u+
i

u−
i

dr j
+
- j=1,2


. (46)

Equations (40) and (46) together analytically solve the differential equation (15) in a parametric
form. In Fig. 8, we used this parametric solution to plot as an example two orbits of neutral test
particles in the Ayón-Beato–García space-time, which do not cross the horizons.

VI. PERIASTRON SHIFT FOR NEUTRAL TEST PARTICLES

Equation (15) for neutral particles can be used to derive the periastron shift of bound orbits in
Ayón-Beato–García space-times, that is, the difference between 2π and the azimuthal angle accu-
mulated from one passage of the periastron to the next. If we introduce the normalized quantities
used throughout the paper, Eq. (15) can be rewritten as(

dr̄
dϕ

)2

=
r̄4

L̄2


E2 − *

,
1 − 2r̄

(r̄2 + Q̄2) 3
2
+

Q̄2r̄2

(r̄2 + Q̄2)2
+
-

(
1 +

L2

r2

) C Rϕ(r̄) . (47)

The periastron shift Ωr is then given by the period Λr of r(ϕ), i.e., r(ϕ + Λr) = r(ϕ), minus 2π,
which is

Ωr = Λr − 2π = 2
 r̄a

r̄p

dr̄
Rϕ(r̄)

− 2π , (48)

where r̄p is the periastron and r̄a is the apastron.
As the Ayón-Beato–García space-time approaches the Reissner-Nordström space-time for large

radii and the Schwarzschild space-time for small Q̄, the question arises how the expression (48)
differs from the analogous expression in these space-times. To analyze this, we consider how Ωr

expands for small charges Q̄ and then compare the result to the Reissner-Nordström correction for
small charges. For this, we consider r̄p and r̄a as fixed and all other quantities like E = E(Q̄) and
L̄ = L̄(Q̄) as dependent on Q̄. This means that the derivatives of E and L̄ with respect to Q̄ are

needed. Therefore, we consider the zeros of Rϕ(r̄) which are given by ±


r̄2
i − Q̄2 where r̄i are the

six zeros of

P(r̄) = (E2 − 1)r̄6 + 2r̄5 − (E2Q̄2 + L̄2)r̄4 + 2(L̄2 − 2Q̄2)r̄3 + Q̄2(2Q̄2 − L̄2)r̄2

+ 2Q̄2(Q̄2 − L̄2)r̄ − Q̄6 + Q̄4L̄2 . (49)
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FIG. 9. Orbit types for massive neutral test particles in Reissner-Nordström space-times (in Schwarzschild space-times, we
also have terminating orbits T falling into the singularity). The black vertical lines mark E = 1, and the other red solid lines
mark circular orbits. They divide different types of orbit configurations. (a) Q̄ = 0: Schwarzschild. (b) Q̄ = 0.5. (c) Q̄ = 1:
extremal Reissner-Nordström. (d) Q̄ = 1.07. (e) Q̄ = 1.09. (f) Q̄ = 1.5 > Q̄cr.
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FIG. 10. Radii of circular orbits for neutral test particles in Reissner-Nordström space-times as a function of the charge Q̄.
The dark gray region corresponds to stable orbits and the light gray region to unstable orbits.

As r̄p and r̄a should be fixed, this implies

r̄1,2 =


r̄2

p,a + Q̄2 ≈ r̄p,a +
Q̄2

2r̄p,a
. (50)

By expanding P(r̄) = (E2 − 1)6
i=1(r̄ − r̄i) in powers of Q̄ and comparing coefficients, we can then

derive that

E ≈ *
,

(r̄a − 2)(r̄p − 2)(r̄a + r̄p)
r̄ar̄p(r̄a + r̄p − 2) − 2(r̄2

a + r̄2
p)
+
-

1
2

−
(r̄a + r̄p)(7r̄ar̄p − 4r̄a − 4r̄p − 12)

2((r̄a − 2)(r̄p − 2)(r̄a + r̄p)) 1
2 (r̄ar̄p(r̄a + r̄p − 2) − 2(r̄2

a + r̄2
p)) 3

2
Q̄2 , (51)

L̄ ≈ *
,

2
r̄ar̄p(r̄a + r̄p − 2) − 2(r̄2

a + r̄2
p)
+
-

1
2

−
(r̄a + r̄p)(r̄2

a r̄p + r̄ar̄2
p + r̄ar̄p + 3r̄2

a + 3r̄2
p − 6r̄a − 6r̄p)

2
√

2(r̄ar̄p(r̄a + r̄p − 2) − 2(r̄2
a + r̄2

p)) 3
2

Q̄2 . (52)

Now, the Taylor expansion of (48) reads

Ωr ≈ Λr,S + Λr,Q2Q̄2 − 2π

= 2
 r̄a

r̄p

dr̄
R0(r̄)

− 2π

+

 r̄a

r̄p

(L̄′′E2 − L̄E ′′E − L̄′′)r̄5 + 2r̄4L̄′′ + L̄r̄3 + 3L̄r̄2 + L̄3r̄ + 3L̄3)|Q̄=0dr̄

L̄3r̄ R0(r̄)


R0(r̄)
Q̄2, (53)

where R0(r̄) = (E2 − 1)L̄−2r̄4 + 2L̄−2r̄3 − r̄2 + 2r̄ is the Schwarzschild expression and a prime de-
notes differentiation with respect to Q̄. Accordingly, the first term of the expansion yields the
Schwarzschild periastron precession rate, as can be seen by substituting r̄ = αnx2+β

nx2+1
with α = r̄3,0,

β = r̄p, and n = r̄a−r̄p
r̄3,0−r̄a

, where 0 < r̄3,0 < r̄p < r̄a are the zeros of R0(r̄). The first term in (53) is then
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given by

Λr,S =
4L(0)

(1 − E2(0))r̄p(r̄a − r̄3,0)

 1

0

dx(1 − x2)(1 − k2x2)

=
4


r̄ar̄pK(k)
r̄ar̄p − 4r̄a − 2r̄p

=
4
√

pK(k)
p + 2e − 6

, (54)

where K(k) is the complete elliptic integral of the first kind with the modulus k2 =
2(r̄a−r̄p)

r̄ar̄a−4r̄p−2r̄a
=

4e
p+2e−6 . Here, r̄a =

p
1−e and r̄p =

p
1+e with the semilatus rectum p and the eccentricity e. This is the

standard result. By applying the same substitution to the second term in (53) and a decomposition in
partial fractions, we get

Λr,Q2 =
(3p2 − 8p + e2 + 3)K(k)

p
3
2


p + 2e − 6
+
(3p3 − 24p2 + 75p − 7pe2 − 12(1 − e2))E(k)

p
3
2


p + 2e − 6 (2e − p + 6)
, (55)

where E(k) is the complete elliptic integral of the second kind.
A corresponding analysis of the periapsis shift in Reissner-Nordström space-time yields

Ωr ≈ Λr,S − 2π +
Q̄2

√
p


p + 2e − 6


(p − 2)K(k) − (p2 − 6p − 2e2 + 18)E(k)

p − 2e − 6


. (56)

Obviously the two expressions for the periastron shift differ in the strong field, but for p → ∞, we
obtain in both cases Ωr ≈ 6π

p
− π

p
Q̄2. This result coincides with the result of Chaliasos4 (see his Eq.

(47) with vanishing charge of the test particle, i.e., e = 0). The expressions (55) and (56) will then
serve as basis for a future comparison with observational data and subsequent analysis whether a
singular or regular black hole is responsible for the motion of objects orbiting the black hole.

VII. SUMMARY

In this paper, we considered the motion of massive test particles in the metric presented in
Ref. 15, which we called the Ayón-Beato–García space-time. It is given as a solution to the Einstein
equations coupled to a nonlinear electrodynamics and is completely determined by its mass M
and its charge Q. After a review of the space-time and the corresponding equations of motion, we
classified the complete set of orbit types for neutral test particles moving on geodesics, without any
restriction on the value of Q. In particular, we analyzed conditions for circular orbits and the posi-
tion of the innermost stable circular orbit as a function of the charge. We also considered possible
types of orbits of a weakly charged test particle moving in a black hole space-time. In addition,
we derived the analytical solution of the equation of motion dependent on a new affine parameter,
which can be seen as an analog of the Mino time.51 We also discussed the periastron precession
rate and derived a post-Schwarzschild correction to the order Q̄2. A more detailed analysis of the
comparison with possible astronomical observations is postponed to future work. It would also
be interesting to extend this work to a rotating version of the Ayón-Beato–García solution, which
however still needs to be derived.
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APPENDIX: ORBITS IN REISSNER-NORDTSTRÖM SPACE-TIMES

For the sake of a better comparison, we present here the orbits in Reisser-Nordström space–
times. The metric in these space-time is given by (7) with

gtt =
1
grr
= 1 − 2M

r
+

Q2

r2 . (A1)

From (15), we obtain the orbital equation(
dr
dϕ

)2

=
r4

L2

(
E2 −

(
1 − 2M

r
+

Q2

r2

) (
ϵ +

L2

r2

))
, (A2)

where E and L are the conserved energy and angular momentum. The effective potential reads

Veff = −ϵ
M
r
+

L2 +Q2

r2 − ML2

r3 +
Q2L2

r4 . (A3)

A substitution u = 2m/r then gives for the orbital equation(
du
dϕ

)2

=
4
L̄2

�
E2 − ϵ

�
+ ϵ

4
L̄2

u −
(
1 + ϵ

Q̄2

L̄2

)
u2 + u3 − Q̄2

4
u4 , (A4)

where we used the normalized quantities defined in Sec. III A. This equation has the form(
du
dϕ

)2

= P4(u) , (A5)

where P4 is a polynomial of order 4. The structure of orbits is given by the zeros of the polynomial
which depend on E2, L̄2, and Q̄2. The number of zeros and the corresponding types of orbits are
given by the parameter plots of Fig. 9. This has to be compared with Fig. 5.

Fig. 9(a) describes the manifold of orbits in Schwarschild space-times.25 Fig. 9(b) shows all
orbits in a proper Reissner-Nordström black hole space-time with small charges as to allow the
existence of two horizons. Here, we have (i) two bound orbits where one crosses both horizons, (ii)
one bound orbit crossing both horizons together with a flyby orbit, and (iii) a bound orbit crossing
again both horizons. Bound orbits not crossing the horizons are possible only in the small region left
to the vertical line.

The orbits in an extremal Reissner-Nordström space-time are shown in Fig. 9(c). In this case,
we have (i) two bound orbits, (ii) one bound orbit, or (iii) one bound and one flyby orbit.

Figs. 9(d) and 9(e) show orbits in a regular Reissner-Nordström space-time where the charge is
small enough in order to allow two bound orbits which appear for parameters in the small region left
from the vertical line.

In Reissner-Nordström space-time, circular orbits are given by the conditions P4(u) = 0 and
dP4
du

(u) = 0 what can be solved for E2 and L̄2,

E2 =
1
8

�
4 − 4u + Q̄2u2�2

2 − 3u + Q̄2u2
,

L̄2 = 2
2 − Q̄2u

u
�
2 − 3u + Q̄2u2

� .
(A6)

Since both E2 and L̄2 have to be positive, the necessary conditions or the existence of circular orbits
is 2 − 3u + Q̄2u2 > 0 and 2 − Q̄2u > 0 for u > 0. A circular orbit is stable if the second derivative
of P4 is negative, d2P4

du
(u) < 0. These conditions together give Fig. 10 where the light gray region

shows unstable circular orbits, and the dark gray region stable circular orbits. This Figure has to be
compared with Fig. 4.
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We present a definition of the geoid that is based on the formalism of general relativity without
approximations; i.e., it allows for arbitrarily strong gravitational fields. For this reason, it applies not only to
the Earth and other planets but also to compact objects such as neutron stars. We define the geoid as a level
surface of a time-independent redshift potential. Such a redshift potential exists in any stationary spacetime.
Therefore, our geoid is well defined for any rigidly rotating object with constant angular velocity and a
fixed rotation axis that is not subject to external forces. Our definition is operational because the level
surfaces of a redshift potential can be realized with the help of standard clocks, which may be connected by
optical fibers. Therefore, these surfaces are also called “isochronometric surfaces.” We deliberately base
our definition of a relativistic geoid on the use of clocks since we believe that clock geodesy offers the best
methods for probing gravitational fields with highest precision in the future. However, we also point out
that our definition of the geoid is mathematically equivalent to a definition in terms of an acceleration
potential, i.e., that our geoid may also be viewed as a level surface orthogonal to plumb lines. Moreover, we
demonstrate that our definition reduces to the known Newtonian and post-Newtonian notions in the
appropriate limits. As an illustration, we determine the isochronometric surfaces for rotating observers in
axisymmetric static and axisymmetric stationary solutions to Einstein’s vacuum field equation, with the
Schwarzschild metric, the Erez-Rosen metric, the q metric, and the Kerr metric as particular examples.

DOI: 10.1103/PhysRevD.95.104037

I. INTRODUCTION

One of the fundamental tasks of geodesy is to determine
the Earth’s geoid from gravity field measurements. Within a
Newtonian framework, the definition of the geoid combines
the Newtonian gravitational potential and the potential
related to centrifugal forces that act on the rotating Earth.
Therefore, the gradient of the total potential describes the
free fall of particles in the corotating frame. From accel-
eration measurements, and the knowledge of the Earth’s
state of rotation, one can deduce the pure Newtonian
potential. Afterward, via geodetic modeling schemes,
information about the change of mass distributions and
mass transport can be obtained. These temporal variations
and long time trends are usually translated into water height
equivalent mass changes on the Earth’s surface for visu-
alization. The geoid itself is also commonly used as a
reference surface for height measurements [1].
Within the last years, the accuracy of measurements of

the gravitational field has improved considerably, and it is
expected to improve even more in the near future. For
example, such an improvement is expected from the
upcoming geodetic space mission GRACE-FO, which
consists of two spacecraft in a polar orbit around the
Earth. The influence of the varying gravitational field along
the orbit causes a variation in the separation of the two
satellites. With the onboard Laser Ranging Interferometer,
it is expected that such variations can be measured to within
an accuracy of 10 nm [2,3]. Another important improve-
ment is expected from the use of clocks in the context of

chronometric geodesy. The basic idea is to surround the
Earth with a network of clocks and to measure their mutual
redshifts (or their redshifts with respect to a master clock).
As clocks now approach a stability of 10−18 [4], it will soon
be possible to measure gravitational redshifts that corre-
spond to height differences of about 1 cm.
Both examples show that for a correct evaluation of

present or near-future measurements of the gravitational
field of the Earth it is mandatory to take general relativity
into account. Of course, the geodetic community is well
aware of this fact. The usual way to consider relativistic
effects is by starting with the Newtonian theory and
applying post-Newtonian (PN) corrections. In particular,
the notion of the geoid was already discussed in such a PN
setting in 1988 by Soffel et al. [5]. They defined a so-called
a-geoid, which is based on acceleration measurements, and
a so-called u-geoid, which is based on using clocks. The
authors showed that, within their setting, the two defini-
tions are equivalent. For a more recent discussion of the
Earth’s geoid in terms of PN calculations, we refer to the
work by Kopeikin et al. [6]. Although the PN approach is
certainly sufficient for calculating all relevant effects with
the desired accuracy in the vicinity of the Earth, from a
methodological point of view, it is more satisfactory to start
out from a fully relativistic setting and then to apply
approximations where appropriate. This makes it necessary
to provide fully relativistic definitions of all the basic
concepts, in particular of the Earth’s geoid.
It is the purpose of this paper to present and discuss such

a fully relativistic definition of the geoid. As we allow the
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gravitational field to be arbitrarily strong, our definition
applies not only to the Earth and to other planets but also
to compact objects such as neutron stars. For lack of a
better word, we always speak of the “geoid,” for all kinds
of gravitating bodies. Our definition is operational, using
clocks as measuring devices. That is to say, in the
terminology of the above-mentioned paper by Soffel et al.,
we define a fully relativistic u-geoid. However, we also
discuss the notion of an a-geoid, and we show that, also in
the relativistic theory without approximations, the two
notions are equivalent. We believe that high-precision
geodesy will be mainly based on the use of clocks in
the future; therefore, we consider the u-geoid as the primary
notion and the fact that it coincides with the a-geoid as
convenient but of secondary importance only.
Our definition assumes a central body that rotates rigidly

with constant angular velocity, where we have to recall that
in general relativity a “rigid motion” is defined by vanish-
ing shear and vanishing expansion for a timelike congru-
ence of worldlines. (This is often called “Born rigidity.”) Of
course, the motion of the Earth (or of neutron stars) is not
perfectly rigid. However, rigidity may be viewed as a
reasonable first approximation, and the effect of deforma-
tions may be considered in terms of small perturbations
afterward. Our definition is based on the mathematical fact
that the gravitational field of a body that rotates rigidly with
constant angular velocity admits a time-independent red-
shift potential. We define the geoid as a surface of constant
redshift potential, which is also called an isochronometric
surface. The equivalence of our (u-) geoid with an
appropriately defined a-geoid follows from the fact that
the redshift potential is also an acceleration potential.
As we will outline below, our definition of a relativistic

geoid may be viewed as a translation into mathematical
language of a definition that was given, just in words,
already in 1985 by Bjerhammar [7,8]. More recently,
inspired by Bjerhammar’s wording, Kopeikin et al. [9]
discussed a relativistic notion of the u-geoid assuming a
particular fluid model for the Earth. Also, Oltean et al. [10]
gave another fully relativistic definition of the geoid, which
is mathematically quite satisfactory. However, we believe
that our definition is more operational. A major difference
is in the fact that, in the above-mentioned terminology,
Oltean et al. defined an a-geoid. In contrast to our work,
Bjerhammar’s, and Kopeikin’s, they do not make any
reference to the use of clocks. We see the advantage of
our framework in the exploration of the use of clocks and
their description in terms of an isometric timelike con-
gruence. We ask for the redshift of any pair of clocks within
such a congruence and use the redshift potential as the basis
for the definition of the relativistic geoid.
For a general review of relativistic geodesy and related

problems, see, e.g., Refs. [11,12]. Reference [13] contains a
comprehensive summary of theoretical methods in relativ-
istic gravimetry, chronometric geodesy, and related fields as

well as applications to a parametrized post-Newtonian
metric. Our notational conventions and a list of symbols
can be found in Appendix B.

II. NONRELATIVISTIC GEOID

The field equation that Newtonian gravity is based upon
is the Poisson equation

ΔU ¼ 4πGρ; ð1Þ

where U is the Newtonian gravitational potential, G is
Newton’s gravitational constant, and ρ is the mass density
of the gravitating source. In the region outside the source,
i.e., in vacuum, the field equation reduces to the Laplace
equation ΔU ¼ 0.
On the rotating Earth, the centrifugal effects give an

additional contribution to the acceleration of a freely falling
particle that is dropped from rest. This total acceleration can
be derived from the potential

W ¼ U þ V ¼ U −
1

2
Ω2d2z : ð2Þ

Here, V is the centrifugal potential, Ω is the angular
velocity of the Earth, and dz is the distance to the rotation
axis, which is defined as the z axis. Whereas the attractive
gravitational potential is a harmonic function in empty
space, the centrifugal part is not.
The shape of the Earth as well as its gravity field shows

an enormous complexity. The idea of using an equipo-
tential surface for defining an idealized “mathematical
figure of the Earth” was brought forward by C. F. Gauss in
1828. The name geoid was coined by J. F. Listing in 1873.
In modern terminology, here quoted from the U.S.
National Geodetic Survey, the geoid is defined as “the
equipotential surface of the Earth’s gravity field which
best fits, in a least squares sense, global mean sea level.
[14]” Here, the term “equipotential surface” refers to the
potential W in Eq. (2). The question of which equipoten-
tial surface is chosen as the geoid is largely a matter of
convention; for the Earth, it is convenient to choose a best
fit to the sea level, while for celestial bodies without a
water surface, such as Mars or the Moon, one could
choose a best fit to the surface.
In a strict sense, the geoid is not time independent

because the Earth undergoes various kinds of deformations
and its angular velocity is not strictly constant. However,
all temporal variabilities may be treated as perturbations
of a time-independent geoid. For having such a time-
independent geoid, one makes the following idealizing
assumptions:
(A1) The Earth is in rigid motion.
(A2) The Earth rotates with constant angular velocity

about a fixed rotation axis.
(A3) There are no external forces acting on the Earth.
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Note that assumption A3 also excludes time-independent
deformations caused by other gravitating bodies such as
the so-called “permanent tides;” see, e.g., Ref. [1]. Just
as the time-dependent variations mentioned above, they
may be considered as perturbations at a later stage.
Physical effects that must be treated in that way include,
among others, the intrinsic time dependence of the mass
multipoles, tidal effects, anelastic deformations, friction,
ocean loading, atmospheric effects, mass variations in
the hydrosphere and cryonosphere, and postglacial mass
variations.
In geodesy, different notions of the geoid are commonly

used. See, e.g., the standard textbook on geodesy [1] for the
definitions of the mean geoid, the nontidal geoid, and the
zero geoid. In this work, since we exclude the influence of
external forces by assumption A3, we refer to the concept
of the nontidal geoid.
The assumptions A1, A2, and A3 guarantee the

existence of the time-independent potential W as given
in Eq. (2); the geoid is then defined as the time-
independent surface

W ¼ W0; ð3Þ

with the constant W0 chosen by an appropriate con-
vention, as indicated above. By definition, the geoid is
perpendicular to the acceleration

∇W ¼ ∇U þ∇V: ð4Þ

The magnitude j∇Wj is called gravity in the geodetic
community. The gravitational part of the potential is
usually expanded into spherical harmonics, cf., e.g.,
Refs. [1,15],

U ¼ −
GM
r

X∞
l¼0

Xl

m¼0

�
RE

r

�
l
Plmðcos ϑÞ½Clm cosðmφÞ

þ Slm sinðmφÞ�: ð5Þ

An additional assumption of axial symmetry reduces the
decomposition (5) to

U ¼ −G
X∞
l¼0

Nl
PlðcosϑÞ

rlþ1
: ð6Þ

Here, M is the mass of the Earth, RE is some reference
radius (e.g., the equatorial radius of the Earth), ðr; ϑ;φÞ
are geocentric spherical coordinates, PlðPlmÞ are the
(associated) Legendre polynomials, and Clm; Slm; Nl are
the multipole coefficients. In geodesy, Eq. (6) is often
rewritten as

U ¼ −
GM
r

X∞
l¼0

�
RE

r

�
l
JlPlðcos ϑÞ; ð7Þ

where the relation between the dimensionless quantities Jl
and the multipole moments Nl is given by Nl ¼ JlRl

EM.
The multipole coefficients Clm, Slm (or Nl in an

axisymmetric model) can be determined by different
measurements. Among others, satellite missions such as
GOCE and GRACE as well as ground-based gravimetry
and leveling observations on the surface of the Earth
contribute to the knowledge of the gravitational field and
the derivation of precise models of the geoid [1]. Modern
space missions use laser ranging (LAGEOS), laser inter-
ferometry (GRACE-FO), and GPS tracking for providing
such precise models.
We end this section by rewriting the three assumptions

A1, A2, and A3, which guarantee the existence of a time-
independent geoid, in a way that facilitates comparison
with the relativistic version to be discussed below. We start
out from the well-known transformation formula from an
inertial system Σ to a reference system Σ0 attached to a
rigidly moving body,

x⃗ ¼ x⃗0ðtÞ þ RðtÞx⃗ 0: ð8Þ
Here, x⃗0ðtÞ is the position vector in Σ of the center of mass
of the central body, and RðtÞ is an orthogonal matrix that
describes the momentary rotation of the central body about
an axis through its center of mass. The orthogonality
condition RðtÞ−1 ¼ RðtÞT implies that the matrix

ωðtÞ ¼ _RðtÞRðtÞ−1 ð9Þ

is antisymmetric. From Eq. (8), we find that

v⃗ ¼ _⃗x ¼ _⃗x0 þωðx⃗ − x⃗0Þ; ð10Þ
where the dot means a derivative with respect to t, keeping
x⃗ 0 fixed. Successive differentiation results in

a⃗ ¼ _⃗v ¼ ̈x⃗0 þ _ωðx⃗ − x⃗0Þ þ ωðv⃗ − _x⃗0Þ; ð11Þ
_⃗a ¼ x⃗0

��� þ ω̈ðx⃗ − x⃗0Þ þ 2 _ωðv⃗ − _x⃗0Þ þωða⃗ − ̈x⃗0Þ: ð12Þ

We will now verify that the three assumptions A1, A2, and
A3 imply the following:
(A1’) The velocity gradient ∇ ⊗ v⃗ is antisymmetric.
(A2’) _ω ¼ 0.

(A3’) _⃗a ¼ ωa⃗.
Clearly, from Eq. (10), we read that the assumption of rigid
motion implies A1’. Moreover, A2 obviously requires A2’.
Finally, A3 implies that ̈x⃗0ðtÞ ¼ 0⃗ (which means that we
may choose the inertial system such that x⃗0 ¼ 0⃗); this result
inserted into (12), together with A2’, gives indeed A3’. The
three conditions A1’, A2’, and A3’, which are necessary for

DEFINITION OF THE RELATIVISTIC GEOID … PHYSICAL REVIEW D 95, 104037 (2017)

104037-3



defining a time-independent geoid in the Newtonian theory,
have natural analogs in the relativistic theory as we will
demonstrate below.

III. RELATIVISTIC GEOID

Since clocks are the most precise measurement devices
that modern technology offers, a relativistic definition of
the geoid that is based on time and frequency measure-
ments might be most convenient and operationally realiz-
able with high accuracy. In one of the first articles on a
relativistic treatment of geodetic concepts Bjerhammar [7],
see also Ref. [8], proposed the following definition: “The
relativistic geoid is the surface nearest to mean sea level on
which precise clocks run with the same speed.”

A. Redshift potential

If one wants to translate Bjerhammar’s definition into the
language of mathematics, one has to specify what “precise
clocks” are and what is meant by saying that clocks “run at
the same speed.” Presupposing the formalism of general
relativity, without approximations, we suggest the follow-
ing: precise clocks are standard clocks, i.e., clocks that
measure proper time along their respective worldlines. The
notion of standard clocks is mathematically well defined in
the formalism of general relativity by the condition that for
a worldline parametrized by proper time the tangent vector
is normalized; moreover, standard clocks can be equiv-
alently characterized by an operational definition with the
help of light rays and freely falling particles, using the
notions of radar time and radar distance; see Perlick [16].
When comparing predictions from general relativity with
observations, one always assumes that atomic clocks are
standard clocks. This hypothesis is in agreement with all
experiments to date.
Knowing what is meant by “precise clocks,”we still have

to explain what we mean by saying that “two clocks run at
the same speed.” For comparing two clocks, it is obviously
necessary to send signals from one clock to the other. In a
general relativistic setting, it is natural to use light signals
which, in the mathematical formalism, are given by light-
like geodesics. This gives rise to the following well-known
definition of the general-relativistic redshift: let γ and ~γ be
the worldlines of two standard clocks that measure proper
times τ and ~τ, respectively. Assume that a light ray λ is
emitted at γðτÞ and received at ~γð~τÞ, while a second light ray
is emitted at γðτ þ ΔτÞ and received at ~γð~τ þ Δ~τÞ; see
Fig. 1. One defines the redshift z by

zþ 1 ¼ ν

~ν
¼ d~τ

dτ
¼ lim

Δτ→0

Δ~τ

Δτ
; ð13Þ

where ν and ~ν are the frequencies measured by the emitter γ
and by the receiver ~γ, respectively. In general relativity,
there is a universal formula for the redshift of standard
clocks [17],

zþ 1 ¼ ν

~ν
¼

�
gμν

dλμ
ds

dγν

dτ

����
γðτÞ�

gρσ
dλρ
ds

d~γσ

d~τ

����
~γð~τÞ

: ð14Þ

Here, s is an affine parameter for the lightlike geodesic λ. A
simple derivation of the redshift formula was given by Brill
[18]; this derivation can also be found in the book by
Straumann [19]. We are now ready to explain how we
interpret the statement that γ and ~γ run at the same speed: it
is supposed to mean that z ¼ 0.
In this interpretation, Bjerhammar’s definition requires

pairwise vanishing redshift for an entire family of clocks.
Therefore, we now consider a congruence of worldlines,
and we ask for the redshift of any pair of worldlines in this
congruence. The congruence is defined by a 4-velocity
field u, which is normalized according to gμνuμuν ¼ −c2,
i.e., such that its integral curves are parametrized by proper
time. We say that ϕ is a redshift potential for u if

logðzþ 1Þ ¼ ϕð~γð~τÞÞ − ϕðγðτÞÞ ð15Þ

for any two integral curves γ and ~γ of u. According to
Ref. [20], ϕ is a redshift potential if and only if expðϕÞu ≕
ξ is a conformal Killing vector field of the spacetime. The
redshift potential is time independent (i.e., constant along
the integral curves of ξ) if and only if ξ is a Killing vector
field. The integral curves of u are then called Killing
observers. The existence of a time-independent redshift
potential is, thus, guaranteed if and only if the spacetime is
stationary. In this case, we may introduce coordinates
ðt; x1; x2; x3Þ with ξ ¼ ∂t such that the metric reads

g ¼ e2ϕðxÞ½−ðcdtþ αaðxÞdxaÞ2 þ αabðxÞdxadxb�; ð16Þ
where the metric functions ϕ, αa, and αab depend on x ¼
ðx1; x2; x3Þ but not on t.
The redshift potential ϕðxÞ foliates the three-dimensional

space into surfaces which we call isochronometric surfaces.
According to Eq. (15), any two standard clocks, math-
ematically described by integral curves of the vector field
u ¼ expð−ϕÞξ, that are on the same isochronometric sur-
face ϕ ¼ ϕ0 ¼ constant show zero redshift with respect to
each other. We are thus led to the conclusion that

FIG. 1. Definition of the redshift in general relativity: exchang-
ing light signals between two worldlines γ and ~γ.
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Bjerhammar’s definition (with our interpretation of his
wording) makes sense in any stationary spacetime and that
the geoid is an isochronometric surface.
One might ask if the assumption of stationarity is really

necessary for this definition to make sense. As a matter of
fact, it can be shown that a 4-velocity field u must be
proportional to a Killing vector field if any two clocks on
integral curves of u see each other with temporally constant
redshift and if these integral curves are complete; see
Theorem 10 in Ref. [21]. This demonstrates that, based on
redshift measurements, a time-independent geoid can be
defined only in the case of stationarity.
We end this subsection by briefly discussing the notion

of a redshift potential in the Newtonian limit. Given a
stationary spacetime with a metric in the form above, the
redshift potential ϕ is given by the equation

c2e2ϕ ¼ −gμνξμξν ¼ −gtt: ð17Þ
Clearly, the redshift between any two stationary standard
clocks [i.e., standard clocks of which the worldlines are
integral curves of the vector field u ¼ expð−ϕÞξ] is

zþ 1 ¼ ν

~ν
¼ eϕj~γ−ϕjγ ¼ eϕj~γ

eϕjγ
¼

ffiffiffiffiffiffiffiffi−gtt
p j~γffiffiffiffiffiffiffiffi−gtt
p jγ

: ð18Þ

For the Newtonian limit of general relativity, we know that in
a suitable coordinate system −gtt → c2ð1þ 2U=c2Þ; hence,

eϕ ≈ 1þU=c2: ð19Þ
This demonstrates that in the Newtonian approximation
the level sets of the redshift potential ϕ correspond to
equipotential surfaces of the Newtonian gravitational poten-
tial U. In the same approximation, the redshift is determined
by the potential difference between the emitter and receiver,

ν

~ν
≈ 1þU2 − U1

c2
≕ 1þ ΔU

c2
: ð20Þ

Near the surface of the Earth, such a potential difference
corresponds to a height difference. From Eq. (20), one
concludes that the relative frequency change, i.e., the red-
shift, is about 10−16 per meter near the Earth’s surface.
Hence, modern clocks with a stability in the 10−18 regime
can be used to measure height differences at the centimeter
level. Figure 2 shows a sketch of the level sets of the redshift
potential and fibers connecting these surfaces. The redshifts
measured using fibers I and II are identical, whereas the
redshift measured using fiber III vanishes.

B. Clock comparison through optical fibers

The general redshift formula (14) is valid only if the
comparison between the two clocks is made with the help
of freely propagating light rays, i.e., with the help of
lightlike geodesics. We will now show that, by contrast, in
the case of a stationary spacetime, the formula (15) is valid

whenever the comparison between the two clocks is made
with signals that move at the speed of light, even if they are
not freely propagating (i.e., nongeodesic). This has the
important consequence that this formula may be used if the
signals are transmitted through an optical fiber. We have to
assume that the fiber is at rest with respect to the Killing
observers, i.e., that it establishes a time-independent path in
the coordinate representation (16) of the metric. A signal
that propagates along this fiber with the speed of light has
to satisfy the condition

gμν _xμ _xν ¼ 0; ð21Þ
where the dot denotes the derivative with respect to a curve
parameter s. As the signal is future oriented, this is
equivalent to

cdtþ αadxa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αabdxadxb

q
: ð22Þ

As a consequence, the coordinate travel time

Δt ≔ t2 − t1 ¼
Z

t2

t1

dt

¼ 1

c

Z
s2

s1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αab

dxa

ds
dxb

ds

r
− αc

dxc

ds

�
ds ð23Þ

of the signal through the fiber is independent of the
emission time since ∂tαa ¼ 0 and ∂tαab ¼ 0. This implies
that two signals that are emitted with a time difference Δt
will be received with the same time difference Δt. Together
with the fact that, for observers with 4-velocity
u ¼ expð−ϕÞ∂t, proper time and coordinate time are
related by

dτ
dt

¼ eϕ; ð24Þ
this shows that the redshift of signals sent through the
fiber is

zþ 1 ¼ ν

~ν
¼ d~τ

dτ
¼ d~τ

dt
dt
dτ

¼ eϕj~γ
eϕjγ

: ð25Þ

Hence, the redshift potential also gives the correct fre-
quency ratio ν=~ν for clock comparison by signal trans-
mission through an arbitrarily shaped optical fiber,
provided that the fiber is at rest with respect to the
Killing observers.
Using the framework of optical metrics, see, for instance,

Ref. [22], we can also consider fiber links with an index of
refraction n in which the signal does not propagate with the
vacuum speed of light as assumed above. Instead of
Eq. (16), the metric now reads

g ¼ e2ϕðxÞ½−nðxÞ−2ðcdtþ αaðxÞdxaÞ2
þ αabðxÞdxadxb�: ð26Þ
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We again assume that the fiber is at rest with respect to the
Killing observers, i.e., with respect to the emitter and
observer of the signal. The redshift between the two ends of
the fiber now results in

zþ 1 ¼ ν

~ν
¼ eϕj~γ

eϕjγ
njγ
nj~γ

; ð27Þ

such that, again, the redshift potential ϕ gives the correct
result for frequency comparison if the index of refraction is
constant. As can be seen by the equation above, the vacuum
redshift potential ϕ can also be deduced from redshift
measurements using optical fibers when the position-
dependent index of refraction of the fiber is known.

C. Definition of the relativistic geoid

Based on our deliberations in Sec. III A, we suggest the
following definition of the relativistic geoid: the relativistic
geoid is the level surface of the redshift potential ϕ that is
closest to mean sea level.
In the case of celestial bodies without a water surface,

one has to single out one particular level surface of the
redshift potential by some other convention. This definition
of the relativistic geoid makes sense for any celestial body
that is associated with a stationary spacetime, i.e., with a
family of Killing observers. In the next section, we will
show that the assumption of stationarity is tantamount to
three conditions that are analogous to the three conditions
A1’, A2’, and A3’, which are necessary for defining a time-
independent geoid in the Newtonian theory; recall Sec. II.
Our definition is operational in the sense that standard

clocks and fiber links can be used to determine the
relativistic geoid. A clock network may be built such that
all clocks show pairwise zero redshift, and one of them is
positioned at mean sea level. The spatial grid of clocks then
determines the shape of the Earth’s geoid.
We emphasize that our definition of the geoid allows for

arbitrarily strong gravitational fields. For weak fields, we
may use the Newtonian limit for which the redshift
potential can be expressed in terms of the Newtonian
potential; see Sec. III A. In this limit, our definition of the
geoid becomes the usual Newtonian one. At the PN level,
our geoid reduces to the u-geoid of Soffel et al. [5].
Our definition of the geoid should be compared with the

one by Oltean et al. [10], which is also fully relativistic. A
major difference is in the fact that we give an operational
definition in terms of clocks that are connected by fiber
links while their mathematical construction is not immedi-
ately related with an operational prescription. In particular,
they do not make any reference to clocks.

IV. GENERAL RELATIVISTIC MODEL
OF THE SOLID EARTH

Our definition of the geoid requires stationarity, i.e., the
existence of a timelike Killing vector field. In this section,

we will recall some known facts about timelike congruen-
ces. They will demonstrate that the stationarity assumption
is equivalent to a relativistic version of the three conditions
A1’, A2’, and A3’ we have discussed in Sec. II.

A. Rigid and isometric congruences

We consider a timelike congruence of worldlines (see,
e.g., Refs. [23,24]), i.e., a family of timelike curves which
do not intersect and fill a certain region of the four-
dimensional spacetime. The tangents to the worldlines
are given by a timelike vector field u ¼ uμ∂μ, which we
assume to be normalized, gμνuμuν ¼ −c2. We interpret u as
the 4-velocity field of a gravitating body. On the surface of
the body, u may be interpreted as the 4-velocity of
observers with standard clocks that are attached to the
surface. Moreover, we may extend u into the exterior region
where it may be interpreted as the 4-velocity of observers
hovering above the surface, e.g., in satellites. We will
characterize the case that u is proportional to a Killing
vector field; in this case, the congruence is called isometric.
The projection onto the local rest space of the con-

gruence is given by the projection operator

Pμ
ν ¼ δμν þ 1

c2
uμuν: ð28Þ

The acceleration a ¼ aμ∂μ of the congruence is defined by

aμ ≔ _uμ ¼ uνDνuμ: ð29Þ
The acceleration vanishes along a particular integral curve
of u if and only if this curve is a geodesic.
As in nonrelativistic physics, a congruence can be

characterized by the kinematic quantities rotation ωμν,
shear σμν, and expansion θ,

ωμν ≔ Pρ
μPσ

νD½σuρ� ¼ D½νuμ� þ
1

c2
_u½μuν�; ð30aÞ

σμν ≔ Pρ
μPσ

νDðσuρÞ −
1

3
θPμν

¼ DðνuμÞ þ
1

c2
_uðμuνÞ −

1

3
θPμν; ð30bÞ

θ ≔ Dμuμ: ð30cÞ

The rotation is antisymmetric, while the shear is sym-
metric and traceless. The motion of neighboring worldlines
with respect to a chosen worldline with tangent u is
determined by

Dνuμ ¼ ωμν þ σμν þ
1

3
θPμν −

1

c2
uνaμ: ð31Þ

A congruence with vanishing expansion, θ ¼ 0, is
isochoric, i.e., the volume of a comoving spatial region
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does not change over time [23,24]. If the shear vanishes as
well, σμν ¼ 0, the congruence is called Born rigid. This is
true if and only if the spatial distance between any two
infinitesimally neighboring integral curves of u remains
constant over time. In this case, Eq. (31) reduces to

Dνuμ ¼ ωμν −
1

c2
uνaμ: ð32Þ

In analogy to the Newtonian condition A1’, we require the
congruence to be Born rigid, i.e.:
(A1”) Pρ

μPσ
νDðσuρÞ ¼ 0.

For defining the analogs of the Newtonian conditions A2’
and A3’, we introduce the rotation 4-vector ωμ by

ωμ ≔
1

2c
ημνσλuνωσλ ¼

1

c
ημνσλuν∂λuσ: ð33Þ

As ωμuμ ¼ 0, the vector ωμ is spacelike. If we write it in the
form ωμ ¼ ωeμ with eμeμ ¼ 1, the unit vector eμ gives the
direction of the momentary rotation axis, and the scalar ω
gives the modulus of the momentary angular velocity. The
Newtonian requirements A2’ and A3’ now translate into
the following conditions:
(A2”) Pμ

ν _ων ¼ 0.
(A3”) Pμ

ν _aν ¼ ωμ
νaν.

Condition A2” states that the unit vector eμ is Fermi-Walker
transported and that the scalar ω is constant along each
worldline of the congruence; in other words, it states that
the rotation axis and the angular velocity are time inde-
pendent. Condition A3” states that the change of the
acceleration along the congruence is only due to the
rotation and that the acceleration vector always points to
the same neighboring worldline.

B. Acceleration potential

Ehlers [23] has shown that for a rigid congruence the two
requirements A2” and A3” together are equivalent to

D½νaμ� ¼ 0: ð34Þ

The latter condition means that there exists a potential ϕ for
the acceleration,

aμ ¼ c2∂μϕ: ð35Þ

This, in turn, is true for a rigid congruence if and only if u is
proportional to a timelike Killing vector field ξ [25], where
the proportionality is given by

ξ ¼ eϕu: ð36Þ

Clearly, ϕ is equal to the redshift potential considered
above. We have now seen that at the same time it plays the
role of an acceleration potential. Moreover, we have seen

that stationarity is equivalent to the three conditions A1”,
A2”, and A3”. A congruence with these properties is called
isometric. The existence of a time-independent redshift
potential is thus based on assumptions that are quite
analogous to the assumptions A1’, A2’, and A3’ we have
discussed in the Newtonian theory.
The Killing vector field ξ corresponds to a corotating

family of observers. Note that ξ is defined and timelike on a
cylindrical neighborhood of the body. This neighborhood
extends to infinity for a nonrotating (isolated) body but for
a rotating body it is finite. If extended outside of this
neighborhood, the Killing vector field becomes spacelike.

C. General relativistic geoid revisited

We summarize our observations in the following way.
We have seen that a natural generalization of the classical
assumptions A1’, A2’, and A3’ requires the congruence
associated with the Earth to be isometric, i.e., the spacetime
to be stationary. The assumption of stationarity gives rise to
a time-independent potential ϕ with two properties. First, ϕ
is a redshift potential, which means that the surfaces ϕ ¼
constant in 3-space are isochronometric. Second, ϕ is an
acceleration potential, which means that the acceleration aμ

(which is a spatial vector field) is the gradient of the
surfaces ϕ ¼ constant in 3-space. Note that freely falling
particles undergo the acceleration −aμ relative to comoving
observers. Therefore, the acceleration of freely falling
bodies on the Earth, e.g., in falling corner-cube devices,
is governed by the potential ϕ. By the same token, plumb
lines are perpendicular to the surfaces ϕ ¼ constant.
As a consequence, we could rewrite our definition of the

relativistic geoid, as it is given in Sec. III C, by replacing
the words “redshift potential” with the words “acceleration
potential.” The geoid may be determined by a family of
Killing observers with standard clocks. Once a reference
point defining the mean sea level has been chosen, the
geoid may be realized either by clock comparison or by
measuring the gravitational acceleration in falling corner
cubes as shown by Eqs. (35) and (18). In this sense, one
may say that also in the full relativistic theory the notions of
the u-geoid and a-geoid are equivalent; it was already
mentioned that a similar result was proven by Soffel et al.
[5] in a PN setting. This fact is very convenient because it
implies that the geoid may be determined with two
independent types of measurements that complement each
other. As the notions of redshift potential and acceleration
potential coincide, we will speak just of the relativistic
potential in the following.
Our definition of the geoid is based on the assumption of

stationarity. Of course, this is only an approximation. Just
as in the Newtonian theory, temporal variations may be
taken into account by modifying the time-independent
(rigid) geoid by time-dependent perturbations, i.e., by
considering a nonstationary metric Σμν of the form
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Σμν ¼ gμν þ hμν; ð37Þ

where gμν is stationary. In practical geodesy, the stationary
part is defined as the mean value over a sufficiently long
time interval. Thus, this part also contains the permanent
tide effects from the external gravitational field of celestial
bodies like the Moon or the Sun. For the stationary part gμν,
we may still use our definition of the geoid in terms of a
relativistic potential ϕ. In this paper, we will not work out a
theory for such time-dependent perturbations of the rela-
tivistic geoid. For examples of such effects, we refer to the
list given in Sec. II.
However, as our formalism also applies, e.g., to rapidly

rotating neutron stars with “mountains” and other non-
axisymmetric stationary objects, we should mention that
our assumption of stationarity ignores the fact that an
irregularly shaped rotating body emits gravitational radi-
ation, so its angular velocity will actually not be constant
over time. Of course, this is a small effect; for the Earth and
other planets, it is completely negligible.
For rigid motion inside the gravitating body, the

4-velocity field u and, consequently, the Killing vector
field ξ are defined within the interior as well. The extension
of equipotential surfaces (i.e., of the geoid) to regions
inside the body is also well defined. An interior solution
should be considered, and the corresponding isochrono-
metric surfaces need to be calculated. The particular
interior solution must be matched, at the surface, to the
vacuum solution. The level surface that defines the geoid by
the condition of pairwise vanishing redshift for any two
clocks on this particular surface will then be continuous but
in general not differentiable.
In the following two sections, we consider axisymmetric

static and axisymmetric stationary spacetimes, respectively,
and we determine the isochronometric surfaces for various
examples of such spacetimes. Of course, axisymmetric
models are highly overidealized in view of applications to
the Earth; see, e.g., the analysis in Ref. [26]. However, we
believe that these examples are instructive because they
illustrate the general idea behind our definition and its
applicability to compact objects. We emphasize that our
general definition of the geoid does of course not assume
axisymmetry or any other kind of spatial symmetry.
However, the axisymmetric stationary case is mathemati-
cally distinguished by the fact that then we have two
linearly independent Killing vector fields, one of them
is timelike and hypersurface orthogonal near spatial infin-
ity. This allows the use of asymptotically defined time-
independent multipole moments; see below. The only other
case where a Killing vector field exists that is timelike up to
spatial infinity and hypersurface orthogonal (near spatial
infinity) is the case of a static (i.e., nonrotating) gravitating
body. In the exterior of an irregularly shaped rotating body,
we have only one Killing vector field, which becomes
spacelike at a certain distance from the rotation axis; in this

case, the asymptotic definition of time-independent multi-
pole moments is not applicable.
All our examples are vacuum solutions of Einstein’s field

equation. For modeling a gravitating body, they have to be
matched to an interior matter solution. Correspondingly,
the isochronometric surfaces we are calculating are valid
only outside of the gravitating body.

V. AXISYMMETRIC STATIC SPACETIMES

A. Axisymmetric static solutions to
Einstein’s vacuum field equation

Any axisymmetric and static spacetime that satisfies
Einstein’s vacuum field equation is given by the Weyl
metric [27]

gμνdxμdxν ¼ −e2ψc2dt2 þ e−2ψρ2dφ2

þ e−2ψe2γðdρ2 þ dz2Þ; ð38Þ

where ðt; ρ; z;φÞ are Weyl’s canonical coordinates. The
metric functions ψ and γ depend only on the coordinates ρ
and z. The coordinates t and φ are associated with the two
Killing vector fields ∂t and ∂φ. Some important examples
are the Schwarzschild metric, the Erez-Rosen metric [28],
and the q-metric [29] (Zipoy-Voorhees metric [30,31]).
Using the metric (38), the vacuum field equations reduce to,
see, e.g., Ref. [32],

Δψ ¼ 0; ð39aÞ

∂ργ − ρð∂ρψ þ ∂zψÞð∂ρψ − ∂zψÞ ¼ 0; ð39bÞ

∂zγ − 2ρ∂ρψ∂zψ ¼ 0: ð39cÞ

The metric function γ can be obtained by integration once
the Laplace Eq. (39a) for ψ has been solved. The general
solution for all static, axisymmetric, and asymptotically flat
spacetimes is given by [33]

ψ ¼
X∞
l¼0

cl
PlðcosΘÞ

Rlþ1
; ð40aÞ

γ ¼
X∞
l;i¼0

ðiþ 1Þðlþ 1Þ
iþ lþ 2

cicl

×
Plþ1ðcosΘÞPiþ1ðcosΘÞ − PlðcosΘÞPiðcosΘÞ

Rlþiþ2
;

ð40bÞ

where R2 ¼ ρ2 þ z2 and cosΘ ¼ z=R. The PlðcosΘÞ are
Legendre polynomials of degree l, and cl are constant
expansion coefficients, sometimes called Weyl multipoles.
The relativistic geoid is defined by the level sets of the

time-independent redshift potential for observers that form
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an isometric congruence. Hence, their 4-velocity field u is
proportional to a timelike Killing vector field ξ as given by
Eq. (36). The relativistic potential ϕ is related to this Killing
vector field by Eq. (17).
For the spacetime with line element (38), we have two

linearly independent Killing vector fields, ∂t and ∂φ. Note
that any linear combination of these two Killing vector
fields with constant coefficients is again a Killing vector
field. We consider (I) the nonrotating congruence with
worldlines that are integral curves of the timelike Killing
vector field ∂t and (II) a rotating congruence with world-
lines that are integral curves of ∂t þΩ∂φ, with some
Ω ∈ R. Note that the latter congruence is timelike only
on a cylindrical domain about the symmetry axis; on the
boundary of this domain, it becomes lightlike, and farther
away from the axis, it is spacelike. The bigger the Ω, the
smaller the domain on which the congruence is timelike.
Here, Ω has the dimension of an inverse time, i.e., the
dimension of a frequency.
The first congruence, I, is associated with observers of

which the spatial Weyl coordinates ðρ;φ; zÞ remain fixed;
we can think of them as being attached to the surface of a
“nonrotating Earth.” The second congruence, II, can be
associated with observers attached to the surface of a
“rotating Earth” where Ω is the angular velocity. As the
metric is static, the gravitomagnetic field of the Earth is not
taken into account. In the following, all quantities related to
the first congruence, I, will be denoted by the subscript
ð·Þstat, while all quantities related to the second congruence,
II, will be denoted by the subscript ð·Þrot. We obtain,
respectively,

c2e2ϕstat ¼ −gð∂t; ∂tÞ ¼ c2e2ψ ; ð41aÞ

c2e2ϕrot ¼ −gð∂t þΩ∂φ; ∂t þΩ∂φÞ
¼ c2e2ψ −Ω2ρ2e−2ψ : ð41bÞ

The isochronometric surfaces for the respective congruence
are defined by the level sets of ϕ. Therefore, we obtain

e2ϕstat ¼ constant⇔e2ψ ¼ constant; ð42aÞ

e2ϕrot ¼ constant⇔e2ψ −
Ω2

c2
ρ2e−2ψ ¼ constant: ð42bÞ

The relativistic geoid is one of these isochronometric
surfaces, where the constant has to be chosen by a
convention. Inserting the expansion (40a) gives the geoid
in terms of the expansion coefficients cl. However, this
representation gives little insight into the geometry and the
physical situation at hand: already for the simplest member
of the Weyl class, the Schwarzschild spacetime, the
coefficients must be chosen in a complicated way, such
that the series (40a) converges to

ψ ¼ 1

2
log

�
rþ þ r− − 2m
rþ þ r− þ 2m

�
;

r2� ≔ ρ2 þ ðz�mÞ2: ð43Þ

The Schwarzschild metric in its usual form follows after the
coordinate transformation

r
m
− 1 ≔

rþ þ r−
2m

; cos ϑ ≔
rþ − r−
2m

: ð44Þ

To obtain more physical insight, we introduce spheroidal
coordinates ðx; yÞ by the coordinate transformation [32]

ρ2 ≕ m2ðx2 − 1Þð1 − y2Þ; z ≕ mxy; ð45Þ

which is equivalent to

x ≔ r=m − 1; y ≔ cosϑ: ð46Þ
This yields the Weyl metric (38) in spheroidal coordinates,

gμνdxμdxν ¼ −e2ψc2dt2 þm2e−2ψðx2 − 1Þð1 − y2Þdφ2

þm2e−2ψe2γðx2 − y2Þ
�

dx2

x2 − 1
þ dy2

1 − y2

�
:

ð47Þ

In these coordinates, the relativistic potentials are,
respectively,

e2ϕstat ¼ e2ψ ; ð48aÞ

e2ϕrot ¼ e2ψ −
Ω2

c2
m2e−2ψðx2 − 1Þð1 − y2Þ: ð48bÞ

The isochronometric surfaces and, thus, the geoid in
these coordinates are, again, described by the respective
level sets.
The vacuum field equation in the new coordinates can be

found, e.g., in Refs. [32,33]. In Ref. [32], Quevedo has
shown that the general asymptotically flat solution, with
elementary flatness on the axis, in these coordinates is
given by

ψ ¼
X∞
l¼0

ð−1Þlþ1qlQlðxÞPlðyÞ; ð49Þ

where the Ql are the Legendre functions of the second kind
as given in Ref. [34]. The coefficients ql can be related to
the cl in Eq. (40a). Moreover, we will discuss in the next
section how the ql are related to the relativistic multipole
moments of the spacetime and, at the same time, to
multipole moments of the Newtonian potential in the weak
field limit. For the relativistic moments, we use those
defined by Geroch and Hansen [35,36].
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In the representation (49), the Schwarzschild solution is
obtained by simply choosing q0 ¼ 1 and ql ¼ 0 for all
l > 0; see Sec. V D 1 below. For this choice of q0, the
parameter m in (44) is the usual mass parameter of the
Schwarzschild solution, related to the Schwarzschild
radius rs ¼ 2m.

B. Newtonian limit

Ehlers [37] gave a definition of the Newtonian limit that
also yields a definition of the Newtonian multipole
moments. For a Weyl spacetime, one has to assume that
the potential ψ depends on the parameter λ ¼ 1=c2. The
Newtonian potential is then given by the limit

Uðρ; zÞ ¼ lim
λ→0

1

λ
ψðρ; z; λÞ: ð50Þ

Keeping the canonical coordinates ρ and z fixed during the
limit procedure is motivated by the fact that, with respect to
these cylindrical coordinates, ψ satisfies the Laplace
equation, which is supposed to hold also in the limit for
the Newtonian potential U.
It is then inevitable to assume that the coordinates ðx; yÞ

depend on λ. This becomes clear if we consider the
Schwarzschild case by choosing q0 ¼ 1 and ql ¼ 0 for
all l > 0. We see that the Newtonian limit leads to the
potential

U ¼ −
GM
R

; R2 ¼ ρ2 þ z2; ð51Þ

if the parameter m depends on λ according to

m ¼ GM=c2 ¼ GMλ; ð52Þ

where G and M are, of course, independent of λ. Inserting
Eq. (52) into Eq. (47) clarifies how x and y depend on λ.
Performing the limit (50) of the expansion (49) as was

done in Ref. [32],1 we have to calculate

U ¼ lim
λ→0

1

λ

X∞
l¼0

ð−1Þlþ1qlQl

�
rþ þ r−
2λGM

�
Pl

�
rþ − r−
2λGM

�
:

ð53Þ

For the coordinates x and y, expressed in terms of ρ and z,
we calculate the limits

lim
λ→0

x ¼ lim
λ→0

rþ þ r−
2λGM

¼ ∞; ð54aÞ

lim
λ→0

y ¼ lim
λ→0

rþ − r−
2λGM

¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p : ð54bÞ

Using the fact that the Legendre polynomials are continu-
ous, we obtain

lim
λ→0

PlðyÞ ¼ Pl

�
lim
λ→0

y

�
¼ Pl

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

�
: ð55Þ

As the limit λ → 0 is equivalent to x → ∞, we expand
QlðxÞ in powers of 1=x [32,34],

QlðxÞ ¼ Ql

�
rþ þ r−
2λGM

�
¼

X∞
k¼0

bllþ2kþ1

�
2λGM
rþ þ r−

�
lþ2kþ1

;

ð56Þ

where

bllþ2kþ1 ¼
ðlþ 2k − 1Þðlþ 2kÞ
2kð2lþ 2kþ 1Þ bllþ2k−1; ð57aÞ

bllþ1 ¼
l!

ð2lþ 1Þ!! : ð57bÞ

The limit of each summand of Eq. (53) exists and is
finite. Absolute convergence allows us to interchange the
sum and the limit [38]. We insert the series expansion for
QlðxÞ and calculate the remaining limit

U ¼
X∞
l¼0

ð−1Þlþ1Pl

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

�
lim
λ→0

1

λ
qlQl

�
rþ þ r−
2λGM

�

¼
X∞
l¼0

ð−1Þlþ1Pl

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

�

× lim
λ→0

1

λ
ql
X∞
k¼0

bllþ2kþ1

�
2λGM
rþ þ r−

�
lþ2kþ1

: ð58Þ

This limit exists and is nonzero if the dimensionless
coefficients ql are of the form [32]

ql ¼ ðG=c2Þ−lq̄l ð59Þ

with new coefficients q̄l that are independent of λ and
have dimension ½q̄l� ¼ ðm=kgÞl. Then, only the k ¼ 0
term in (58) gives a nonzero limit. We finally obtain the
Newtonian potential

1We perform the calculation here again, because in Ref. [32],
there are some minor errors in the limit procedure.
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U ¼
X∞
l¼0

ð−1Þlþ1bllþ1Pl

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

�

× lim
λ→0

qlλl
�

2GM
rþ þ r−

�
lþ1

¼ G
X∞
l¼0

ð−1Þlþ1bllþ1q̄lM
lþ1Pl

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

�

× lim
λ→0

�
2

rþ þ r−

�
lþ1

¼ −G
X∞
l¼0

ð−1Þl l!
ð2lþ 1Þ!! q̄lM

lþ1
PlðcosΘÞ

Rlþ1
; ð60Þ

where

cosΘ ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p ; R2 ¼ ρ2 þ z2: ð61Þ

C. Multipole moments

If we compare Eq. (60) with Eq. (6) for the Newtonian
multipole moments Nl in the axisymmetric case, we see
that

Nl ¼ ð−1Þl l!
ð2lþ 1Þ!! q̄lM

lþ1: ð62Þ

Choosing q0 ¼ q̄0 ¼ 1, we identify M as the total mass of
the source (in kg) that gives the monopole moment
N0 ¼ M. A dipole moment can always be made to vanish
by transforming the origin of the coordinate system into the
center of mass. The quadrupole moment is given by
N2 ¼ −2=15q̄2M3. The lth-order multipole moment has
the dimension ½Nl� ¼ kgml such that for each moment Nl

we get ½Nl=N0� ¼ ml.
From this identification, we deduce that the parameters

q̄l, which are independent of λ, determine the Newtonian
moments of the gravitating source of which the exterior we
describe by the metric (47). On the other hand, the
parameters q̄l also determine the relativistic Geroch-
Hansen moments Rl uniquely. The latter, which depend
of course on λ ¼ c−2, can be written in the form

Rl ¼ Nl þ Cl; ð63Þ

as a sum of the Newtonian moments and relativistic
corrections Cl, where the Cl can be calculated exactly,
i.e., with no approximation involved. Following Quevedo
[32], we obtain

C0 ¼ C1 ¼ C2 ¼ 0; ð64aÞ

C3 ¼ −
2

5
m2N1; ð64bÞ

C4 ¼ −
2

7
m2N2 −

6

7
m

G
c2

N2
1: ð64cÞ

In general, the correction terms Cl are of the form
Cl ¼ ClðNl−2; Nl−3;…; N0Þ. The octupole correction C3

can be made to vanish by transforming away the Newtonian
dipole. Then, a difference between the relativistic and the
Newtonian multipole moments occurs for the first time at
the 16-pole moment R4, which is a surprising result that
was first derived in Ref. [32].

D. Examples

In this section, we apply our definition of the relativistic
geoid to particular axisymmetric and static vacuum sol-
utions to the Einstein field equation. We choose three
examples, all of which are asymptotically flat: the
Schwarzschild metric, the Erez-Rosen metric, and the q
metric (Zipoy-Vorhees metric).

1. Monopole: Schwarzschild metric

Choosing q0 ¼ 1, ql ¼ 0 for all l > 0 in the expansion
(49), we obtain a spacetime which possesses only a monop-
ole moment R0 ¼ M, and the metric functions become

ψ ¼ 1

2
log

�
x − 1

xþ 1

�
; γ ¼ 1

2
log

�
x2 − 1

x2 − y2

�
: ð65Þ

The relativistic potential ϕ in this spacetime is given by
Eqs. (41) and (48) for the two different congruences,
respectively. We obtain

e2ϕstat ¼
�
x − 1

xþ 1

�
; ð66aÞ

e2ϕrot ¼
�
x − 1

xþ 1

�
−
Ω2

c2
m2ðxþ 1Þ2ð1 − y2Þ: ð66bÞ

The metric (47) then yields the well-known Schwarzschild
metric after the coordinate transformation x ¼ r=m − 1 and
y ¼ cosϑ:

g ¼ −
�
1 −

2m
r

�
c2dt2 þ

�
1 −

2m
r

�
−1
dr2

þ r2dϑ2 þ r2sin2ϑdφ2: ð67Þ

Hence, the relativistic potential for static and rotating
observers becomes, respectively,

e2ϕstat ¼
�
1 −

2m
r

�
; ð68aÞ

e2ϕrot ¼
�
1 −

2m
r

�
−
Ω2

c2
r2sin2ϑ: ð68bÞ
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Their equipotential surfaces determine the isochronometric
surfaces

e2ϕstat ¼ constant⇔r ¼ constant; ð69aÞ

e2ϕrot ¼ constant

⇔

�
1 −

2m
r

�
−
Ω2

c2
r2sin2ϑ ¼ constant; ð69bÞ

one of which is the relativistic geoid in this spacetime.
Figure 3(a) shows the level sets of the relativistic potential
for both cases in a coordinate contour plot.
We now compare the relativistic geoid defined by

Eq. (69b) with its Newtonian analog. For the Newtonian
potential U ¼ −GM=R of a spherically symmetric mass
distribution, the geoid is defined by an equipotential
surface, see Eq. (3),

W ¼ −
GM
R

−
1

2
Ω2R2 sin2 ϑ ¼ W0 ¼ constant: ð70Þ

Using the relation m ¼ GM=c2, we get from (69b) the
condition for the relativistic geoid,

1þ 2

c2

�
−
GM
r

−
1

2
Ω2r2sin2ϑ

�
¼ constant: ð71Þ

Hence, the term in brackets must be constant. This is,
formally, the same result as for the nonrelativistic geoid
(70). Of course, the Newtonian geoid is defined in a flat
geometry, while the spatial part of the Schwarzschild metric
is not flat. Therefore, the intrinsic geometry of a surface in
the Schwarzschild geometry is in general different from
that of a surface with the same coordinate representation
in flat space. However, as the spheres r ¼ r0 in the

Schwarzschild geometry have area 4πr20, the intrinsic
geometry of the Schwarzschild geoid for the nonrotating
observers is the same as that of the corresponding
Newtonian geoid.
In Figs. 6 and 7 in the bottom row on the right, we show

an isometric embedding into Euclidean space R3 of the
isochronometric surfaces as seen by the rotating observers.
This isometric embedding reveals the intrinsic geometry of
these surfaces; close to the source the surfaces are
“squashed spheres,” whereas farther away, they deform
into cylinders due to the increasing influence of the rotation
term that is proportional to r2; see Eq. (68b). For details on
the embedding procedure, we refer to Appendix A.

2. Quadrupole I: Erez-Rosen metric

Choosing q0 ¼ 1, q1 ¼ 0, q2 ≠ 0, and ql ¼ 0 for all
l > 2, we obtain a metric that possesses a monopole
moment R0 ¼ M and, additionally, an independent quadru-
pole moment

R2 ¼
2

15
q̄2M3: ð72Þ

The metric functions ψ and γ in Eq. (47) become

2ψ ¼ log

�
x − 1

xþ 1

�
þ q2ð3y2 − 1Þ

�ð3x2 − 1Þ
4

× log

�
x − 1

xþ 1

�
þ 3

2
x

�
; ð73Þ

and

γ ¼ 1

2
ð1þ q2Þ2 log

�
x2 − 1

x2 − y2

�

−
3

2
q2ð1 − y2Þ

�
x log

�
x − 1

xþ 1

�
þ 2

�
þ 9

16
q22ð1 − y2Þ

×

�
x2 þ 4y2 − 9x2y2 −

4

3
þ x

�
x2 þ 7y2 − 9x2y2 −

5

3

�

× log

�
x − 1

xþ 1

�
þ 1

4
ðx2 − 1Þðx2 þ y2 − 9x2y2 − 1Þ

× log

�
x − 1

xþ 1

�
2
	
: ð74Þ

This metric is the vacuum solution found by Erez and
Rosen [28].2 If the quadrupole moment vanishes, q2 → 0,
we reobtain the Schwarzschild metric.
The relativistic potential for static and rotating observers

is, respectively,

I

II
III

FIG. 2. Sketch of surfaces of constant redshift potential ϕ and
optical fibers connecting them. The redshift is independent of the
spatial shape of the chosen fiber as long as the fibers are at rest
with respect to the Killing observers. The redshifts measured
using fiber I and fiber II will be identical, whereas the redshift
measured using fiber III is zero.

2As pointed out in Ref. [39], the original work by Erez and
Rosen contains some mistakes concerning numerical factors
within the expression for the metric functions. A corrected
version can be found, for example, in Ref. [39].
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FIG. 3. The level sets of the relativistic potential in a plane φ ¼ constant. (a): Level sets in the Schwarzschild spacetime for the static
congruence (left) and the rotating congruence (right). (b): Redshift potential in the Erez-Rosen spacetime and a negative quadrupole
parameter (oblate case) for the static congruence (left) and the rotating congruence (right). The pure quadrupolar contribution as
difference to the monopole contribution is shown in the middle. (c): Level sets in Kerr spacetime for the stationary congruence (left) and
the rotating congruence (right). For all plots we introduced pseudo-Cartesian coordinates ðx1; x3Þ by the usual relations to spherical
coordinates ðr; ϑÞ. In either case the dashed line is a circle in these coordinates, corresponding to r ¼ constant surfaces in the respective
spacetime.
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e2ϕstat ¼ e2ψ ¼
�
x − 1

xþ 1

�
exp



q2ð3y2 − 1Þ

�ð3x2 − 1Þ
4

× log

�
x − 1

xþ 1

�
þ 3

2
x

��
; ð75aÞ

e2ϕrot ¼ e2ϕstat −
Ω2

c2
m2ðx2 − 1Þð1 − y2Þe−2ϕstat : ð75bÞ

The isochronometric surfaces are shown in Fig. 3(b). We
also show the effect of the quadrupole term alone by
subtracting the monopole contribution, i.e., subtracting the
Schwarzschild term.
Using the coordinate transformation (46), we can switch

to the coordinates ðr; ϑÞ and obtain

e2ϕstat ¼
�
1 −

2m
r

�
exp



q2ð3cos2ϑ − 1Þ

×

��
3

4

�
r
m
− 1

�
2

−
1

4

�
log

�
1 −

2m
r

�

þ 3

2

�
r
m
− 1

�	�
; ð76aÞ

e2ϕrot ¼ e2ϕstat −
Ω2

c2
r2 sin2 ϑe−2ϕstat : ð76bÞ

Thereupon, the geoid can also be determined in terms of the
coordinates ðr; ϑÞ.
We expand expð2ϕstatÞ up to cubic order in m=r

because this is where quadrupole corrections appear.
We obtain

e2ϕstat ¼ 1 −
2m
r

−
2

15
q2m3

3cos2ϑ − 1

r3
þOðm4=r4Þ

¼ 1 −
2

c2

�
GM
r

þGMm2
2

15
q2

3cos2ϑ − 1

2r3

�

þOðm4=r4Þ

¼ 1 −
2

c2

�
GM
r

þGN2

3cos2ϑ − 1

2r3

�

þOðm4=r4Þ: ð77Þ

For

N2 ¼
2

15
Mm2q2 ¼

2

15
q̄2M3; ð78Þ

the term in brackets is the Newtonian potential of a
quadrupolar gravitational source; see Eq. (6) for
comparison.
This result shows that, indeed, the Newtonian limit

of the Erez-Rosen spacetime yields the Newtonian
gravitational potential of a source that possesses only
a monopole and a quadrupole moment. Hence, the

relativistic geoid for the Erez-Rosen spacetime in terms
of the level sets of Eq. (76) reproduces the Newtonian
expression in lowest order. Higher orders are, however,
different. Moreover, one has to keep in mind that in the
Erez-Rosen spacetime the coordinates do not have the
same geometric meaning as in the Newtonian theory.
The metric on a surface t ¼ constant and r ¼ constant is
not the usual metric on the 2-sphere S2, and r is not an
area coordinate as it was in the Schwarzschild spacetime.
We can visualize the intrinsic geometry of isochrono-
metric surfaces by isometrically embedding them into the
Euclidean space R3. These surfaces are defined by an
equation of the form

e2ϕðr;ϑÞ ¼ f0 ¼ constant: ð79Þ

The value f0 > 0 labels these surfaces. For f0 → 0,
the surface of infinite redshift for observers on integral
curves of ∂t is approached. For static spacetimes, this
surface is a horizon. The relevant equations for con-
structing the embeddings are given in Appendix A. For
the Schwarzschild spacetime, the embedding yields stan-
dard spheres in R3 for the congruence on integral curves
of ∂t, and for the congruence on integral curves of
∂t þ Ω∂φ, the embedding yields deformed spheres close
to the horizon and deformed cylinders further away,
cf. Figs. 6 and 7 on the right in the bottom row.
For the Erez-Rosen spacetime, we have to consider

two different signs of the quadrupole parameter. Hence,
the embedded surfaces are either prolate or oblate; see the
middle rows of Figs. 4–7. We see that the isochrono-
metric surfaces in the Erez-Rosen spacetime for negative
quadrupole parameter develop “bulges” around the poles
close to the horizon. Farther away, the embedded surfaces
become oblate or prolate squashed spheres. With nonzero
rotation, the embedded surfaces deform into cylinders
farther away from the source, analogously to the rotating
Schwarzschild case.

3. Quadrupole II: q metric

Another example of a two-parameter family of metrics
that is actually the simplest generalization of the
Schwarzschild metric is the q metric [29,40–43]. The q
metric, as constructed by Quevedo, is obtained by a Zipoy-
Voorhees transformation of the Schwarzschild solution.
Zipoy [30] and Voorhees [31] considered such solutions
of the vacuum field equation in their papers. A similar
transformation was also used before in the work of Bach
(andWeyl) [44]. For a discussion of the Zipoy-Voorhees (q)
metric, we refer the reader to, e.g., the book by Griffiths and
Podolský [45].
The q metric possesses independent monopole and

quadrupole moments, and all higher multipole moments
are determined by these two. The metric functions read
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e2ψ ¼
�
x − 1

xþ 1

�
1þq

; e2γ ¼
�
x2 − 1

x2 − y2

�ð1þqÞ2
: ð80Þ

The relativistic monopole and quadrupole moments of
this spacetime are given by R0 ¼ ð1þ qÞM and R2 ¼
−Mm2qð1þ qÞð2þ qÞ=3 [42]. The limit q → 0 yields the
Schwarzschild metric. The relativistic potential for static
and rotating observers is, respectively,

e2ϕstat ¼
�
x − 1

xþ 1

�
1þq

; ð81aÞ

e2ϕrot ¼
�
x − 1

xþ 1

�
1þq

−
Ω2

c2
m2

�
x − 1

xþ 1

�
−ð1þqÞ

× ðx2 − 1Þð1 − y2Þ: ð81bÞ

With the coordinate transformation (46), the equations that
define the isochronometric surfaces read

e2ϕstat ¼
�
1 −

2m
r

�
1þq

; ð82aÞ

e2ϕrot ¼
�
1 −

2m
r

�
1þq

−
Ω2

c2

�
1 −

2m
r

�
−q
r2sin2ϑ: ð82bÞ

Even though the level sets of the redshift potential ϕstat
coincide with the surfaces x ¼ constant and thus with
the surfaces r ¼ constant, this does not mean that the
geoid is spherically symmetric. The metric on the surfaces
t ¼ constant and r ¼ constant is not the usual metric on the
S2, and r is not an area coordinate as it was in the
Schwarzschild spacetime. To put this into geometrical
terms, one can use the relativistic flattening [46] that
measures the deviation from spherical symmetry

f ≔ 1 −
Cϑ

Cφ
; ð83Þ

whereCϑ andCφ are the circumferences, measured with the
metric, of circles at r ¼ r0 in the ϑ direction (polar circles)
and φ direction (azimuthal circles), respectively. The
circumference Cφ is measured in the equatorial plane
ϑ ¼ π=2, whereas for Cϑ, the azimuthal angle φ is arbitrary
due to the symmetry. For the Schwarzschild spacetime, this
flattening is zero, whereas for the q metric, we obtain

f ¼ 1 − ðx2 − 1Þq2ð2þqÞ

× x−qð2þqÞ
2F1

�
1

2
;
1

2
qð2þ qÞ; 1; 1=x2

�
: ð84Þ

Here, 2F1 is one of the hypergeometric functions. In the
limits r → ∞ and q → 0, the flattening becomes zero. For a
positive q, the flattening is positive, and the surfaces x ¼
constant are oblate, because circles in the φ direction are
larger. For a negative value of q, these surfaces are prolate.

As for the Erez-Rosen metric, we may also visualize the
isochronometric surfaces of the q metric by isometrically
embedding them into the Euclidean space R3. The result is
shown in the top rows of Figs. 4–7. Again, we refer to
Appendix A for details about the construction of the
embeddings. As for the Erez-Rosen metric, we have two
different signs of the quadrupole parameter. Hence, the
embedded surfaces are either oblate or prolate as can be
seen in the plots. However, in contrast to the Erez-Rosen
metric, the isochronometric surfaces do not develop bulges
near the poles in the oblate case; see Fig. 5 in the top row on
the left. For the rotating case, the embedding yields
cylinders farther away from the source, and the results
are qualitatively similar to those obtained for the
Schwarzschild and Erez-Rosen cases.

VI. AXISYMMETRIC STATIONARY SPACETIMES

A. Axisymmetric stationary solutions to Einstein’s
vacuum field equation

All axisymmetric and stationary solutions to Einstein’s
vacuum field equation can be transformed into the Weyl-
Lewis-Papapetrou form. Here, we use spheroidal coordi-
nates since they have proven to be useful in the last section.
The metric in these coordinates reads

g ¼ −e2ψðcdtþ ωdφÞ2 þ e−2ψσ2
�
e2γðx2 − y2Þ

×

�
dx2

x2 − 1
þ dy2

1 − y2

�
þ ðx2 − 1Þð1 − y2Þdφ2

	
; ð85Þ

where ψ , γ, and ω are functions of x and y while σ is a
constant. Defining the complex Ernst potential

E ≔ e2ψ þ iΣ; ϵ ≔
1 − E
1þ E

; ð86Þ

where Σ is given by

σðx2 − 1Þ∂xΣ ¼ −e4ψ∂yω; ð87aÞ

σð1 − y2Þ∂yΣ ¼ e4ψ∂xω; ð87bÞ

reduces the vacuum field equation to a complex equation
for the Ernst potential, which can be found, for example,
in Ref. [42]. For static spacetimes, the Ernst potential
becomes real, and the formalism of Sec. VA may be used
for constructing solutions. We again construct the relativ-
istic potentials

e2ϕstat ¼ e2ψ ; ð88aÞ

e2ϕrot ¼ e2ψ þ 2
Ω
c
ωe2ψ −

Ω2

c2
½e−2ψσ2ðx2 − 1Þð1 − y2Þ

−ω2e2ψ �; ð88bÞ
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for the Killing vector fields ∂t and ∂t þΩ∂φ. The relativ-
istic potential ϕrot is now defined by the metric function ψ
and the twist potential ω, leading to gravitomagnetic
contributions.
A simple solution to the Ernst equation for ω ¼ 0 is

ξ ¼ 1=x. This yields the Schwarzschild solution in sphe-
roidal coordinates, which we considered in the last section.

B. Example: Kerr spacetime

The best known and most important stationary and
axisymmetric solution to Einstein’s vacuum field equation
is the Kerr metric. In this case, the Ernst potential depends
on the mass parameter m and the spin parameter a,

ϵ−1 ¼ σ

m
xþ i

a
m
y; σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
; ð89Þ

and the metric functions in the Weyl-Lewis-Papapetrou
representation become

e2ψ ¼ σ2x2 þ a2y2 −m2

ðσxþmÞ2 þ a2y2
; ð90aÞ

ω ¼ 2amðσxþmÞð1 − y2Þ
σ2x2 þ a2y2 −m2

; ð90bÞ

γ ¼ 1

2
log

�
σ2x2 þ a2y2 −m2

σ2ðx2 − y2Þ
�
: ð90cÞ

After the coordinate transformation

σx ¼ r −m; y ¼ cosϑ; ð91Þ

we obtain the Kerr metric in its well-known form given in
Boyer-Lindquist coordinates ðt; r; ϑ;φÞ,

g ¼ −
�
1 −

2mr
ρ2

�
c2dt2 þ ρ2

Δ
dr2 þ ρ2dϑ2

þ sin2ϑ

�
r2 þ a2 þ 2mra2sin2ϑ

ρ2

�
dφ2

−
4mrasin2ϑ

ρ2
cdtdφ; ð92Þ

where

ρ2 ¼ r2þa2cos2ϑ; Δ¼ r2þa2− 2mr: ð93Þ
The relativistic potential for the congruence of Killing
observers on integral curves of ∂t is now given by

e2ϕstat ¼ 1 −
2mr
ρ2

¼ 1 −
2mr

r2 þ a2cos2ϑ
: ð94Þ

For Killing observers on a rotating congruence, i.e., on
integral curves of ∂t þ Ω∂φ with Ω ≠ 0, the relativistic
potential ϕ satisfies

e2ϕrot ¼ 1 −
2mr

r2 þ a2 cos2 ϑ
þ 4

Ω
c

amr sin2 ϑ
ðr2 þ a2 cos2 ϑÞ

−
Ω2

c2
sin2 ϑ

�
r2 þ a2 þ 2mra2 sin2 ϑ

r2 þ a2 cos2 ϑ

�
: ð95Þ

In either case, for any two observers within such a
congruence at positions ðr; ϑÞ and ð~r; ~ϑÞ, respectively,
the redshift is

1þ z ¼ ν

~ν
¼ eϕð~r; ~ϑÞ

eϕðr;ϑÞ
: ð96Þ

Figure 3(c) shows a contour plot of the functions
expð2ϕstatÞ and expð2ϕrotÞ in pseudo-Cartesian coordinates.
To infer more about the intrinsic geometry of the iso-
chronometric surfaces Figs. 4–7 show their isometric
embeddings into Euclidean 3-space. The embedding of
the surface expð2ϕstatÞ ¼ f0 exists for all 0 < f0 < 1 and
all values of a=m. In the limit f0 → 0, the isochronometric
surfaces approach the ergosurface, i.e., the boundary of the
ergoregion. An isometric embedding of the ergosurface was
first discussed by Sharp [47]. It is known that the ergosur-
face starts to develop bulges around the poles if a2

approaches its extremal value m2; for a picture, see
Pelavas [48]. Our plots show a similar behavior of the
isochronometric surfaces near the ergosurface.
As an aside, we mention that our formalism may also be

used for calculating the gravitomagnetic redshift on the
surface of the Earth if the spacetime geometry outside of
the Earth is approximated by the Kerr metric. For satellite
orbits, the gravitomagnetic redshift (or gravitomagnetic
clock effect) has been studied before; see Ref. [49] for the
case of arbitrary orbits. For clocks on the surface of the
Earth, we may use the redshift potential (95). If one clock
rotates on the equator, (r, ϑ ¼ π=2), and the other one is
situated at the north pole, (~r, ~ϑ ¼ 0), the redshift becomes

1þ z ¼ ν

~ν

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m~r

~r2þa2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r þ 4 Ω
c
am
r − Ω2

c2 ðr2 þ a2 þ 2ma2
r Þ

q : ð97Þ

Subtracting the gravitoelectric part, i.e., the same expres-
sion for a ¼ 0, the remainder gives the gravitomagnetic
redshift between these two clocks. Inserting the values for
all parameters leads to a gravitomagnetic redshift of3

zgrav:magn: ∼ 10−21; ð98Þ

3For the calculation, we used the following values for the
Earth: m ¼ 0.0044 m, a ¼ 743m ¼ 3.3 m, Ω ¼ 2π=86400 s,
equatorial radius r ¼ 6378.137 km, and polar radius ~r ¼
6356.752 km.
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which is about 3 orders of magnitude away from contem-
porary precision but might be measured in the foreseeable
future with further improved clocks.

VII. POST-NEWTONIAN APPROXIMATION
OF THE GEOID

In this section, we consider the PN approximation of the
relativistic geoid, and we demonstrate that, indeed, the
familiar expression is reproduced at the 1PN level.
According to the most recent resolution of the

International Astronomical Union (IAU), see, e.g.,
Refs. [50,51], the PN approximation of the metric of the
Earth in geocentric coordinates ðcT; XiÞ and under the
assumption of stationarity reads

g00 ¼ −
�
1 −

2U
c2

þ 2U2

c4

�
þOðc6Þ; ð99aÞ

g0i ¼ −
4Ui

c3
þOðc5Þ; ð99bÞ

gij ¼ δij

�
1þ 2U

c2

�
þOðc4Þ; ð99cÞ

where the potentials U, Ui fulfill the equations

ΔUðXÞ ¼ −4πGρðXÞ; ð100aÞ

ΔUiðXÞ ¼ −4πGρiðXÞ: ð100bÞ

The quantities ρ; ρi are related to the energy-momentum
tensor of the Earth by ρ ¼ ðT00 þ TiiÞ=c2 and ρi ¼ T0i=c,
evaluated in the Geocentric Celestial Reference System.
For the scalar and vector potentials, one obtains

UðXÞ ¼ G
Z

d3X0 ρðX0Þ
jX −X0j ; ð101aÞ

UiðXÞ ¼ G
Z

d3X0 ρiðX0Þ
jX −X0j : ð101bÞ

Changing to corotating geocentric coordinates ðcT̄; X̄iÞ, the
metric becomes [5]

g00 ¼ −
�
1 −

2U
c2

þ 2U2

c4

�
þΩ2ðX̄2 þ Ȳ2Þ=c2; ð102aÞ

g0i ¼ L − X̄ ×Ω=c; ð102bÞ

gij ¼ δij

�
1þ 2U

c2

�
; ð102cÞ

where

L ¼ −2G
J × X̄
c3R3

; ð103Þ

andΩ, J are the angular velocity and angular momentum of
the Earth. We use the usual three-vector notation only as a
shorthand notation. The vector field ∂ T̄ is a Killing vector
field of the spacetime (102). Observers on the Earth’s
surface move on its integral curves since for them dX̄i ¼ 0.
These observers form an isometric congruence. The cor-
responding relativistic potential ϕPN is given by

e2ϕPN ¼−g00 ¼ 1−
2U
c2

þ 2U2

c4
−Ω2ðX̄2þ Ȳ2Þ=c2: ð104Þ

The defining condition for the relativistic geoid as a level
set of the relativistic potential ϕPN yields

U þ 1

2
Ω2ðX̄2 þ Ȳ2Þ −U2

c2
¼ constant; ð105Þ

which is exactly the expression given by Soffel et al. in
Ref. [5]; see their Eq. (4). The first two terms reproduce the
classical definition of the Newtonian geoid, whereas the
last term adds a relativistic correction at the 1PN level.

VIII. CONCLUSION

In this work, we have generalized the Newtonian and
post-Newtonian definitions of the geoid to a fully general
relativistic setting. As this definition is not restricted to
weak gravitational fields, it makes sense not only for the
Earth and other planets but also for compact objects such as
neutron stars. Just as the former definitions of the geoid, our
definition is based on the assumption that the Earth rotates
rigidly with constant angular velocity about a fixed axis.
Under this assumption, the Earth is associated with an
isometric congruence of worldlines, i.e., with a family of
Killing observers. We have defined the geoid in terms of
isochronometric surfaces that are the level sets of the
redshift potential for this isometric observer congruence.
As the isochronometric surfaces may be realized with
networks of standard clocks that are connected by fiber
links, this is an operational definition of the geoid.
While we consider the definition of the geoid in terms of

clocks as primary, we have also emphasized that the
redshift potential associated with an isometric congruence
is, at the same time, an acceleration potential. This
observation generalizes the equality of the u- and a-geoids,
which was known to hold in a PN setting, into the full
formalism of general relativity.
In practical geodesy, our stationary gravitational field is

the time average of the real gravitational field of the Earth.
The real gravitational field of the Earth contains time-
dependent parts which have to be treated through, e.g., an
appropriate reduction. Here, we focus on the correct and
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fully relativistic definition of the geoid without time
dependence.
We have illustrated our definition of the geoid by

calculating the isochronometric surfaces of axisymmetric
and static spacetimes, with the Schwarzschild metric, the
Erez-Rosen metric, and the qmetric as particular examples.
We have then considered the case of axisymmetric and
stationary spacetimes, with the Kerr metric as a particular
example. As the shape of the isochronometric surfaces in a
chosen coordinate system has no invariant meaning, we
have isometrically embedded these surfaces into Euclidean
3-space to show their intrinsic geometry. As an aside, we
have mentioned that the redshift potential for rotating
observers in the Kerr metric may be used for estimating
the gravitomagnetic redshift for clocks on the surface of
the Earth.
Finally, we have derived the redshift potential and the

relativistic geoid in a 1PN spacetime and recovered the
previously known result.
An important task for the future is to express the geoid of

a rotating and nonaxisymmetric body in terms of multipole
moments. This is conceptually challenging because in this
case the spacetime is not stationary near infinity; the Killing
vector field associated with the rotating body becomes
spacelike outside of a cylindrical region about the rotation
axis. For this reason, the time-independent asymptotically
defined Geroch-Hansen multipole moments do not exist. In
future work, we are planning to tackle the question of
how local measurements in the neighborhood of a gravi-
tating body are to be related to appropriately defined
multipole moments in a relativistic formalism without
approximations.
We emphasize again that our formalism is valid for

stationary nonaxisymmetric objects as well, as long as the
backreaction from gravitational radiation and the resulting
slowdown of the rotation can be ignored. In this sense, our
geoid can be constructed for any irregularly shaped rotat-
ing body.
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APPENDIX A: ISOMETRIC EMBEDDING
OF ISOCHRONOMETRIC SURFACES

As the coordinate representation of the geoid has no
invariant geometric meaning, it is recommendable to
isometrically embed the isochronometric surfaces into
Euclidean 3-space. If such an embedding is possible, it
represents the intrinsic geometry of the geoid.
In all examples that we considered in this paper, the

geoid was defined by the level sets of a function

fðx; yÞ ¼ f0 ¼ constant; ðA1Þ

where x and y are spheroidal coordinates. As an alternative,
we may use the coordinates ðr; ϑÞ, which are related to
ðx; yÞ by the coordinate transformation x ¼ r=m − 1,
y ¼ cosϑ; see Eq. (46).
On the two-dimensional surface defined by (A1), we

must have

0 ¼ df ¼ ∂xfðx; yÞdxþ ∂yfðx; yÞdy; ðA2Þ

hence,

dx2 ¼
�∂yfðx; yÞ
∂xfðx; yÞ

�
2

dy2: ðA3Þ

As a consequence, the two-dimensional Riemannian metric
on the surface f ¼ f0 is

gð2Þ ¼
�
gxxðx; yÞ

�∂yfðx; yÞ
∂xfðx; yÞ

�
2

þ gyy

	
dy2

þ gφφðx; yÞdφ2: ðA4Þ

We want to isometrically embed this surface into
Euclidean 3-space with cylindrical coordinates ðζ;φ; hÞ,

gð3ÞE ¼ dh2 þ dζ2 þ ζ2dφ2: ðA5Þ

The embedding functions hðyÞ and ζðyÞ are to be
determined from the equation

�
gxxðx; yÞ

�∂yfðx; yÞ
∂xfðx; yÞ

�
2

þ gyy

	
dy2 þ gφφðx; yÞdφ2

¼ ðh0ðyÞ2 þ ζ0ðyÞ2Þdy2 þ ζðyÞ2dφ2: ðA6Þ

If Eq. (A1) can be explicitly solved for x ¼ xðyÞ, we may
insert this expression into (A6). Comparing coefficients
results in

ζðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gφφðx; yÞ

q ����
x¼xðyÞ

; ðA7aÞ
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hðyÞ ¼ �
Z

y

0

dy

�
gxxðx; yÞ

�∂yfðx; yÞ
∂xfðx; yÞ

�
2

þ gyyðx; yÞ

−
g0φφðx; yÞ2
4gφφðx; yÞ

�
1=2

x¼xðyÞ
: ðA7bÞ

In Eq. (A7b), the expression g0φφ, by abuse of notation, is
understood to mean that first xðyÞ is to be inserted and then
the derivativewith respect to y is to be taken. The integral in
Eq. (A7b) has to be calculated either analytically, if this is
possible, or numerically.
Equations (A7a) and (A7b) give us the cylindrical radius

coordinate ζ and the cylindrical height coordinate h in
Euclidean 3-space as functions of the parameter y of which
the allowed range is given by y ∈ ½−1; 1�, corresponding to
ϑ ∈ ½0; π�. In this way, we get a meridional section of the
embedded surface in parametrized form; by letting this
figure rotate about the axis ζ ¼ 0, we get the entire
embedded surface. The embedding is possible near all y
values for which

gxxðx; yÞ
�∂yfðx; yÞ
∂xfðx; yÞ

�
2

þ gyyðx; yÞ >
g0φφðx; yÞ2
4gφφðx; yÞ

: ðA8Þ

If this condition is violated, the surface cannot be isomet-
rically embedded into Euclidean 3-space, which means that
its intrinsic geometry is hard to visualize.
This direct construction of the embedded surface in

parametrized form is possible if Eq. (A1) can be explicitly
solved for x ¼ xðyÞ. If this cannot be done, we have at least

an expression for the derivative of this function, as Eq. (A2)
implies that

x0ðyÞ ¼ dx
dy

¼ −
∂yfðx; yÞ
∂xfðx; yÞ

: ðA9Þ

Using Eq. (A7b), we obtain a coupled system of ordinary
differential equations,

x0ðyÞ ¼ −
∂yfðx; yÞ
∂xfðx; yÞ

����
x¼xðyÞ

; ðA10aÞ

h0ðyÞ ¼
�
gxxðx; yÞ

�∂yfðx; yÞ
∂xfðx; yÞ

�
2

þ gyyðx; yÞ

−
g0φφðx; yÞ2
4gφφðx; yÞ

�
1=2

x¼xðyÞ
; ðA10bÞ

for the functions xðyÞ and hðyÞ, which is to be solved
numerically with initial conditions xð0Þ ¼ x0, hð0Þ ¼ 0. Of
course, this is possible only if an embedding exists. If xðyÞ
and hðyÞ have been determined, the function ζðyÞ is given
by Eq. (A7a).

APPENDIX B: CONVENTIONS AND SYMBOLS

In the following, we summarize our conventions and
collect some frequently used formulas. A directory of
symbols used throughout the text can be found in
Table I. For an arbitrary k tensor Tμ1…μk, the symmetriza-
tion and antisymmetrization are defined by

TABLE I. Directory of symbols.

Symbol Unit Explanation Symbol Unit Explanation

gμν 1 Metric M kg Mass of the central objectffiffiffiffiffiffi−gp
1 Determinant of the metric m m Mass of the central object

δμν 1 Kronecker symbol ρ kgm−3 Mass density
γ, ~γ 1 Observer worldlines G m3kg−1s−2 Newton’s gravitational constant
uμ ms−1 Observer 4-velocity c ms−1 Speed of light
aμ ms−2 Observer 4-acceleration Nl kgml Newtonian multipole moments
ϕ 1 (Redshift, acceleration) potential Rl kgml Geroch-Hansen multipole moments
ξμ ms−1 Killing vector field Cl kgml Relativistic multipole moment corrections
ψ , γ 1 Weyl’s metric functions τ, ~τ s Proper times
ωμν, ωμ s−1 Rotation (tensor, vector) ν1, ν2 s−1 Measured frequencies
σμν s−1 Shear tensor Ω s−1 Angular velocity
θ s−1 Congruence expansion Plm, Pl 1 (Associated) Legendre polynomials
E, ϵ 1 Ernst potentials Ql 1 Legendre functions of 2nd kind
Pμ
ν 1 Projection operator cl mlþ1 Series expansion coefficients

∂μ, Dμ m−1 (Partial, covariant) derivative ðql; q̄lÞ ð1; ml kg−lÞ Series expansion coefficients
D
ds ¼ “_” s−1 Total covariant derivative Cϑ, Cφ m (Polar, azimuthal) circumferences

ðr; ϑ;φÞ (m,1,1) Spherical coordinates f 1 Flattening parameter
ðx; y;φÞ 1 Spheroidal coordinates U m2 s−2 Newtonian gravitational potential
ðρ; z;φÞ (m,m,1) Canonical Weyl coordinates V m2 s−2 Centrifugal potential
ðX; Y; ZÞ m PN geocentric coordinates W m2 s−2 Total potential
ðX̄; Ȳ; Z̄Þ m PN geocentric corotating coordinates fðx; yÞ 1 Geoid embedding functions
ðζ; h;φÞ (m,m,1) Cylindrical coordinates in R3 n 1 Index of refraction
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FIG. 4. Isometric embedding of isochronometric surfaces expð2ϕstatÞ ¼ f0 into the Euclidean space R3. The relativistic geoid is by
definitionone of these surfaces. Thevalue of r0 in the plots is the intersection of the level surfacef0with the radial lines in the equatorial plane.
Upper row: q-metric results for oblate (left) and prolate (right) quadrupole configuration. Middle row: Erez-Rosen metric results for oblate
(left) and prolate (right) quadrupole configuration. Lower row:Kerrmetric results for fixeda ¼ 0.8m but different level surfaces (left) and the
same level surface close to the ergoregion but different values a ¼ ð0; 0.5m; 0.8m;mÞ. The smaller the value of r0 > 2m, the closer the level
surface is to the surface of infinite redshift for observers on integral curves of ∂t. All necessary parameters are depicted in the respective plots.
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FIG. 5. Isometric embedding of isochronometric surfaces expð2ϕstatÞ ¼ f0 into the Euclidean space R3. We show the level surfaces
in 3-dimensional plots. The level surfaces and their order correspond to those shown in Fig. 4. In the bottom row on the right
we additionally show the result for the Kerr spacetime and a ¼ 0.4m. For each plot, the innermost level surface is color coded to
depict the actual shape such that red corresponds to the farthest distance and purple corresponds to the closest distance to the origin
of R3.
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FIG. 6. Isometric embedding of isochronometric surfaces expð2ϕrotÞ ¼ f0 into the Euclidean space R3. The relativistic geoid as seen
by observers on the rotating congruence is by definition one of these surfaces. The value of r0 in the plots is the intersection of the level
surface f0 with the radial lines in the equatorial plane. Upper row: q metric results for oblate (left) and prolate (right) quadrupole
configuration. Middle row: Erez-Rosen metric results for oblate (left) and prolate (right) quadrupole configuration. Lower row: Kerr
metric results for fixed a ¼ 0.99m but different level surfaces (left) and the Schwarzschild result for a ¼ 0 (right). All necessary
parameters are depicted in the respective plots.
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FIG. 7. Isometric embedding of isochronometric surfaces expð2ϕrotÞ ¼ f0 into the Euclidean space R3. We show the level surfaces in
3-dimensional plots. The level surfaces and their order correspond to those shown in Fig. 6. For each plot, the innermost level surface is
color coded to depict the actual shape such that red corresponds to the farthest distance and purple corresponds to the closest distance to
the origin of R3.
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Tðμ1…μkÞ ≔
1

k!

Xk!
I¼1

TπIfμ1…μkg; ðB1Þ

T ½μ1…μk� ≔
1

k!

Xk!
I¼1

ð−1ÞjπI jTπIfμ1…μkg; ðB2Þ

where the sum is taken over all possible permutations
(symbolically denoted by πIfμ1…μkg) of its k indices.
The signature of the spacetime metric is assumed to be

ð−;þ;þ;þÞ. Greek indices μ; ν; λ;… are spacetime indi-
ces and take values 0…3. Latin indices i, j, k are spatial
indices and take values 1…3.
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We describe a new analytical model for the accretion of particles from a rotating and charged spherical
shell of dilute collisionless plasma onto a rotating and charged black hole. By assuming a continuous
injection of particles at the spherical shell and by treating the black hole and a featureless accretion disk
located in the equatorial plane as passive sinks of particles, we build a stationary accretion model. This may
then serve as a toy model for plasma feeding an accretion disk around a charged and rotating black hole.
Therefore, our new model is a direct generalization of the analytical accretion model introduced by
E. Tejeda, P. A. Taylor, and J. C. Miller [Mon. Not. R. Astron. Soc. 429, 925 (2013)]. We use our
generalized model to analyze the influence of a net charge of the black hole, which will in general be very
small, on the accretion of plasma. Within the assumptions of our model we demonstrate that already a
vanishingly small charge of the black hole may in general still have a non-negligible effect on the motion of
the plasma, as long as the electromagnetic field of the plasma is still negligible. Furthermore, we argue that
the inner and outer edges of the forming accretion disk strongly depend on the charge of the accreted
plasma. The resulting possible configurations of accretion disks are analyzed in detail.

DOI: 10.1103/PhysRevD.96.063015

I. INTRODUCTION

Accretion onto black holes (BHs) is a fundamental
astrophysical process as it gives rise to a large range of
astrophysical phenomenon like active galactic nuclei
(AGN), X-ray binaries, and gamma ray bursts [1,2].
To describe the full picture of BH accretion one has

to consider general relativistic magnetohydrodynamics,
including turbulences, radiation processes, nuclear burning,
and more. The simulation of accretion processes therefore
contains a number of challenging issues. It requires a large
range of scales because some important effects, like the
magnetorotational instability, only occur on very small
scales, while for the interpretation of observational phe-
nomena typically what happens on very large scales is of
interest. The computational expense rises even more and by
a large factor, if the number of dimensions which have to be
taken into account increases, say, from one dimension
(spherical model) to two (axis symmetric model) or to
three. Therefore, it is necessary to reduce the computational
costs by different methods and assumptions. The relevant
number of dimensions can be reduced (eg. assuming axis
symmetry), or the range of scales, which have to be taken
into account (eg. shearing-box simulations). Negligence of
certain aspects of the accretion process, like conduction,
viscosity, or kinetic effects, simplifies the system of
equations and leads to a reduction of the computational
costs as well.

To understand the general physical processes, analytical
models of the accretion process play a very important role.
Besides serving as initial conditions or test beds, analytical
models are indispensable to understanding the resulting
observational features of the accretion processwhich have to
be taken into account for numerical simulations. An early
work discussing observational features is byMichel [3],who
generalized in his analytical model the spherical accretion
model of Bondi [4] to the general relativistic case and gave
the first estimates for the realized temperatures and lumi-
nosities in the accretion of a polytropic gas. Furthermore, by
assuming the polytropic gas to be a plasma, estimations for
the strength of the arising electrostatic field were discussed.
This simplest case of spherical accretion, however, was

found to have a low efficiency in converting potential
energy to radiation [5], which is why the rotation of
accreted matter was invoked in accretion theories.
Rotating inflows suggest the existence of accretion disks,

introduced among others by Prendergast and Burbidge [6].
Accretion disks and the processes within are discussed
extensively in literature by introducing different (analytical)
models to describe them, such as thin disks, slimdisks, Polish
doughnuts, advection-dominated accretion flows (ADAFs),
andmore (see [7], and citations within). These accretion disk
models significantly advanced our understanding of the
accretion process, and can therefore be used to enhance
numerical simulations. They are further used to understand
specific observational results, such as the truncated disk
model, built by a truncated thin disk adjoined with an inner
ADAF-like flow [8].
Cosmic matter mainly exists in the form of plasma. It

serves as the main ingredient of stars, interstellar nebulae,
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solar wind, jets, and AGN [9,10]. Therefore, it is reasonable
to assume that the matter accreted by a massive central
object is some form of plasma. The broad range of
temperatures and densities (from < 0.01 to > 105 cm−3

in ultra compact HII regions [11,12]) in which plasma may
occur can be taken into account using different plasma
models. This includes hot and cold plasma, or plasma with
and without taking into account particle collisions (colli-
sional or collisionless plasma). The different descriptions
range from plasma described as a fluid over a kinetic theory
of plasma to a description of it as a collection of individual
particle motions [10].
Plasma accretion is also one of the reasons why in

realistic astrophysical models the net charge of the accret-
ing BH is expected to be very small. Selected accretion of
oppositely charged particles will reduce the net charge to a
very small value within a short time scale [13]. In the case
of stellar BHs this will even happen in vacuum due to pair
production [14,15]. In these scenarios the influence of the
net charge on the spacetime geometry is therefore vanish-
ingly small. However, we will show that the remaining
charge can still be strong enough to have a noticeable
influence on the motion of charged test particles. Note that
there are also accretion scenarios which may create BHs
with a net charge big enough to have influence on the
spacetime geometry [16–18].
Here, we will discuss the relativistic accretion of

plasma by a rotating BH with a (very small) net charge.
We restrict to the accretion from a rotating cloud of dust,
thereby generalizing the analytical model introduced by
Mendoza, Tejeda, and Nagel [19], Tejeda, Mendoza, and
Miller [20], and Tejeda, Taylor, and Miller [21] in a
Newtonian approach and for the Schwarzschild and Kerr
spacetimes, respectively. In these references it was shown
that this model is well suited to explore relativistic
effects, such as frame dragging, on the accretion process
and may be used in numerical simulations for collapsar-
like setups to reduce computational costs. For the model
of the plasma we restrict to a collisionless dilute plasma,
i.e. in the form of a collection of individual charged
particles. Our analytical model will help to understand
the influence of specific angular momentum and net
charge of the BH on the accretion process of charged
dust. It might also serve as a toy model for the infall of
plasma feeding an accretion disk around a charged and
rotating BH.
In General Relativity rotating and charged BHs are

described by the Kerr-Newman [22] metric, which is a
generalization of the Kerr metric. Besides an electric charge
it also allows the consideration of a magnetic net charge.
However, the existence of magnetic monopoles, in general,
was never proven and we will not consider the magnetic
charge further here.
Our analytical model necessarily simplifies the complex

physical processes involved in the accretion. In particular,

we assume stationarity, axial symmetry, and the absence of
particle interaction. As a result, pressure gradients within
the accreted plasma are neglected, as well as self gravity.
The charged particles are also assumed to only interact
with the gravitational and the electromagnetic field of the
BH, and we neglect the electromagnetic field produced by
the plasma particles itself. This will restrict the particle
density of the accreted cloud, especially in case of a central
BH with a very small net charge. Within this relativistic
model the trajectories of the individual charged particles
which form the plasma can then be analytically described,
see [21,23]. This allows us to clearly analyze effects which
are purely relativistic or caused by the interaction with the
electromagnetic field of the BH.
The paper is organized as follows. First, an introduc-

tion of the Kerr-Newman spacetime and the equations of
motion for charged test particles are given in Sec. II.
Then we explain the relativistic analytical model of
the accretion used in this paper, including restrictions
to the initial conditions in Sec. III. In Sec. IV we discuss
the accretion flow, with details on the velocity field in
locally nonrotating reference frames (LNRFs), a descrip-
tion of the streamlines in terms of Jacobi elliptic
functions, a derivation of the inner most stable orbit
(ISCO) in Kerr-Newman spacetime which corresponds to
the inner edge of an accretion disk in our model, and the
calculation of the density field formed by the accreted
matter. In Sec. V the results are summarized and
discussed. Finally, we conclude in Sec. VI.

II. EQUATIONS OF MOTION IN
KERR-NEWMAN SPACETIME

The Kerr-Newman spacetime is a stationary and axially
symmetric solution of the Einstein-Maxwell equation,
which describes a charged rotating BH [22]. It allows us
to consider both electric and magnetic net charges; how-
ever, we will not consider a magnetic charge of the BH
here. In the Boyer-Lindquist system of coordinates
ðt; r;ϕ; θÞ the Kerr-Newman metric takes the form

ds2 ¼ ρ2

Δ
dr2 þ ρ2dθ2 þ sin2ðθÞ

ρ2
½ðr2 þ a2Þdϕ − acdt�2

−
Δ
ρ2

½asin2ðθÞdϕ − cdt�2; ð1Þ

where

ρ2ðr; θÞ ¼ r2 þ a2cos2ðθÞ; ð2Þ

ΔðrÞ ¼ r2 − 2Mrþ a2 þQ2 þ P2: ð3Þ

Here the parameters M, a, and Q are related to the angular
momentum J, the mass m, and the electric charge q of the
BH by
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a ¼ J
mc

; ð4Þ

M ¼ Gm
c2

; ð5Þ

Q2 ¼ q2G
4πε0c4

; ð6Þ

where G is Newton’s gravitational constant, c is the speed
of light, and ε0 is the electric constant. The parameter P
corresponds to the magnetic monopole.
The Kerr-Newman spacetime has two horizons r�,

which are located at the coordinate singularities

ΔðrÞ ¼ 0, i.e. r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2 − P2

p
. The cur-

vature singularity is given by ρðr; θÞ ¼ 0, i.e. at simulta-
neously r ¼ 0 and θ ¼ π

2
, which corresponds to a ring

singularity. In the following we will only consider the
region of the spacetime outside the event horizon, r > rþ.
The electromagnetic potential is

A ¼ Aνdxν ¼
c2ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πε0G

p
�
Qr
ρ2

ðdt − asin2ðθÞdϕÞ

þ 1

ρ2
P cosðθÞðadt − ðr2 þ a2ÞdϕÞ

�
ð7Þ

¼ c2ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πε0G

p Āνdxν: ð8Þ

We now consider the motion of test particles with a mass
μ which is very small compared to m and a specific electric
charge parameter ê ¼ e=μ which is related to the charge ϵ
of the particle by

e ¼ ϵffiffiffiffiffiffiffiffiffiffiffiffiffi
4πε0G

p : ð9Þ

The Hamilton-Jacobi equation for such a charged particle
in Kerr-Newman spacetime is separable and leads to the
equations of motion and four separation constants.
Equivalently, one can also derive the equations of motion
directly. We first note that the Hamiltonian of a charged test
particle does not depend on ϕ, t, or proper time τ, which
can be used to obtain three constants of motion directly. We
find the four-velocity modulus, the specific energy E, and
the specific angular momentum in z direction l as

uμuμ ¼ −c2; ð10Þ

E ¼ E
μc2

¼ −g00 _t − g0ϕ
_ϕ

c
þ êĀt; ð11Þ

l ¼ L
μc

¼ gϕ0 _tþ gϕϕ
_ϕ

c
− êĀϕ; ð12Þ

where the zeroth component of the four vector is defined as
x0 ¼ ct. Here the dot denotes a differentiation with respect
to proper time τ. We may now solve Eqs. (11) and (12) for
_ϕ and _t and find the first two equations of motions. If we
introduce the Mino time λ via dλ ¼ ρ−2dτ [24], they take
the form

1

c
dϕ

dλ̄
¼ āRðr̄Þ

Δ̄ðr̄Þ −
T ðθÞ
sin2ðθÞ ; ð13Þ

dt̄

dλ̄
¼ ðr̄2 þ ā2ÞRðr̄Þ

Δ̄ðr̄Þ − āT ðθÞ; ð14Þ

where

T ðθÞ ¼ āE sin2 θ − l̄þ êP̄ cos θ; ð15Þ

Rðr̄Þ ¼ ðr̄2 þ ā2ÞE − ā l̄ − ê Q̄ r̄: ð16Þ

Here we eliminated M from the equations by using the
transformation x ¼ x̄M for x ¼ r; t; a; l; Q; P; d=dλ. By
inserting the equations for ϕ and t into Eq. (10) and by
using again the Mino time, (10) becomes separable for r
and θ and we find

K̄ ¼
�
1

c
dθ

dλ̄

�
2

þ ā2cos2θ þ T 2ðθÞ
sin2θ

¼ 1

Δ̄ðr̄Þ
�
R2ðr̄Þ −

�
1

c
dr̄
dλ̄

�
2
�
− r̄2: ð17Þ

The separation constant K ¼ K̄M2 is the fourth constant of
motion. It is connected to the Carter constant C, which
was found by Carter in 1968, by C ¼ K − ðaE − lÞ2.
Summarized, we find

1

c2

�
dθ

dλ̄

�
2

¼ K̄ − ā2cos2θ −
T 2ðθÞ
sin2θ

¼ ΘðθÞ; ð18Þ

1

c2

�
dr̄

dλ̄

�
2

¼ R2ðr̄Þ − ðr̄2 þ K̄ÞΔ̄ðr̄Þ ¼ Rðr̄Þ; ð19Þ

1

c
dϕ

dλ̄
¼ āRðr̄Þ

Δ̄ðr̄Þ −
T ðθÞ
sin2ðθÞ ; ð20Þ

dt̄

dλ̄
¼ ðr̄2 þ ā2ÞRðr̄Þ

Δ̄ðr̄Þ − āT ðθÞ: ð21Þ

In the following we will use c ¼ 1 and skip the bars
for all parameters and variables, if not explicitly noted
otherwise.
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III. THE MODEL OF ACCRETION

In the following the accretion model will be introduced
in more detail. It basically consists of three parts: (i) a
rotating and charged BH, which solely determines the
gravitational and electromagnetic field; (ii) a featureless
accretion disk, lying in the equatorial plane; and (iii) a
rotating and charged spherical shell of particles located at a
certain radius r0, which is continuously fed with new
particles. A sketch of the model is given in Fig. 1.
The cloud of particles The particle cloud is assumed to

form a plasma (if charged) and to be sufficiently dilute,
such that particle collisions can be neglected, and the
electromagnetic field of the particle cloud is negligible
compared to the field of the BH. This leads to a ballistic
accretion flow and a collisionless plasma. Furthermore, we
assume that the electromagnetic and gravitational field
formed by the plasma can be neglected compared to the
field of the central BH. In this case the trajectory of each
individual particle in the cloud, charged or uncharged,
follows a path of test particles in the given spacetime as
described by the equations of motion (18)–(21).
The particles of the dust cloud are assumed to be

continuously injected at r0, where they have a constant
r, ϕ, and θ velocity ð _r0; _ϕ0; _θ0Þ, and then start falling onto
the BH and either hit the accretion disk or reach the event
horizon.
As mentioned above, we assume an accretion disk in the

equatorial plane, which only makes sense if the spacetime
exhibits a reflection symmetry with respect to the equatorial
plane, defined by θ ¼ π=2. We discuss this in more detail
below and just postulate this here. The initial conditions _r0,
_ϕ0, and _θ0 are chosen such that they reproduce this
spacetime symmetry. Due to these symmetric initial con-
ditions, particles starting at r0 from the upper half plane will
collide with their corresponding particle starting from the
lower half plane precisely at the equatorial plane. By
choosing the three initial conditions ð _r0; _ϕ0; _θ0Þ, the three

constants of motion E, L, and C are completely determined
and can be calculated using Eqs. (10)–(12) and (18).
It is required that there are no turning points in the

streamlines, described by the θ and r motion of the
particles, before they reach the θ ¼ π=2 plane.
Furthermore, the mapping

� ∂θ
∂θ0

�����
r¼const

≥ 0 ð22Þ

should hold. Otherwise, streamlines of particles with the
same charge may intersect. In this case, Eq. (49), which
describes the arising density field, diverges at the points of
streamline intersection. It is not an easy task to check, if this
condition holds for given initial conditions. However,
during calculation of the streamlines for various different
initial conditions, we found that the main cause for
intersecting streamlines are turning points in the r motion
for θ < π=2. This can be checked rather easily for given
initial conditions. In general, to prevent turning points the
specific angular momentum l and the charge product eQ
have to be chosen sufficiently small.
The black hole and the accretion diskWe assume that the

central BH is described by the Kerr-Newman metric as
introduced in Sec. II, neglecting, however, the case of a
magnetic monopole. In this case the postulated reflection
symmetry with respect to the θ ¼ π=2 plane is realized, and
the equations of motion are simplified. (For P ≠ 0 the
situation looks different. Since the symmetry with respect
to the equatorial plane is broken in that case, there is no
reason to assume that the accretion disk is located
at θ ¼ π=2.)
The choice of constant initial conditions for the particle

cloud results in a constant accretion rate _M, which can be
calculated by

_M ¼ −
Z Z

n0ρ2ðr0Þ _r0 sinðθ0Þdθ0dϕ0 ð23Þ

for a particle density n0 at r0. However, we assume
sufficiently small time scales such that the mass change
of the BH and of the accretion disk can be neglected in our
model. The BH as well as the accretion disk then act as
passive sinks for particles and energy, and a stationary
accretion model is built. Within this stationary model we
can also deduce specific features of the for now featureless
accretion disk.
When discussing the case of charged particles or a

plasma we will restrict to very small values of the charge
Q of the BH and a product eQ of the order of 100. This
restriction results from the following considerations. On the
one hand, it can be expected that BHs with bigger net
charges are quite unlikely; see, for example, Eardley and
Press [14], Zaumen [15], Gibbons [13]. On the other hand,
we assume the plasma to consist of protons and electrons.
By going back to the notation used in Sec. II, the

FIG. 1. Sketch of the accretion model. Here R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sinðθÞ and Z ¼ r cosðθÞ.
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dimensionless charge ê of both electrons and protons can
be calculated using Eq. (9),

êelectron;proton ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4πε0G
p

�
ϵ

μ

�
electron;proton

: ð24Þ

This leads to

êelectron ≈ −2.042 1021 and êproton ≈ 1.112 1018:

Considering a value of Q ≈ 1, all terms in the constants
and equations of motion can be neglected, which are small
compared to ê. When we assume sufficiently small initial
conditions for the ϕ and r motion, so that they are small
compared to ê, the constants of motion reduce to

E ¼ E
ê
≈ At ¼

Qr0
ρ20

; ð25Þ

L ¼ l
ê
≈ −Aϕ ≈ aE sin2 θ0; ð26Þ

K ¼ K
ê2

≈
eqn:ð17Þ

0: ð27Þ

With them we can derive approximate expressions for
the equations of motion,

�
1

ê

�
2
�
dθ
dλ

�
2

≈ −
T2ðθÞ
sin2 θ

; ð28Þ
�
1

ê

�
2
�
dr̄
dλ

�
2

≈ R2ðrÞ; ð29Þ
�
1

ê

�
2 dϕ
dλ

≈
aRðrÞ
ΔðrÞ −

TðθÞ
sin2 θ

; ð30Þ

where

RðrÞ ¼ RðrÞ
ê

≈ ðr2 þ a2ÞE − aL −Qr; ð31Þ

TðθÞ ¼ T
ê
≈ aEðsin2 θ − sin2 θ0Þ: ð32Þ

Equation (28) can only be true for TðθÞ ¼ 0. This leads to a
particle motion with a constant θ value, and thus to a radial
infall, which is why this case is not of further interest in this
paper. As a result, we will only consider very small values
of Q of the order of 10−18–10−21, and we can neglect terms
in Eqs. (10)–(16), which contain Q but not e.
Note that these very small values ofQ still correspond to

a comparably large total net charge q of the BH. According
to Eq. (6), the total net charge per elementary charge ϵ is
given by jqj=ϵ ≈ 1021–5 × 1017m=M⊙, where m=M⊙ is
the BH mass per solar mass. Hence, within our model, the

accretion of electrons or protons will not significantly
change the value of Q.
Since we consider only protons and electrons as accreted

particles, the value of the particle’s charge e is given by the
elementary charge. Fixing the BH charge Q therefore fixes
the value of eQ, while on the other hand different values of
eQ correspond to different charges of the central BH. The
sign of eQ determines whether the particles and the BH
have the same (eQ > 0) or an opposite (eQ < 0) charge.

IV. FEATURES OF THE ACCRETION PROCESS

The description of the accretion process within our
model is based on the analytical solutions of the streamlines
and the velocity field, and on the numerical calculation of
the density field of the accretion flow. In this section we
introduce and discuss the equations covering this accretion
process, based on the treatment presented in Tejeda et al.
[21]. Furthermore, we discuss the innermost stable orbit in
Kerr-Newman spacetime, since it determines the inner edge
of the accretion disc in our model.

A. The velocity field

The components of the four-velocity uμ ¼ dxμ=dτ are
given by the equations of motion (18)–(21),

ur ¼
ffiffiffiffi
R

p

ρ2
; ð33Þ

uθ ¼
ffiffiffiffi
Θ

p

ρ2
; ð34Þ

uϕ ¼ aR
ρ2Δ

−
T

ρ2 sin2 θ
; ð35Þ

ut ¼ ðr2 þ a2ÞR
ρ2Δ

−
aT
ρ2

: ð36Þ

However, in order to obtain a local description of the
velocity field, we will express it in a set of locally
nonrotating frames. This set of reference frames was
introduced by Bardeen, Press, and Teukolsky [25]. It
measures the velocity field seen by locally nonrotating
observers, whose world lines are constant in r and θ, but
change in ϕ with ϕ ¼ constþ ωt and ω ¼ − gϕt

gϕϕ
. This

means the observers are so to say “frame-dragged.” The
observers’ orthonormal tetrads then locally constitute a set
of Minkowskian coordinates.
The components of the three velocity ðdr0dt ;

dθ0
dt ;

dϕ0
dt Þ in the

LNRFs are given by

dr0

dt
¼ vr

0 ¼
ffiffiffiffiffiffiffiffiffiffi
R=Δ

p
ργ

; ð37Þ
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dθ0

dt
¼ vθ

0 ¼
ffiffiffiffi
Θ

p

ργ
; ð38Þ

dϕ0

dt
¼ vϕ

0 ¼ ρðl − eQrasin2θÞ
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 − a2Δsin2θ

p
sin θ

; ð39Þ

and

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vr

02γ2 þ vθ
02γ2 þ vϕ

02γ2
q

; ð40Þ

where the magnetic monopole P is already set to zero. Here
γ is the Lorentz factor between the LNRFs and the passing
test particle. The expressions (37)–(39) for the velocity
field contain the variables ðr; θÞ as well as the constants of
motion E, l and K, which depend on the initial values r0,
θ0, _θ0, _r0, and _ϕ0 of the test particle. Therefore, to calculate
the components of the velocity field we need to compute
the variables r and θ as functions of the initial conditions.
These functional relations are provided in terms of
streamlines.

B. Streamlines

Within our model the particles from the rotating shell will
follow the motion of charged test particles in Kerr-Newman
spacetime. Therefore, the streamlines of the accretion flow
can be described by the solutions to the equations of motions
(18)–(21) in Kerr-Newman spacetime.
As explained in Sec. III, our model has an axial

symmetry to the z axis. Therefore, it is sufficient to consider
the projection on the ðr; θÞ plane to fully discuss the
streamlines of the particle motion. Furthermore, due to the
reflection symmetry to the equatorial plane in our model,
particles starting from the northern and the southern
hemisphere will collide at θ ¼ π=2 and be absorbed by
the accretion disk in the equatorial plane, which acts as a
passive sink for particles. Therefore, we can further restrict
our calculations to the upper half plane (θ < π=2) of the
ðr; θÞ plane.
The equations of motion (18) and (19) can be solved by

elliptic functions and integrals. A comprehensive discussion
of the solutions of the Kerr-Newman equations of motions
using Weierstrass elliptic functions was done by [23]. Here
we use Jacobian elliptic functions to obtain the solution rðθÞ
for the streamlines in the ðr; θÞ plane. We will only write
down the result at this point and refer to Appendix A for the
derivation and more detailed explanations.
The solution for rðθÞ reads

rðθÞ ¼ rbðrd − raÞ − rdðrb − raÞcnðξ; krÞ2
rd − ra − ðrb − raÞcnðξ; krÞ2

ð41Þ

with

ξ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðra − rcÞðrd − rbÞ

q

× ½Φðr0Þ þ Ψðθ0Þ −ΨðθÞ�; ð42Þ

and

ΦðrÞ ¼ 2

cn−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrd−raÞðrb−rÞ
ðrb−raÞðrd−rÞ

q
; kr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðra − rcÞðrd − rbÞ

p ; ð43Þ

ΨðθÞ ¼
cos θacn−1

�
cos θ
cos θa

; kθ
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ ðE2 − 1Þa2 cos θ4a

p : ð44Þ

Here kr, kθ are the moduli of the elliptic integrals given by

k2r ¼
ðrb − raÞðrd − rcÞ
ðrd − rbÞðrc − raÞ

; ð45Þ

k2θ ¼
a2ðE2 − 1Þcos4θa

Cþ a2ðE2 − 1Þcos4θa
; ð46Þ

ra;b;c;d are the four real or complex roots of RðrÞ, and θa is
discussed below. The roots ofRðrÞmark the turning points
of the radial motion, since the motion can only take place
where RðrÞ is positive [see Eq. (19)]. The roots are sorted
differently, depending on between which roots of RðrÞ the
radial motion oscillates. We use the labeling of the roots
introduced by Tejeda et al. [21], which we shortly
review here.
If all roots are real, two situations can happen: In the first

case, the rmotion is bound between two non-negative roots
of RðrÞ, called ra and rb, for ra < rb. In the second case,
the rmotion has a lower bound, ra, but is unbounded above
and rb is the root with the smallest value. In both cases the
remaining roots are called rc, rd, with jrcj < jrdj. If two
roots are real, and two roots form a complex conjugate pair,
the real roots are called ra, rd, with jraj < jrdj, and the
complex roots are called rb, rc. If all roots are complex, one
complex conjugate pair is called ra, rd and the other one is
called rb, rc.
The root θa ∈ ½0; π=2� of ΘðθÞ lies closest to the

equatorial plane. Since the roots determine the turning
points of the θ motion, θa sets the lower limit of the θ

motion. In the case of setting _θ0 to zero, θ0 and θa coincide.
The form of the expression (41) for the streamlines rðθÞ

does not differ from the one given in Tejeda et al. [21].
However, the position of the roots ra::d is influenced by the
electric charge of the particles and the BH. Since the
magnetic monopole is set to zero, the equation of motion
for θ reduces to the one in Kerr spacetime and we recover
the result for the θ motion as given in Tejeda et al. [21],
see Eq. (A24).
Please note that the constants of motions appearing in

Eqs. (41)–(46) are calculated by using Eqs. (11), (12),
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and (17), for the initial values r0, θ0, _r0, _ϕ0, and _θ0. The
value of _t in these equations is determined by the condition
in Eq. (10). As a consequence, the constants of motion are
different for every streamline starting at r0 with a different
angle θ0.

C. The density field

To calculate the density field nðr; θÞ, we use the
continuity equation

ðnuμÞ;μ ¼ 0: ð47Þ

The semicolon denotes covariant differentiation. By using
the Gauss theorem the continuity equation can be written as
follows,

Z
∂V

nuμNμ

ffiffiffiffiffiffi
jhj

p
d3x ¼ 0: ð48Þ

Here Nμ is a unit vector normal to the hypersurface ∂V
delimiting the integration volume and h is the induced
metric’s determinant on this hypersurface. By choosing the
infinitesimal integration volume wisely, such that the
spatial projection of ∂V is determined by neighboring
streamlines and two area elements dx2jr0 , dx2jr¼const.,
which are connected by the neighboring streamlines, the
following final equation can be deduced for the density
field [21],

n ¼ n0ur0ρ
2
0 sin θ0

urρ2 sin θ

� ∂θ
∂θ0

�
−1
����
r¼const

; ð49Þ

where n0, ur0, and ρ0 are the values of n, u
r, and ρ at r ¼ r0

and θ ¼ θ0. For the derivation of the equation above it was
used that, by construction, particles will only flow through
the area elements dx2jr0 and dx2jr¼const. of the spatial
protection of the hypersurface. An intersection of stream-
lines leads to ð ∂θ∂θ0Þ ¼ 0 at the point of intersection, which
results in a divergence of the density at that point [see
Eq. (49)]. In this case the neglection of particle interaction
is not a good approximation anymore. Therefore, this
approach can only be made if streamlines do not intersect,
and Eq. (22) holds.
To calculate the density field np of a plasma with two

types of test particles with different charges e1 and e2 and
e1e2 < 0, we simply compute

npðr; θÞ ¼ n1ðr; θÞ þ n2ðr; θÞ: ð50Þ

Here n1 and n2 satisfy Eq. (49) for e ¼ e1 and e ¼ e2,
respectively. By doing so, we assume that the particle
densities of both types of test particles are sufficiently
small, so that particle interactions are negligible.

D. The forming accretion disk

As described in Sec. III, the particles from the spherical
shell which do not fall onto the event horizon feed an
initially featureless accretion disk located in the equatorial
plane. We assume that in the disk particle interactions
(viscosity, pressure, etc.) are not negligible anymore, and
the particles that hit the accretion disk will be trapped in the
disk. Due to this process, the accretion disk builds up until a
stationary situation is reached. For the final form of the
accretion disk we may then give up to two locations of very
high densities (later called density peaks), and define the
outer and the inner edge of the accretion disk as explained
in the following.
The outer edge We can define the outer edge of the

forming accretion disk by bearing in mind relation (22).
The furthest away a test particle with given initial con-
ditions ð _r0; _ϕ0; _θ0Þ can then reach the π=2 plane from the
BH is given by

rD ≔ lim
θ0→

π
2

rðθ ¼ π=2Þ: ð51Þ

The point rD then determines the outer edge of the final
accretion disk. Note that rðθÞ, given by Eqs. (41)–(46),
depends on the roots of RðrÞ and ΘðθÞ as well as on the
constants of motion E, l, and C, which are all computed in
the limit θ0 → π=2 to determine rD. By using ΨðθaÞ ¼ 0

and Ψðπ=2Þ ¼ cos θaKðkθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CþðE2−1Þa2 cos θ4a

p , KðkÞ being a complete

elliptic integral of first kind, Eq. (42) simplifies to

ξD ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðra − rcÞðrd − rbÞ

q

×



Φðr0Þ −

π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ðE2 − 1Þa2

p
�
: ð52Þ

We again want to point out that here all quantities are
computed in the limit θ0 → π=2.
The innermost stable circular orbit Even though particle

interactions are not negligible inside the accretion disk, we
will use the assumptions of our dust accretion model to
define the inner edge of the accretion disk. Since neither
viscosity nor pressure occurs in our model, the inner edge
of the accretion disk, which builds up due to the accretion
process under discussion, will be located at the innermost
stable circular orbit in Kerr-Newman spacetime. Particles
that hit the equatorial plane at radii smaller than the ISCO
are bound to fall into the black hole, and can therefore not
contribute to the main accretion disk. However, they might
form a so-called minidisk when spiraling into the black
hole [26,27]. We will come back to that when discussing
the accretion disk in Sec. V.
While the ISCO for Schwarzschild [28] is given by the

simple expression of rISCO ¼ 6M, things are getting more
complicated in Kerr spacetime. An exact expression for
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rISCO can still be derived [25]; however, two solutions arise
for the ISCO in Kerr, one for direct and one for retrograde
orbits. In Kerr spacetime the ISCO can reach fromM to 9M
depending on the value of the rotation parameter. In
Kerr-Newman spacetime one expects four different solu-
tions for the ISCO in the case of charged particles. This can
be traced back to the four possible combinations of direct or
retrograde orbits and same charge (eQ > 0) or opposite
charge (eQ < 0) of BH and test particles. As we neglect the
magnetic monopole (P ¼ 0), the accretion disk is located in
the equatorial plane, and we are therefore interested in
ISCOs for which θ ¼ π=2 holds.
The ISCO is located where the effective potential of the

r motion VeffðrÞ ¼ RðrÞ, see Eq. (19), and its first and
second derivative with respect to r are equal to zero,

VeffðrISCOÞ ¼ 0; V 0
effðrISCOÞ ¼ 0; V 00

effðrISCOÞ ¼ 0:

Furthermore, as we are searching for ISCOs in the
equatorial plane, the θ motion has to vanish at θ ¼ π=2,
leading to

dθ
dλ

����
θ¼π=2

¼ 0: ð53Þ

Since we consider a very small charge of the BH as
explained in Sec. III, it is for our purpose sufficient to
solve the above equations for the ISCO for the case Q ¼ 0

and eQ ≠ 0. We find a complicated expression for rISCO
(see Appendix B), which can be solved numerically.
The results are shown in Fig. 2. Four solutions for the

ISCO can be found for each eQ and a ≠ 0. The black
dotted curve represents the ISCO in Reissner-Nordström
spacetime with vanishingly small Q. Starting from
rISCO ¼ 6M, both solutions, for eQ < 0 and eQ > 0, grow
for bigger values of jeQj, causing rISCO to be minimal for
uncharged particles, where eQ ¼ 0. While rISCO seems to
grow somewhat exponentially for eQ > 0, it grows very
slowly for eQ < 0. The same behavior can be seen for the
ISCO in Kerr-Newman spacetime (red solid and blue
dashed curves), but now four solutions arise, two starting
at each Kerr-ISCO for jeQj ¼ 0 and then showing the same
behavior for eQ > 0 and eQ < 0 with growing values of
jeQj as in the Reissner-Nordström case.

V. RESULTS

In this section we present solutions for plasma and
uncharged dust accretion within the model described in
Sec. III. For this, the streamlines, the three velocity field in
LNRFs, and the density field are calculated for nine
different combinations of the initial conditions and param-
eters (see Figs. 4–6). Furthermore, the influence of these on
the value of the outer edge rD [see definition in (51)] of a
forming accretion disk is discussed (see Figs. 7–8). For all
plots in Figs. 4–6 the BH charge is chosen to be negative.
The specific charge parameter of a proton and an electron
will be called ep and ee, respectively, in the following.
We specify the initial conditions and parameters in the

form ðvϕ0
0

e ; v
r0
0
e ; Q; eQ; aÞ ∈ ½0; 1Þ, where vϕ0

0
e and v

r0
0
e are

the radial and angular particle velocities in the LNRF at
r ¼ r0 and θ0 ¼ π

2
given in Eqs. (37)–(39). They have a

one-to-one correspondence to _r0, _ϕ0, and _θ0, which we
choose as constant, in particular _θ0 ¼ 0. In the case of a
plasma the parameter eQ is given for electrons. The
parameter eQ for protons is then already determined and
given by epQ ¼ μe

μp
eeQ. The plotted solutions represent a

family of solutions, since both the BH mass M and the
initial density n0 at r0 are not fixed.
The density field, shown in Figs. 4–6, is derived by

numerically calculating the differential ∂θ
∂θ0 from Eq. (49).

Even though it is generally possible to derive an analytical
function for this derivative, θðθ0Þ is a very complicated
expression of θ0. It depends, among others, on the nodes of
RðrÞ, which in turn depend on θ0 as well. We refrain from
calculating the derivative analytically and use a numerical
method instead.

A. The velocity field, streamlines, and density field

Figure 4(a) shows the special accretion case of uncharged
(e ¼ 0) dust on a strongly charged BH (Q ≈ 1). Since for
e ¼ 0 the BH charge Q only appears in ΔðrÞ, its influence

FIG. 2. Radius of the ISCO in the equatorial plane for charged
particles in Kerr-Newman spacetime, with very small BH charge
(Q ¼ 0), for a ¼ 0 (black, dotted), a ¼ 0.1 (red, solid), and a ¼
0.5 (blue, dashed) as a function of eQ. Four different solutions
arise, traced back to the four combinations of direct or retrograde
orbits and eQ < 0 or eQ > 0. The radius rISCO grows for bigger
jeQj in all cases, but grows significantly faster for the case where
the BH and test particle have the same charge.
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on the accretion flow is non-negligible only close to the
horizon, where ΔðrÞ approaches zero [see Eqs. (19), (18),
and (3)]. This statement is supported by comparing
the results for the outer edge in Fig. 8(a) with the ones in
7(a) and (b). In Fig. 8(a) it can be seen that the increase of rD
from Q ¼ 0 to Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
is of the order of 10 percent.

This is rather small compared to the increase of rD caused by

a change of the initial conditions v
r0
0
e and vϕ0

0
e , shown in

Figs. 7(a) and (b) at eQ ¼ 0, respectively. Here the value of
rD might even more then double. Overall, the accretion flow
for e ¼ 0, shown in Fig. 4(a), approaches the one for theKerr
spacetime, discussed in [21], and is thereforemainly given as
an example for uncharged particle accretion.
Taking a look at Figs. 4–6, we see that for a plasma two

density peaks will arise at the π=2 plane. They are each
caused by one of the two different particle types (distin-
guished by their different specific charges ep and ee).
Furthermore. the influence of the metric’s parameters a, eQ

and the initial velocities vϕ0
0

e and v
r0
0
e on the accretion flow

and the position of the density peaks is pictured in this
figures. This will be discussed in more detail in the
following.

The plots in Figs. 4(b) and (c) show the accretion flow for
the same initial conditions but different angular momenta a.
These plots are given as an example to show that a variation
of a does onlyweakly effect the accretion flows onto theBH.
The overall structure of the accretion flow stays the same,
while only a small shift in the position of the density peaks
can be detected. A more detailed discussion of the influence
of a on the accretion flowwas done in [21], which is why we
will not go into further details here.
The influence of the initial conditions and parameters in

the model can be analyzed by comparing plots where only
one of the parameters vϕ0

0
e , v

r0
0
e , or eQ is changed. We first

analyze the influence of vϕ0
0

e on the accretion flow by
comparing Fig. 4(c) with 5(b) and Fig. 6(a) with 6(c). This

shows that the bigger the value of vϕ0
0

e the stronger the
course of the streamlines deviates from a radial infall. The

same statement holds if we analyze the influence of v
r0
0
e on

the accretion by comparing Fig. 4(c) with 5(a) and Fig. 6(b)
with 6(c); also, this is true for the influence of eQ, which
can be seen by comparing Fig. 4(c) with 6(c). Summarized,

the larger we choose vϕ0
0

e , v
r0
0
e , or eQ, the more strongly

curved the streamlines are. This is also why for a negatively
charged central BH the course of electrons is more strongly
influenced than the course of protons, since epQ ≪ eeQ.
Figure 5(c) shows the biggest difference between the

particle flow of the two different particle types. Here the
initial value for the r motion with v

r0
0
e ¼ −0.001 is chosen

to be very small. As a result, there is a very weak particle
infall, leading to very small density values [see Eq. (49)].
On the other hand, since the initial r velocity of the infalling
particles is very slow, the attractive and repulsive electro-
magnetic forces on the particles show more effect on their
course. While the streamlines of attracted particles (white
lines) show a close to radial infall, the streamlines of the
repulsed particles (black lines) show the typical course of a
small value of dr=dθ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðrÞ=ΘðθÞp
. This arises from the

fact that dr=dλ ¼ ffiffiffiffiffiffiffiffiffiffi
RðrÞp

stays small in the case of a
repulsive electromagnetic force.

B. The accretion disk

Figures 7 and 8(b) picture the influence of eQ and the
initial velocities of the test particles on the position of the
outer edge rD. From this we can conclude that drDdp , where p

is one of the parameters vϕ0
0

e , v
r0
0
e , or eQ, is largest for big

values of the parameters. Therefore, the influence of a small

change in one of the parameters vϕ0
0

e , v
r0
0
e , or eQ is rather

small if the parameter is small, but becomes significant for
bigger values of the parameters; see Table I.
The outer edge of the disk does not depend much on the

specific electric charge Q of the BH [see Fig. 8(a)], as
already discussed before. The influence of the angular
momentum a of the BH [see Fig. 8(a)] on rD is also small.

FIG. 3. Schematic plots of possible accretion disk scenarios.
Here rD1

¼ rDje1Q corresponds to e1Q < 0 and rD2
¼ rDje2Q. If

the outer edge rD is smaller than the corresponding ISCO, no
accretion disk is formed. For a general description see Case 1 to
Case 4 in Sec. V, where (a) corresponds to Case 1, (b) corresponds
to Case 2, (c) and (d) correspond to Case 3, and (e) corresponds to
Case 4.
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(a)

(b)

(c)

FIG. 4. Streamlines, three velocity field in LNRFs (left and right) and density field (right) are plotted for plasma or neutral particles, a
negatively charged BH, r0 ¼ 20, and different initial conditions. The corresponding parameter eQ for protons can be calculated by
epQ ¼ μe

μp
eeQ. Black, white, and gray streamlines and velocity fields describe electron, proton, and neutral particle motion respectively.

The density color bar is given in a logarithmic scale. The initial condition vxe is the x component of the three-velocity at r ¼ r0 and
θ ¼ π=2, given by Eqs. (37)–(39). Two density peaks arise, which can be traced back to the two differently charged particle types of the
plasma. Changes in the initial conditions vϕ0

0
e and v

r0
0
e and eeQ have a strong effect on all features of the accretion flow. This effect of the

initial velocities and eeQ can be studied by comparing the plots from Figs. 4–6 with each other.
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(As an example, consider for e ¼ 0, Q ¼ 0, v
r0
0
e ¼ −0.2,

vϕ
0

e ¼ 0.112 the increase ΔrDða1 → a2Þ ≈ 0.7, for a change
of a from a1 ¼ −0.7 to a2 ¼ 0.7). However, the shift of the
outer edge of the disk for different values of a due to the

frame-dragging effect, which was already stressed in [21],
is reproduced here. A counter-rotating flow (a < 0) leads to
a smaller value of the outer edge rD as compared to the
corotating case (a > 0).

(a)

(b)

(c)

FIG. 5. For a detailed description see caption of Fig. 4. A comparison of the plots (a) and (b) with the plot in Fig. 4(c) shows the

influence of the initial velocities v
r0
0
e and vϕ0

0
e , respectively. In plot (c) the initial value for the r motion is chosen to be very small. This

results in a weak particle infall, leading to very small density values and a big effect of the attractive and repulsive electromagnetic forces
on the accretion flow.
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If we identify the two density peaks as the positions of
the outer edges of particle type 1 and 2, which we conclude
from the examples presented here, we infer from the above
discussion that the distance between the density peaks

weakly depends on the parameters Q and a, but strongly
depends on the product eQ and the initial velocities vϕ0

0
e

and v
r0
0
e for sufficiently big values of these parameters. The

distance grows for increasing values of eQ, vϕ0
0

e , and v
r0
0
e .

(a)

(b)

(c)

FIG. 6. For a detailed description see caption of Fig. 4. A comparison of plot (a) with plot (c) and a comparison of plot (b) with plot

(c) show the influence of the initial velocities v
ϕ0
0

e and v
r0
0
e , respectively. The influence of eeQ on the accretion flow is shown by a comparison

with plot (c) and the plot in Fig. 4(c). In plot (a) only one density peak arises, produced by the accreted electrons.All streamlines of the proton
accretion flow reach the BH horizon before hitting the θ ¼ π=2 plane and therefore will not create a density peak.
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In the case of a plasma we can calculate two different
values for both rD and the ISCO for given initial conditions,
one due to the electrons and one due to the protons forming
the plasma. The inner and outer edges of the formed
accretion disk should then be defined by one of the two
values for the ISCO and one of the two values for rD,
respectively. Minidisks might build up for radii smaller
than the inner edge of the main accretion disk, where the
matter is bound to spiral into the BH. Particles hitting the
equatorial plane for radii larger than rISCO may, in principle,
loose so much energy that they, as well, are bound to spiral
into the BH, forming a minidisk. However, at this point the
interaction with the main accretion disk should not be
neglected, and the model description breaks down. We will
therefore not further discuss this possibility here.

Within this setting four cases can occur for a plasma,
which we discuss below. Here we indicate the specific
charge of particles with the opposite charge of the BH with
e1 (e1Q < 0), and the specific charge of particles with the
same charge as that of the BH with e2 (e2Q > 0).
Case 1 rISCOje1Q > rDje1Q and rISCOje2Q > rDje2Q:
All matter reaches the π=2 plane for radii smaller than

the ISCO [see schematic plot in Fig. 3(a)]. All accreted
matter is bound to spiral into the BH and might form a
minidisk during this process. It will not contribute to or

(a)

(b)

FIG. 7. Outer edge rD of the forming accretion disk as
a function of eQ for r0 ¼ 20 and a ¼ 0.1. Here vxe gives
the x component of the three-velocity at r ¼ r0, θ ¼ π=2.

(a) vϕ0
0

e ¼ 0.11, different v
r0
0
e . (b) v

r0
0
e ¼ −0.2, different vϕ0

0
e .

The dependence of rD on eQ increases with growing values

of vϕ0
0

e and v
r0
0
e .

(a)

(b)

0

5

10

15

0.15

0.10

0.05

0-0.2-0.4-0.6-0.8

FIG. 8. Outer edge rD of the forming accretion disk as (a) a

function of Q for r0 ¼ 20, e ¼ 0, vϕ0
0

e ¼ 0.11, v
r0
0
e ¼ −0.2, and

different values for a and (b) a function of vϕ0
0

e and v
r0
0
e for

r0 ¼ 20, eeQ ¼ 0.5, a ¼ 0.1. The dust flow is counter-rotating
for a < 0 and corotating for a > 0. It can be seen in plot (a) that
rD changes only slightly with variation of a, even less with
variation of Q compared to the changes induced by a variation of

the initial velocities vϕ0
0

e and v
r0
0
e , plotted in (b). This changes

become bigger for bigger values of vϕ0
0

e and v
r0
0
e . The shift of rD

for growing a to bigger values depicts the frame-dragging
effect.
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form a main accretion disk. This case occurs for small

enough v
r0
0
e and vϕ0

0
e , e.g. for a negatively charged BH,

where e2Q ¼ 0.5 (electrons), e1Q ¼ −0.00027 (protons)

and all values for v
r0
0
e and vϕ0

0
e where rD ≲ 5.5 [compare

Fig. 8(b)].
Case 2 rISCOje1Q > rDje1Q and rISCOje2Q < rDje2Q:
All particles with a charge opposite to the BH spiral into

it. But the majority of streamlines of particles with the same
charge as the BH will reach the π=2 plane for radii bigger
than the corresponding ISCO, since the density peak is
located at rD, and therefore contribute to or form an
accretion disk. In this situation the accretion disk should
slowly develop the same charge as the BH [see schematic
plot in Fig. 3(b)], until the electromagnetic field created by
the disk’s charge in not negligible anymore and the
model’s description breaks down. This case occurs, for
example, for a negatively charged BH, where e2Q ¼ 0.5,

e1Q ¼ −0.00027, vr
0
0
e ¼ −0.2, and vϕ0

0
e ¼ 0.13.

Case 3 rISCOje1Q < rDje1Q and rISCOje2Q < rDje2Q:
The majority of the streamlines of all particles reach the

π=2 plane for radii bigger than the corresponding ISCO
[see schematic plot in Figs. 3(c) and (d)]. Since rD and the
ISCO are smaller for particles which have a charge opposite
to that of the BH than for those whose charge has the same
sign as the BH, within the model’s description we expect an
inner and outer area of the accretion disk. Here the inner
area is dominated by oppositely charged particles
(e1Q < 0), and the outer area is dominated by particles
of the same charge (e2Q > 0). However, interactions
between the particles should not be neglected at the
accretion disk and interactions might prevent the develop-
ment of these areas within the accretion disk. Like in Case
2, the model description might break down for this case, if
the electromagnetic field created by the oppositely charged
areas can not be neglected anymore. This case occurs for

sufficiently big values for v
r0
0
e and vϕ0

0
e , e.g. for a negatively

BH, where e2Q ¼ 0.5, e1Q ¼ −0.00027, vr
0
0
e ¼ −0.2, and

vϕ0
0

e ≥ 0.17.

Case 4 rISCOje1Q < rDje1Q and rISCOje2Q > rDje2Q:
All particles with the same charge as the BH spiral into it,

while oppositely charged particles can stay on the π=2
plane [see schematic plot in Fig. 3(e)]. This would be a
situation where the accretion disk slowly develops a charge,
opposite to the BH’s charge. This case might occur for very

big values of eeQ → 1 and sufficiently big values of v
r0
0
e and

vϕ0
0

e . However, since always rD2
> rD1

, while spiraling
inwards the particles of the same charge as the BHwill have
to pass through the area where the model predicts an
accumulation of oppositely charged particles. We have to
expect interactions between the particles at this point and
the model’s prescription breaks down. These interactions
probably prevent the oppositely charged particles to
actually fall into the BH. An accretion disk slowly devel-
oping a charge with the same sign as the BH therefore is an
interesting but unlikely scenario.

C. Limits of the model due to electromagnetic
particle interactions

The negligence of particle interactions, especially the
electromagnetic interactions, of the used model has its
limits. For a plasma the model predicts the occurrence of
two local density maxima, one for each particle type, with a
very sharp density peak at its center. At this center the
electromagnetic particle interactions will most likely not be
negligible anymore. The occurring repulsive electromag-
netic forces at these points will have the effect of softening
the sharp peaks. However, since these sharp peaks lie on the
equatorial plane, they will further, and probably much more
strongly, be effected by the accretion disk, which is
assumed to be located there as well.
Neglecting particle interactions also restricts our choice

in the initial particle density n0 at r̄0. The electromagnetic
field, created by the infalling plasma particles, should still
be negligible compared to the field created by the BH. As a
result, a limit for n0 depends on the choice of r̄0, the total
BH mass M, and on the position of the density peaks,
which create the electromagnetic field of up to two charged
rings around the BH. Changing r̄0 to bigger values raises
the strength of the electromagnetic field of the infalling
particles at the outer area, while at the same time the BH’s
electromagnetic field falls off. Therefore, n0 has to be chosen
to be smaller for larger values of r̄0. The same holds for the
value of the BH massM for constant r̄0 ¼ r0

M, since the total
charge of the accreted particles scaleswithM3,while the total
charge Q ¼ MQ̄ of the BH scales with M. Furthermore, n0
has tobe chosen tobe smaller the further the density peaks are
located away from the BH. This results from the same
consideration done for the effect of r̄0.
For a stellar BH with a net charge of 10−18–10−21 the

plasma density is restricted to values smaller than
10 − 0.01 cm−3. The density has to be even more dilute
for more massive BHs or bigger chosen values for r̄0.

TABLE I. Comparison of the change of the outer edge ΔrD for
an increase of eQ from eQ1 to eQ2 between two sets (Example 1
and Example 2) of initial conditions and eQ. The influence of
changing the value of eQ results in a significantly bigger change
of rD in Example 2, where bigger values for the initial conditions
and eQ are chosen.

Example 1 Example 2

vϕ0
0

e 0.11 0.11

v
r0
0
e

−0.27 −0.001
eQ1 −0.5 0.5
eQ2 0 0.7
ΔrDðeQ1 → eQ2Þ ≈0.5 ≈6
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In this subsection we came back to the notation of
Sec. II, and wrote the net charge and radius with bars,
where it is given in its dimensionless form.

VI. SUMMARY AND CONCLUSION

We discussed an analytical model for the relativistic
accretion of (charged) dust onto a rotating and charged
black hole as described by the Kerr-Newman spacetime.
Our model is a direct generalization of the papers by
Tejeda, Mendoza, and Miller [20] and Tejeda, Taylor, and
Miller [21] on dust accretion onto a Schwarzschild and Kerr
BH. Because strongly charged BHs are astrophysically
quite unlikely, we assumed here very weakly charged BHs
with a normalized charge parameter Q of the order of
10−18–10−21. However, for either electrons or protons with
a normalized charge e we may then find eQ ≈ 1, which
results in a quite significant influence on the accretion
process. In our streamline and density plots, however, we
only showed cases where the BH’s net charge was chosen
to be negative and of the order of Q ≈ 10−21, which results
in eQ ≈ 1 for electrons.
For our stationary analytical model we needed to neglect

a number of physical effects in the accretion process, which
we detailed in the description of the model in Sec. III. In
particular, we neglected all particle interactions and the
accretion disk’s mass and charge. Where we consider
charged dust, we assume it to form a plasma consisting
of noninteracting electrons and protons, which serve as test
particles. For a stellar BH with a net charge of 10−18–10−21

this restricts the plasma density to values smaller than
10 − 0.01 cm−3.
We analyzed the influence of the different parameters in

our model on the accretion process and on the outer and
inner edges of the forming accretion disk. Besides the
density field, which we calculated numerically, all quan-
tities—namely the streamlines, the velocity field, the outer
edge rD, and the ISCO—were derived analytically. Four
different values for the ISCO can be found for charged
particles and a given BH spin and charge. These are
connected to the four different combinations of same or
opposite charge of BH and particles and direct or retro-
gating orbits. The ISCO is used to determine the inner edge
of the accretion disk.
We found that the spacetime parameters a and Q

corresponding to the angular momentum and the charge
of the BH, respectively, have a rather small effect on the
accretion process and the edges of the accretion disk.
However, we recovered the frame-dragging effect due to
the angular momentum a which was already discussed in
[21] within our model. We showed that the product of BH
and particle charge eQ, as well as the initial conditions for
the r and ϕ motion have a considerably stronger influence
on the accretion process and the edges of the accretion disk
than the spacetime parameters.

When considering plasma contributing to or forming an
accretion disk, we discussed four different cases which may
occur within our model. In the first case all accreted
particles will have to spiral into the BH. In the second
and fourth cases all particles of one type have to spiral into
the BH, while a majority of the other particle type can
contribute to the accretion disk. In this case the forming
accretion disk might slowly develop a charge with the same
or opposite sign as that of the BH until the arising
electromagnetic field of the disk can not be neglected
anymore and the model’s description breaks down.
However, the case where an accretion disk with a charge
opposite to that of the BH is developed seems rather
unlikely due to expected interaction processes between the
charged particles on the accretion disk, which are neglected
in our model. In the third case a majority of both particles
will contribute to or form an accretion disk. An inhomo-
geneous distribution of the charge of the disk is the result,
where particles with a charge opposite to that of the BH are
located in an inner area close to the BH, whereas particles
with a charge with the same sign as that of the BH are
located in an outer area farther away from the BH. This
effect might be weakened or washed out due to the particle
interactions within the accretion disk. Again, the model’s
description will break down as soon as the arising electro-
magnetic fields from the charged areas are not negligible
anymore.
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APPENDIX A: DERIVATION OF THE SOLUTION
FOR THE PARTICLE MOTION

In this appendix we present the derivation for the radial
and longitudinal equations of motion for charged test
particles in Kerr-Newman spacetime by using Jacobi
elliptic functions. A comprehensive discussion of the
solutions of the Kerr-Newman equations of motions was
done by Hackmann and Xu (2013), where they used
Weierstrass elliptic functions [23]. More information on
Jacobian elliptic functions can be found in Milne-Thomson
[29] and Byrd and Friedman [30].
Elliptic integrals can take the form

uðϕÞ ¼
Z

ϕ

ϕ0

dzffiffiffiffiffiffiffiffiffi
PðzÞp ; ðA1Þ

where PðzÞ is a polynomial of order three or four. The
inverse function ϕðuÞ of an elliptic integral is called an
elliptic function and it satisfies the differential equation
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�
dϕ
du

�
2

¼ PðϕÞ: ðA2Þ

This property is used to solve the differential equations (18)
and (19) in terms of elliptic functions.
We will now introduce elliptic integrals Fðφ; kÞ of the

first kind, whose inverse functions are the Jacobi elliptic
functions. They can take different forms, depending on
which substitution is made for φ,

Fðφ; kÞ ¼
Z

φ

0

dϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ðϑÞ

p

¼
Z

y

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t2Þð1 − k2t2Þ

p ðA3Þ

for y ¼ sinφ. The parameter k ∈ C is called the modulus of
the elliptic integral. The second integral in (A3) with the
polynomial under the square root of the form PðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t2Þð1 − k2t2Þ

p
is called Legendre normal form,

which only contains terms with even exponents.
The Jacobian elliptic functions used in this paper are now

defined as

snðF; kÞ ¼ sinφ ¼ y; ðA4Þ

cnðF; kÞ ¼ cosφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
: ðA5Þ

Elliptic functions are doubly periodic and meromorphic,
and the periods of sn are given by 4KðkÞ and 4iK0ðkÞ, with

KðkÞ ¼
Z

π=2

0

dϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2ðϑÞ

p ðA6Þ

and K0ðkÞ ¼ Kðk0Þ, ðk0Þ2 ¼ 1 − k2.
To derive the solutions for the r and θ motion, we first

derive two equations for the Mino time in terms of elliptic
integrals from Eqs. (18) and (19),

λðrÞ ¼
Z

r

r0

dr0ffiffiffiffiffiffiffiffiffiffiffi
Rðr0Þp ; ðA7Þ

λðθÞ ¼
Z

θ

θ0

dθ0ffiffiffiffiffiffiffiffiffiffiffi
Θðθ0Þp : ðA8Þ

By introducing

ΦðrÞ ¼
Z

r

ra

dr0ffiffiffiffiffiffiffiffiffiffiffi
Rðr0Þp ; ðA9Þ

ΨðθÞ ¼
Z

θ

θa

dθ0ffiffiffiffiffiffiffiffiffiffiffi
Θðθ0Þp ; ðA10Þ

whereRðraÞ ¼ 0 and ΘðθaÞ ¼ 0, we can rewrite Eqs. (A7)
and (A8) as λðrÞ¼ΦðrÞ−Φðr0Þ and λðθÞ ¼ ΨðθÞ −Ψðθ0Þ.

To find the solutions of the r and θ motion in terms of
Jacobian elliptic functions, we convert the polynomials
RðrÞ and ΘðθÞ to the Legendre normal form. This can be
accomplished with substitutions of the form

z ¼ A1 þ A2x2

A3 þ A4x2
or ðA11Þ

z ¼ B1 þ B2x
B3 þ B4x

; ðA12Þ

with z ¼ r or z ¼ θ, respectively, and the constants A1::4,
B1::4 have to be chosen properly.
For the radial equation of motion the substitution (A11)

with r ¼ rdx2−nra
x2−n is appropriate, where ra::d are the roots of

RðrÞ. Now k and n have to be chosen such that the interval
r1 < r < r2, where the r motion takes place, lies between
x ¼ 0 and x ¼ 1. As a result we get, using the labeling of
the roots mentioned in Sec. IV B,

ΦðrÞ ¼
Z

r

ra

drffiffiffiffiffiffiffiffiffiffi
RðrÞp

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðra − rcÞðrb − rdÞ

p

×
Z

x

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2rx2Þ

p ; ðA13Þ

where

n ¼ rd − rb
ra − rb

; ðA14Þ

k2r ¼
ðrc − rdÞðra − rbÞ
ðra − rcÞðrb − rdÞ

: ðA15Þ

Now the solution for the radial motion can be written down,

rðλÞ ¼ raðrd − rbÞ þ rdðrb − raÞsnðξ; krÞ2
rd − rb þ ðrb − raÞsnðξ; krÞ2

; ðA16Þ

¼ rbðrd − raÞ − rdðrb − raÞcnðξ; krÞ2
rd − ra − ðrb − raÞcnðξ; krÞ2

; ðA17Þ

with

ξ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðra − rcÞðrd − rbÞ

q
½Φðr0Þ − λ�: ðA18Þ

In the case that all roots of RðrÞ are real, the value of ΦðrÞ
is always real and no complex numbers occur during the
calculation of rðλÞ. However, in the case of two or four
complex roots the integrand of ΦðrÞ becomes complex and
the calculation of rðλÞ has to be done in the complex plane.
This is no problem in principle but can be avoided by using
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the substitution (A12) and a wise choice of B1::4. The exact
substitution for these cases can be found in [30] and will not
be given here.
For the θ motion we use the substitution x ¼ cos θ to get

a polynomial of order four in ΨðθÞ,

ΨðxÞ ¼
Z

x

xa

dx0ffiffiffiffiffiffiffiffiffiffiffi
Θðx0Þp ; ðA19Þ

for

ΘðxÞ ¼ a2ð1 − E2Þx4 − ðCþ a2ð1 − E2Þ þ l2Þx2 þ C:

ðA20Þ

This can, in general, be solved by the same procedure used
for solving the radial equation. To reduce the equation
above to Legendre normal form, its roots have to be shifted
to 1 and 1=k2. Substituting ~x ¼ x=xa then leads to

Ψð~xÞ ¼ −
cos θaffiffiffiffi

C
p

Z
~x

1

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x02Þð1 − ~k2θx02Þ

q ; ðA21Þ

with

~k2θ ¼ −
a2ðE2 − 1Þ

C
x4a: ðA22Þ

By rewriting ~kθ as ~k2θ ¼ kθ2

1−kθ2
, we find

Ψð~xÞ ¼ −
cos θaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cþ a2ðE2 − 1Þcos4θa
p

×
Z

~x

1

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x02Þðk0θ þ k2θx

02Þ
q

¼
cos θacn−1ð cos θcos θa

; kθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ ðE2 − 1Þa2cos4θa

p : ðA23Þ

Finally, the solution for the θ motion can be written down,

cosðθðλÞÞ

¼ cos θacn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ a2ðE2 − 1Þcos4θa

p
cos θa

ðΨðθ0Þ − λÞ; kθ
�
:

ðA24Þ

In the calculation of ΨðθÞ or cosðθðλÞÞ complex numbers
arise, if kθ is imaginary or bigger than one. This can be
avoided by choosing another Jacobian elliptic function to
solve the equation and, by doing so, introducing a new kθ,
which is then real and smaller than one. Again, we will
not discuss these alternative descriptions of ΨðθÞ and
cosðθðλÞÞ, but refer to [30].

APPENDIX B: ISCO IN KERR-NEWMAN
SPACETIME

The innermost stable orbit (for P ¼ 0) is located where
the effective potential of the r motion VeffðrÞ ¼ RðrÞ, see
Eq. (19), and its first and second derivative with respect to r
vanish. By further demanding that the ISCO is located in
the equatorial plane, the θ motion dθ

dλ ¼ ΘðθÞ has to vanish
at θ ¼ π=2. Therefore, one receives an expression for the
ISCO on the equatorial plane by solving the following set
of equations for coordinate r and the three constants of
motion E, L, and K:

RðrÞ ¼ 0;

R0ðrÞ ¼ 0;

R00ðrÞ ¼ 0;

Θðπ=2Þ ¼ 0: ðB1Þ

From the last equation in (B1) the relation

K ¼ ðaE − lÞ2 ðB2Þ

results. With this relation and the first two equations in (B1)
a polynomial of order four can be deduced for

ffiffiffiffi
K

p
of the

form

f1ðu;
ffiffiffiffi
K

p
Þ ¼ A

ffiffiffiffi
K

p
4 þ B

ffiffiffiffi
K

p
3 þ C

ffiffiffiffi
K

p
2

þD
ffiffiffiffi
K

p
þ E ¼ 0; ðB3Þ

where u ¼ 1=r, and

A ¼ ð4Q4 þ 4Q2a2Þu6 þ ð−12Q2 − 4a2Þu5
þ ð4Q2 þ 9Þu4 − 6u3 þ u2;

B ¼ 4aeQu3ðQ2u2 þ a2u2 − 2uþ 1Þ;
C ¼ ð4Q4 þ 4Q2a2 −Q2ðeQÞ2 − a2ðeQÞ2Þu4

þ ð−10Q2 − 2a2 þ 2ðeQÞ2Þu3
þ ð2Q2 − 2a2 − ðeQÞ2 þ 6Þu2 − 2u;

D ¼ Bu2;

E ¼ ðQ4 þ 2Q2a2 −Q2ðeQÞ2 þ a4 − a2ðeQÞ2Þu2
þ ð−2Q2 − 2a2 þ 2ðeQÞ2Þu − ðeQÞ2 þ 1: ðB4Þ

Another equation f2ðu;
ffiffiffiffi
K

p Þ ¼ 0 can be deduced from the
second and third equations in (B1). If we consider a very
small charge of the BH, as explained in Sec. III, and set
Q ¼ 0 but eQ ≠ 0, f2ðu;

ffiffiffiffi
K

p Þ reduces to
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f2ðu;
ffiffiffiffi
K

p
Þ¼ 6ða

ffiffiffiffi
K

p
3−a2eQKÞu2

þ6ðaðeQÞ2
ffiffiffiffi
K

p
−eQKÞu

þeQða2þKÞ− ðeQÞ3−2a
ffiffiffiffi
K

p
¼ 0: ðB5Þ

Now f1ðu;
ffiffiffiffi
K

p Þ (for Q ¼ 0, eQ ≠ 0) and f2ðu;
ffiffiffiffi
K

p Þ can
be solved numerically for u ¼ 1=r and K and lead to
four different solutions for every given set of parame-
ters ða; eQÞ.
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We study stationary, electrically charged fluid structures encircling a rotating compact object with a
dipole magnetic field oriented along the rotation axis. This situation is described in an idealized way by the
Kerr metric and a magnetic dipole “test” field, that does not affect the spacetime. The self-gravitational and
self-electromagnetic field of the fluid are neglected and the fluid is assumed to be nonconductive and in
rigid motion. Our work generalizes a previous study by Kovář et al. [1] by taking into account the rotation
of the central object. Therefore, we focus on the influence of the rotation onto the existence and position of
bound fluid structures. Frame dragging effects allow the existence of polar clouds, which could not be
found in nonrotating case. Furthermore counterrotating equatorial tori become more preferred the faster the
central object is spinning.
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I. INTRODUCTION

Fluids take a very important role inAstrophysics. Accreted
by compact objects such as black holes or neutron stars, they
give rise to a variety of astrophysical phenomenon like active
galactic nuclei (AGN), x-ray binaries and more [2,3]. Their
investigationhowever is averychallenging issue.Thedensity,
pressure and temperature of the fluid lies in a very broad
range, so that different approaches are needed to describe
different situations,where, according to the situation,we have
to include radiation processes, turbulences, nuclear burning
electromagnetic interactions andmore. For very diluted fluids
particles do not interact and are described by the test particle
approach [4,5]. A kinetic description is used for less diluted
fluids (see [6] and citations within) whereas the magneto-
hydrodynamic (MHD) description is suitable for dense fluids
[7,8]. Drastic simplifications of the full picture are therefore
needed to build (analytic) models of accretion discs, like
the thin disc model, the slim disc model, ADAFs, Polish
Doughnuts and more (see [9] and citations within). These
models play a very important role in understanding the
general physical processes in accretion discs. They are also
used to simplify numerical simulations or serve as initial
conditions or test beds to the simulations.
Thick accretion discs with a negligible loss of mass

can be modeled analytically in a general relativistic back-
ground with the Polish Doughnut model, that uses a

hydrodynamical, perfect fluid description for the fluid.
In this model gravity plays a crucial role for building
toroidal configurations. The model was introduced 1978 for
a neutral fluid by [10] in the case of a Schwarzschild
background, then studied for Kerr [11], and later on for
more complicated backgrounds [12,13].
Magnetic fields are present during most accretion proc-

esses, produced either by the accreted fluid itself, by theobject
accreting the matter (e.g., a magnetar) or as an external
magnetic field (e.g., an interstellar one). These fieldswill have
a major effect on the accretion of plasma, or on an otherwise
charged fluid (e.g., a dusty fluid charged by its interaction
with the energetic radiation from an AGN [14]). Charged
particles in the vicinity of a neutron star’s magnetosphere
were first discussed in the 1970s [15–17], and are still of
interest e.g., in the context of accretion disc coronae.
In regards to that the Polish Doughnut model was extended.
A toroidal magnetic field produced by the fluid was added to
the model in [18], while in [1,19,20] the interaction of a
charged fluid with an external magnetic field was considered.
In this work we build up on the results in [1] and

investigate charged perfect fluids encircling compact objects
while located in a electromagnetic background field. The
charged fluid takes on structures, that are constructed within
a model derived from the conservation laws and Maxwell
equations as well as the usual assumptions of stationarity
and axial symmetry in the Polish Doughnut model. Self-
gravitational and self-electromagnetic fields of the fluid
configuration as well as the influence of the electromagnetic
background field on the spacetime are neglected in our
setting. A charge distribution has to be assigned to the fluid,
that is approximated as fully non conductive—the opposite
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approximation to the infinite conductivity assumed in the
ideal MHD approach to plasma description. The angular
momentum profile and equation of state of the fluid
configuration are chosen beforehand, so that its pressure
and energy density profile can be calculated.
The fluid encircles the compact object with a constant

angular velocity, which corresponds to an angular momen-
tum profile with an increasing angular momentum for
bigger radii. This assumption has the benefit that the
problem can be solved analytically. It was shown for the
uncharged case, that structures with a constant angular
momentum show a runaway instability [21], which leads to
an almost complete accretion of the torus by the central
object on dynamical time scales. This instability is sup-
pressed for an increasing angular momentum profile
towards bigger radii [22]. This behavior in the uncharged
case gives some motivation to the assumptions of a rigidly
rotating fluid. While equilibrium tori in rigid rotation are
impossible for the uncharged case, we show that this is not
a problem for charged fluids. The fluid is described by a
polytropic equation of state. Fluid configurations might
form bound structures anywhere around the compact
object. We will, however, focus our study on fluid con-
figurations, which centers lie either in the equatorial plane
(called equatorial tori), or on the rotation axis (referred to as
polar clouds).
After introducing a general procedure to look for

possible fluid structures, we specify to the special case
of a Kerr metric and a dipole magnetic field, that is oriented
along the symmetry axis in the Kerr metric. This combi-
nation of metric and field describes in an idealized way a
rotating compact object, that produces a magnetic dipole
field (e.g., a magnetar), while the nonconductive fluid
might describe partly ionized helium. A more realistic
magnetic field structure like the Deutsch field [23,24]
would certainly be interesting, but such a field is too
complicated to be treated within the framework presented
in this paper. Since this set up was already discussed for the
Schwarzschild metric by Kovář et al. [1], our main interest
concerns the influence of the rotation of the central object
on the shape and existence of the fluid structures.
This paper is organized as follows. In Sec. II the model

for the construction of charged fluid configurations is
described. The main pressure equations are derived from
the conservation laws and Maxwell equations and solved in
terms of an effective potential. Equations for the physical
characteristics pressure, energy density and charge distri-
bution of the fluid are given. The general procedure of how
to find possible bound fluid structures is presented in
Sec. III. In Sec. IV we specify to the case of a Kerr metric
and a dipole magnetic field. The Kerr metric and the
electromagnetic potential for a dipole magnetic field in
Kerr are given and shortly discussed. We take a look onto
the uncharged limit and discuss the behavior of the effective
potential of the fluid structures in the charged case. The

behavior of solutions for equatorial tori and polar clouds in
regards to various parameters are discussed in Secs. V and
VI respectively. For both cases examples for a fluid
structure and its physical characteristics are given.
Conclusions are given in Sec. VII.
Throughout the paper the geometrical system of units

(c ¼ G ¼ kB ¼ 1) is used. In case that the physical
(SI) units are used the quantities are indicated by the
index SI.

II. CHARGED FLUID STRUCTURES
IN AN EXTERNAL ELECTROMAGNETIC

TEST FIELD

A. General assumptions of the thick disc model

To build a charged fluid torus located in an external
electromagnetic test field, wewill follow the approachmade
in [19] and use the general setup for Polish Doughnuts [7,9].
Therefore we make the following assumptions:
(1) The fluid, which builds the accretion disc, has a

negligible effect on the spacetime metric. It therefore
serves as a “test-fluid,” positioned in a given back-
ground spacetime. The fluid is furthermore described
as a perfect fluid with a polytropic equation of state.

(2) The considered spacetime is axially symmetric and
stationary. In Boyer-Lindquist coordinates the met-
ric takes the form

ds2¼gttdt2þ2gtϕdtdϕþgrrdr2þgθθdθ2þgϕϕdϕ2:

ð1Þ

It is required that the electromagnetic test field
is stationary and axially symmetric as well. This
implies that in a certain gauge the electromagnetic
vector potential has the form

Aμ ¼ ðAt; Aϕ; 0; 0Þ: ð2Þ

(3) The fluid is also axially symmetric and stationary,
with purely circular motion. The four velocity for
that case can be written as

Uμ ¼ ðUt; Uϕ; 0; 0Þ: ð3Þ

Specific angular momentum and angular velocity are
defined as

l ¼ −
Uϕ

Ut
; ω ¼ Uϕ

Ut ; ð4Þ

and are connected by the relation

ω ¼ −
lgtt þ gtϕ
lgtϕ þ gϕϕ

: ð5Þ
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Finally the t-component of the four-velocity can be
derived by using the normalization condition, and
takes the form

ðUtÞ2 ¼ −
1

gtt þ ωgtϕ þ ω2gϕϕ
: ð6Þ

B. Pressure equations for a charged fluid

The pressure equations in a thick disc model can now be
derived by solving the conversation law

∇νTμν ¼ 0; ð7Þ

where ðTμνÞ is the energy momentum tensor and ∇ν

indicatest the covariant derivative. In case of a charged
fluid tori, it can be split into two terms, a matter term
(Tμν

MAT) and an electromagnetic term (Tμν
EM),

Tμν
MAT ¼ ðϵþ pÞUμUν þ pgμν; ð8Þ

Tμν
EM ¼ 1

4π

�
Fμ

γFνγ −
1

4
FγδFγδgμν

�
; ð9Þ

where Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ is the electro-
magnetic tensor, Aμ the axially symmetric and stationary
total electromagnetic potential, and ϵ and p denote the
energy density and pressure of the fluid.
In this case the Maxwell equations

∇νFμν ¼ 4πJμ; ð10Þ

∇ðγFμνÞ ¼ 0 ð11Þ

have to be considered as well to derive the pressure
equations. Here Jμ ¼ ρqUμ þ σFμνUν is the four-current,
with the conductivity σ and charge density ρq. By assuming
that the internal electromagnetic field produced by the
charged fluid is much smaller than the external test field
(Fμν

INT ≪ Fμν
EXT), and by further demanding that the con-

ductivity vanishes (σ ¼ 0), we derive [25]

∇νT
μν
EM ¼ −Fμν

EXTJν with Jμ ¼ ρqUμ: ð12Þ

By using Eq. (7), this leads to the following main equation

∇νT
μν
MAT ¼ Fμν

EXTJν: ð13Þ

In case of a neutral fluid, Eq. (13) reduces to Eq. (7), where
Tμν then contains the matter term only. Note that the
assumption of zero conductivity is a necessary condition
for the self-consistency of the model. A nonzero conduc-
tivity would allow radial electric currents. This is, however,
in contradiction to the thick disc model, where a circular
motion of the fluid is required.

The pressure equations for a charged thick disc located in
an external electromagnetic test field now follow directly
from Eq. (13) [19]

∂μp ¼ ðpþ ϵÞð∂μ lnðUtÞ − l∂μω

1 − ωl

þ ρq
pþ ϵ

ðUt∂μAt þ Uϕ∂μAϕÞÞ: ð14Þ

The electromagnetic force on the charged fluid in μ-
direction is

repulsive for 0 <

attractive for 0 >

�
ρq

pþ ϵ
ðUt∂μAt þUϕ∂μAϕÞ: ð15Þ

Because of the discussed symmetries of the model
Eq. (14) is different from zero only for μ ¼ θ, r, leading
to two pressure equations.

C. Integrability condition—restrictions
to the charge distribution

For the pressure Eq. (14) to be solvable, the integrability
condition

∂μð∂νpÞ ¼ ∂νð∂μpÞ ð16Þ

has to be satisfied. In case of an uncharged fluid, where the
last term in Eq. (14) vanishes, Eq. (16) is fulfilled, if the
fluid has a barotropic equation of state ϵ ¼ ϵðpÞ (see e.g.,
[9]). By keeping the assumption of a barotropic equation of
state and by setting

K ¼ ρq
pþ ϵ

ð17Þ

the last term in Eq. (14) has to satisfy

∂μ½KUtð∂νAt þ ω∂νAϕÞ� ¼ ∂ν½KUtð∂μAt þ ω∂μAϕÞ�
ð18Þ

to fulfill the integrability condition (16). For Eq. (18) to
hold we have to specify some additional constraint on the
charge distribution ρq contained in K, and/or the radial
distribution of the angular momentum l, which is related to
ω [see Eq. (4)].
We will here restrict our model further, by assuming the

charged fluid to be in a rigid rotation, and set ω to be
constant. Equation (18) can then be written as

∂μ½KUt∂νðAt þ ωAϕÞ� ¼ ∂ν½KUt∂μðAt þ ωAϕÞ�: ð19Þ

In analogy to demanding a barotropic equation of state to
make the first term of (14) satisfy the integrability con-
dition, we can now easily fulfill the integrability condition
(19) for the second term by assuming
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KUt ¼ fKðSÞ; for S ¼ At þ ωAϕ; ð20Þ

where fKðSÞ is an arbitrary function of S. Here S
corresponds to an electromagnetic potential acting on a
charged particle with an angular velocity ω on a circular
orbit. Curves of a constant S will coincide with curves of
constant fKðSÞ.
Note that if one of the two components At, Aϕ vanishes,

the assumption of rigid rotation of the fluid is not necessary
anymore and the condition for the charge distribution
reduces to KUα ¼ fKðAαÞ.

D. Solutions of the pressure equations

The pressure Eq. (14) can be rewritten in terms of an
effective potential h defined by

h ¼ Γ − 1

Γ

�Z
p

0

dp
pþ ϵ

�
: ð21Þ

Using

P ¼ 1

ðUtÞ2 ¼ −ðgtt þ ωgtϕ þ ω2gϕϕÞ; ð22Þ

Equation (14) read

∂μhðr; θÞ ¼
Γ − 1

Γ

�
−
∂μP
2P

þ fKðSÞ∂μS

�
; ð23Þ

where we used the assumption of rigid rotation (∂μω ¼ 0),
and the condition for the charge distribution in Eq. (20).
The prefactor Γ−1

Γ is necessary later on to describe the
physical characteristics in terms of h in a nice way.
Integrating Eq. (23) leads to the following effective
potential h,

h ¼ Γ − 1

Γ

�
−
1

2
lnP þ

Z
fKðSÞdS

�
þ h0: ð24Þ

Here h0 is an integration constant. It allows to choose the
point ðr; θÞ, where the effective potential becomes zero.
If an explicit equation for ϵðpÞ is given, the pressure p,

energy density ϵ and charge density ρq of the fluid can be
expressed in terms of h. As can be seen from Eq. (21),
equipotential surfaces of h coincide with surfaces of
constant pressure p, and therefore of constant ϵ as well.
A bound solution for a stationary charged fluid structure

(e.g., an equatorial torus) in the given setup exists if we can
find a local maximum for the effective potential h at a
position ðrc; θcÞ. The point ðrc; θcÞ then defines the center
of the structure, and the outer edge is given by h ¼ 0, where
also the pressure vanishes [see Eq. (21)]. Necessary
existence conditions for fluid structures are therefore
given by

∂θhðrc; θcÞ ¼ 0; ∂rhðrc; θcÞ ¼ 0: ð25Þ

Furthermore, to guarantee that the local extrema is indeed a
maximum, the Hessian matrix for h

H ¼
� ∂2

rrh ∂2
rθh

∂2
θrh ∂2

θθh

�
ð26Þ

has to be negative definite at the point ðrc; θcÞ. This gives
the sufficient conditions

∂2
rrhðrc; θcÞ < 0 and detðHÞðrc; θcÞ > 0: ð27Þ

Saddle points ðrs; θsÞ can behave as so called cusp
points, when they occur additionally to the maximum in a
solution for the fluid structure. If the integration constant h0
is chosen such that h ¼ 0 at the saddle point, it might serve
as a point where fluid material can flow out of the structure
(e.g., out of the thick disc). However, since several saddle
points can occur at various positions and h-values for some
solutions, not every saddle point will actually behave as a
cusp point for a given structure.
A projection of the pressure equations (14) onto the

magnetic field lines or orthogonal to the electric field lines
annihilates the contribution of the magnetic ðAϕÞ or electric
ðAtÞ part of the electromagnetic potential Aμ to the effective
potential hðr; θÞ along the B-field or orthogonal to the
E-field. This property was used by Henriksen and Rayburn
[17] to simplify their discussion on the co-rotating zone of a
pulsar magnetosphere. In case of a solely magnetic poten-
tial A ¼ ð0; 0; 0; AϕÞ the procedure leads to a vanishing
contribution of the electromagnetic interactions along the
magnetic field lines, as it was also discussed for the charged
fluid tori in the vicinity of a dipole magnetic field in
Schwarzschild spacetime [1]. However, because of the
frame dragging effect, the electromagnetic potential of the
dipole-magnetic field contains an electric part ðAt ≠ 0Þ in
the Kerr case. A projection can be found, for which the
contribution of Aμ to hðr; θÞ vanishes. It has to be a
combination of the two named directions determined by
the B- and E-field, but depending now additionally on the
angular velocity ω of the fluid.
Even though interesting, a simplified expression of

hðr; θÞ along some ω-dependent direction is not helpful
in our search for local extrema of hðr; θÞ, and will therefore
not be discussed in more detail.

E. Physical characteristics

The choice of the equation of state determines the
connection between pressure and energy density.
Following Kovář et al. [19] and tro [20] we choose a
polytropic equation of state for the fluid,

p ¼ κϵΓ; ð28Þ
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where κ and Γ are the polytropic coefficient and exponent
respectively.
The pressure p, energy density ϵ and specific charge

density q ¼ ρq
ϵ are then given in terms of the effective

potential h. By plugging Eq. (28) into Eq. (21) we find

p ¼
�
eh − 1

κ
1
Γ

� Γ
Γ−1
; ð29Þ

ϵ ¼
�
eh − 1

κ

� 1
Γ−1
: ð30Þ

By further defining the specific charge density q ¼ ρq
ϵ and

using (17) we get

q ¼ ρq
ϵ
¼ Keh: ð31Þ

The total mass and charge of the charged fluid structure can
be calculated by integrating the mass density ρ and the
charge density ρq over the whole volume V of the structure,

M ¼
Z
V
ρdV; ð32Þ

Q ¼
Z
V
ρqdV: ð33Þ

Up to now, the introduced setup for charged fluid
structures in an external magnetic field has not made
any statements concerning the mass density ρ. However,
by introducing a suitable assumption for ρ as ρ ¼ ρðϵ; pÞ,
the mass density can also be derived from the effective
potential h. In the nonrelativistic limit an appropriate
assumption would be ρ ≈ ϵ.
Following the approach in [19], the magnetic field

strength of the fluid torus B is approximated at the edge
rout of the torus by a charged ring that contains the charge
of the whole torus Q and rotates at the same angular
velocity ω,

B ≈
ωQ

πðrout − rcÞ
: ð34Þ

The total mass and charge of a fluid structure as well as its
magnetic field strength have to be sufficiently low to not
violate the assumptions of our model. If the effective
potential h for a solution is found, these requirements
restrict the possible choices for h0 or the polytropic
coefficient κ.
Here the magnetic field strength B, the dipole moment B,

the chargeQ, the angular velocity ω and the radius r are all
given in dimensionless units. By removing the normaliza-
tion in terms of M, they can be transferred back into SI
units:

QSI ¼ Mc2
ffiffiffiffiffiffiffiffiffiffi
4πϵ0
G

r
Q; BSI ¼

c
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πϵ0G

p B;

ωSI ¼
c
M

ω; BSI ¼
c

M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πϵ0G

p B;

rSI ¼ Mr: ð35Þ

Here G is the gravitational constant, ϵc the electric constant
and M ¼ Gm

c2 , where m is the mass of the central object.

III. CONSTRUCTION OF CHARGED
FLUID STRUCTURES

If the spacetime metric and the electromagnetic potential
of the external test field show, next to the required axial
symmetry and stationarity, a mirror symmetry at θ ¼ π

2
, and

are furthermore differentiable at θ ¼ 0, than the following
procedure can be used to find charged fluid structures in the
given setting.
The first step is to make sure, that the existence

conditions (25) are fulfilled for a given position ðrc; θcÞ,
where the structure’s center is located. Due to the required
symmetries and assumptions the first condition in (25) will
always be fulfilled for θc ¼ 0, π

2
, π. We will therefore focus

our search for fluid structures to
(i) tori centered in the equatorial plane (θc ¼ π

2
), and

(ii) polar clouds centered on the polar axis (θc ¼ 0; π).
The second condition in (25) can be used as a normalization
condition for the function fKðSÞ connected to the charge
distribution. From Eq. (23) we get the following relation
that has to hold at the center of the structure,

fKðSÞðrc; θcÞ ¼
∂rP
2P

1

∂rS

����
r¼rc;θ¼θc

≕ b: ð36Þ

If gðSÞ is an arbitrary normalized function of S, meaning
gðSÞ ¼ 1 at the point ðrc; θcÞ, then we can choose fKðSÞ as
follows so that the second existence condition in (25) is
always satisfied,

fKðSÞ ¼ bgðSÞ: ð37Þ

In a second step one has to make sure, that the conditions
for a local maximum (27) are fulfilled. In case of an
electromagnetic potential Aμ and a spacetime metric with a
mirror symmetry at θ ¼ π=2 (and the metric and electro-
magnetic potential being differentiable), the mixed partial
derivatives of h vanish at θ ¼ 0, π

2
, and the conditions for

the maximum reduce to

∂2
rrhðrc; θcÞ < 0; ∂2

θθhðrc; θcÞ < 0: ð38Þ

By using the result (24) in the sufficient conditions (38) we
find
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0 >
Γ − 1

Γ

�
−P∂2

rrP þ ð∂rPÞ2

þP
∂rP
∂rS

�
∂2
rrSþ f0K

fK
ðSÞð∂rSÞ2

������
r¼rc
θ¼θc

; ð39Þ

0 >
Γ − 1

Γ

�
−∂2

θθP þ ∂rP
∂rS

∂2
θθS

�����
r¼rc
θ¼θc

: ð40Þ

(Please note that for saddle points the right-hand sides in
(39) and (40) are both nonzero, but only one of the two
inequalities is satisfied). While (39) can be satisfied for
arbitrary angular velocities ω by a proper choice of fKðSÞ,
the second inequality can be fulfilled by restricting the
choice for ω. In the case that is discussed in the following
we choose the arbitrary function gðSÞ in Eq. (37) explicitly,
before satisfying both conditions (39) and (40) by a
restriction to the choice of ω. By doing so it is possible
to compare our results with the work by Kovář et al. [1],
which is the Schwarzschild limit to our setup (also defining
gðSÞ first helps to not run into crazy charge distributions).
According to Eq. (15), a repulsive electromagnetic force

acts on the charged fluid in the radial direction, if fKðSÞ∂rS
is bigger than zero, and an attractive force otherwise. At the
extrema re of h (which include cusp points at θ ¼ π=2, 0
and the center rc of the structure), by using the connection
given in (36), the condition for a repulsive electromagnetic
force reduces to

∂rPj r¼re
θ¼0;π

2

> 0: ð41Þ

After a local maximum in the effective potential is found,
the integration constant h0 is chosen to determine the outer
edge of the fluid structure. If the edge of the structure
passes through a saddle point of the potential, this might
create a cusp point. Finally, one has to make sure, that the
initial assumption of a negligible electromagnetic field of
the fluid structure is still valid (Fμν

INT ≪ Fμν
EXT). This can be

accomplished by setting the density of the charged fluid
sufficiently small by choosing the scaling factor κ in the
equation of state (28) accordingly. Limits to the diluteness
of the fluid are given by the magnetohydrodynamic
approach, which needs to still be applicable.

IV. THE CASE OF A KERR METRIC WITH
A MAGNETIC DIPOLE TEST FIELD

In this work we want to discuss possible charged fluid
structures around a rotating compact object, that produces a
dipole magnetic field. This field is aligned to the rotation
axis of the compact object. This situation will be described
by a Kerr metric with an external dipole magnetic test field.
The results are then compared to the Schwarzschild limit
discussed in [1], and the charged fluid structures found in
[20] in case of a Kerr metric with an external homogeneous

magnetic field. A sketch of the considered situation is
shown in Fig. 1. Obviously, both the Kerr metric and the
potential of the dipole magnetic test field have the required
symmetries (axial symmetry, stationarity, and mirror sym-
metry to θ ¼ π

2
) for the construction procedure outlined in

Sec. III.
To motivate our considered model, we first want to

shortly sum up the discussion in Kovář et al. [1], about
which scenario could be described (in a very idealized
way) by the given model of a charged, nonconducting
fluid circulating in a Kerr (Schwarzschild in [1]) back-
ground with a dipole magnetic test field (see [1] for
details).
The central object of mass m, that is mimicked by the

Kerr-metric, should be very compact, so that the radius
does not exceed 3M, where M is the Schwarzschild radius
given by M ¼ Gm=c2. The object produces the magnetic
dipole field, which is considered in our model. A compact
rotating neuron star with a strong magnetic dipole field of
B ¼ 108T could be described like that in a very idealized
way, especially since we further have to assume that the
dipole field has to be oriented along the rotation axis of the
neutron star.
A fluid with a nonvanishing charge, but zero-conductivity

might describe a partly ionized helium fluid, in case of
high pressures and low temperatures, which implies high
densities.
An open question is still, how the given charge distri-

bution within the fluid is reached, which is necessary so
that the integrability condition is satisfied, and if the
distribution is stable.
A mathematical description of the Kerr metric and the

electromagnetic potential of the dipole magnetic test field
will be given in the following before discussing the
behavior of the effective potential h at the equatorial plane
and the poles, both in the case of a charged fluid as well as
the uncharged limit.

FIG. 1. Sketch of the considered situation. The dipole magnetic
test field is aligned to the rotation of the compact object (e.g., a
magnetar).
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A. Kerr metric and the magnetic potential

The Kerr metric in Boyer-Lindquist coordinates and
geometrical units c ¼ 1, G ¼ 1 is given by

ds2 ¼ Σ
Δ
dr2 þ Σdθ2 þ sin2ðθÞ

Σ
½ðr2 þ a2Þdϕ − adt�2

−
Δ
Σ
½asin2ðθÞdϕ − dt�2; ð42Þ

where

Σðr; θÞ ¼ r2 þ a2cos2ðθÞ; ð43Þ

ΔðrÞ ¼ r2 − 2rþ a2: ð44Þ

Here we further normalized all quantities with respect to the
mass m of the central object such that they are dimension-
less. Accordingly, a is the normalized angular momentum
0 ≤ a. The horizons of a Kerr black hole are given by
ΔðrÞ ¼ 0, i.e., r� ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
.

The frame dragging effect in Kerr spacetime connects
ϕ- and t- components via cross terms in the metric. This
leads to an At-component in the description of the dipole
magnetic field. This term will locally give rise to an electric
part in the field. The electromagnetic potential for a dipole
magnetic test field in Boyer-Lindquist coordinates is given
by [26]:

At ¼ −
3

2

aB
ξ2Σ

�
−ðr − cos2ðθÞÞ þ 1

2ξ
ln
r − 1þ ξ

r − 1 − ξ

× ðrðr − 1Þ þ ða2 − rÞcos2ðθÞÞ
	
; ð45Þ

Aϕ ¼ −
3

4

Bsin2θ
ξ2Σ

ððr − 1ÞΣþ 2rðrþ a2Þ

−
1

2ξ
ln
r − 1þ ξ

r − 1 − ξ
ðχ − 4ra2ÞÞ; ð46Þ

where ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
,

χðr; θÞ ¼ ðr2 þ a2Þ2 − ΔðrÞa2 sin2 θ; ð47Þ

and B is the dipole moment of the external magnetic field.
One can show that Aϕ ≥ 0 holds for all r > rþ and for all θ
if B > 0, while At changes signs depending on θ (At ≤ 0
for r > rþ, θ ¼ π=2; At ≥ 0 for r > rþ, θ ¼ 0.).
In the case a ¼ 0, the electromagnetic potential reduces

to the magnetic dipole test field in Schwarzschild space-
time [27],

At ¼ 0; ð48Þ

Aϕ ¼ −
3

4
Bsin2θ

�
rþ 1 −

r2

2
ln

r
r − 2

�
: ð49Þ

Here the potential only contains a ϕ-component and the
electric component the field vanishes.
In the extremal Kerr case (a ¼ 1), the electromagnetic

potential reduces to [28]

At ¼ −
B

2ðr − 1Þ2Σ ðrsin2ðθÞ − 2ðr − 1Þcos2ðθÞÞ; ð50Þ

Aϕ ¼ −
B sin2ðθÞ
2ðr − 1Þ2Σ ððr − 1Þðrþ cos2ðθÞÞ − 2r3Þ: ð51Þ

The electromagnetic potential components fall off and
approach zero for big values of r, while At approaches
zero faster than Aϕ. For θ ≠ 0, the components diverge at
the outer horizon to �∞.

B. Uncharged limit

Before discussing the general case it gives some insight
to have a look on the limit where the charge of the fluid or
the B-field vanishes. Solutions for tori or polar clouds exist
if h has a local maximum at θc ¼ 0, π=2 respectively. We
will show in the following that for the uncharged case no
equilibrium structures in rigid rotation can be found.
In the uncharged case the effective potential h given in

(24) reduces to hjq¼0 ¼ Γ−1
Γ ð− 1

2
lnPÞ≕ Γ−1

Γ T1. The behav-
ior of T1 is shown in Fig. 2 for θ ¼ π=2 and θ ¼ 0. It is
immediately clear that h (for both q ¼ 0 and q ≠ 0) is only
defined for P > 0 and diverges to þ∞ at P ¼ 0, where the
fluid would reach luminal motion.
Let us first discuss the case of polar clouds (θ ¼ 0). Then

P is given by

Pjθ¼0 ¼
ΔðrÞ

r2 þ a2
; ð52Þ

which is independent from ω and approaches one in the
limit r → ∞. Then it is clear that in the uncharged case the

(b)

rr

− 1
2

ln(P)|θc=0 − 1
2

ln(P)|θc=π/2(a)

FIG. 2. − 1
2
Pjθ¼θc

plotted over r for (a) θc ¼ 0 and
(b) θc ¼ π=2. Gray and black lines correspond to a ¼ 1 and
a ¼ 0 respectively. Solid lines correspond to ω ¼ 0.09, dashed
lines correspond to ω ¼ 0.12 and dash-dotted lines correspond to
ω ¼ 0.15. The region for r in which the term has real values
shrinks with rising values of ω, since superluminal motion of the
fluid is reached faster.
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effective potential h diverges at the (outer) horizon r ¼ rþ
and vanishes for r approaching infinity,

lim
r→∞

hjq¼0;θ¼0 ¼ lim
r→∞

�
−
1

2
lnPjθ¼0

�
¼ 0: ð53Þ

A necessary condition for the existence of polar clouds is
that the first derivatives of h vanish on the axis θ ¼ 0. The
first derivative of T1 with respect to r is given by

∂rT1jθ¼0 ¼ −
1

2Pjθ¼0

2ðr2 − a2Þ
ðr2 þ a2Þ2 ; ð54Þ

which becomes zero only at r ¼ a ≤ rþ. This behavior of
T1 for θ ¼ 0 is shown in Fig. 2(a). Therefore, in this case no
polar clouds are possible.
Now lets turn to equatorial tori (θ ¼ π=2). The function

P reads

Pjθ¼π
2
¼ 1

r
ð2 − rþ 4aω − ðrðr2 þ a2Þ þ 2a2Þω2Þ; ð55Þ

which now depends on the angular velocity ω. Figure 3
shows Pjθ¼π=2 ¼ 0 as a function of r and the angular
velocity ω for different values of a. The condition P > 0 is
satisfied between the two solutions ω1, ω2 of P ¼ 0 plotted
in this figure. For a ¼ 0 the two solutions are symmetric,
whereas for a > 0 they become asymmetric showing the
frame dragging effect. Here larger values of ω are favored,
in particular for small radii. Note that in the ergoregion,
which is given by rþ < r < 2 for θ ¼ π=2, it is required
that ω > 0. In Fig. 2(b) it is shown that bigger values of ω

reduce the allowed range of radii, where the effective
potential is defined.
The effective potential does not show any local maxi-

mum for θ ¼ π=2. This is because the second derivative
of T1,

∂2
rrT1jθ¼π

2
¼ ðωð2a2 þ r3Þ − 2aÞ2 þ 2r3

r3ð2a2 þ r3ÞPjθ¼π
2

þ ð∂rPÞ2
2P2

����
θ¼π

2

ð56Þ

is always positive for Pjθ¼π
2
> 0. Therefore, equatorial tori

are also not possible.
Like in the Schwarzschild case no equilibrium can be

found for fluid structures in rigid rotation in case of an
uncharged fluid or a vanishing B-field.

C. Charged case

We will now discuss some general features of the
charged case, before we explicitly construct equilibrium
solutions in the next sections. As we showed in the
preceding subsection, a bound solution is only possible
if the second term in Eq. (24) ðR fKðSÞdSÞ does not vanish.
The function fKðSÞ describes the charge distribution
throughout the torus or polar cloud. The interaction of
the fluid with the electromagnetic field results in a repulsive
force in direction of ν, if

fKðSÞ∂νS ¼ fKðSÞð∂νAt þ ω∂νAϕÞ > 0: ð57Þ

[see Eqs. (15), (17) and (20)]. This force stabilizes the fluid
so that equilibrium solutions can be found. The term
fKðSÞ∂νAt in Eq. (57) corresponds to an electric field
acting on a charged fluid, while the second term
fKðSÞω∂νAϕ corresponds to the Lorentz force acting on
a moving charge in a magnetic field. Both terms might
independently result in an attractive or a repulsive force in
direction of ν, depending on the choice of ω.
In the following discussions we will set fKðSÞ to

fKðSÞ ¼ kSn: ð58Þ

Here k is a scaling factor correlated to the overall strength
of the charge of the fluid and is determined according to
Eq. (36) as k ¼ b=Snðrc; θcÞ. The exponent n determines
how strongly the charge distribution changes with S, which,
in turn, changes along the fluid structure.
The behavior of S ¼ At þ ωAϕ is shown in Fig. 4 on the

equatorial plane θ ¼ π=2 and the axis θ ¼ 0. From the plot
and the discussion of At and Aϕ in Sec. IVA it is clear that
Sjθ¼0;π

2
approaches zero for r → ∞. On the equatorial plane

S diverges at the outer horizon r ¼ rþ to �∞, depending
on the choice of ω,

FIG. 3. Pjθ¼π=2 ¼ 0 as a function of r and ω for different values
of a. The blue dashed line shows the limit of a ¼ 0. From black to
light gray the value of a rises in 0.2- steps to a ¼ 1. The fluid of
the torus can only rotate at r with an ω for which Pjθ¼π=2 > 0,
which is fulfilled in the area enveloped by the graphs. The shift,
especially at small radii, of allowed ω to larger values as a grows
is due to the frame dragging effect.
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lim
r→rþ

Sjθ¼π
2
¼

(−∞;ω < 2arþðrþ−1Þ
ða2þr2þÞ2−4a2rþ

þ∞;ω > 2arþðrþ−1Þ
ða2þr2þÞ2−4a2rþ

: ð59Þ

In the θ ¼ 0 case, S does not depend on ω since
Aϕjθ¼0

¼ 0. It furthermore does not diverge at the horizon,
but reaches the value Sðr ¼ rþ; θ ¼ 0Þ ¼ 3Ba

4ðξþξ2Þ.
The effective potential has the symmetry

hða;ω; BfKðSÞÞ ¼ hð−a;−ω;−BfKðSÞÞ: ð60Þ

Since fKðSÞ ¼ ρq
pþϵU

t, and Ut > 0, the change BfKðSÞ →
−BfKðSÞ implies either a flip of the B-field or a change of
the fluid’s charge to −ρq. The symmetry allows us to
restrict the discussion to a ≥ 0.
To find tori solutions at the equatorial plane the exponent

n in Eq. (58) will be picked from the natural numbers
(n ¼ 0; 1; 2;…), since Sjθ¼π=2 ≤ 0 at some radii for certain
ω. In contrast to that, in case of polar clouds Sjθ¼0 > 0 for all
radii independent of ω. Here n can be chosen from the real
numbers.

V. EQUATORIAL TORI

To construct solutions for equatorial tori, we follow the
procedure introduced in Sec. III and search for areas ofω and
rc, where local maxima of the effective potential h can be
found. These areas will be influenced by the choice of the
remaining parameters n and a. k in Eq. (58) is already
determined by satisfying the necessary conditions, while the
values of the magnetic dipole B and κ and Γ from the
polytropic equation of state do not influence the existence
conditions for a local maximum in the effective potential.
First we recall from the discussion in Sec. III that both the

necessary conditions (25) for a maximum of the effective
potential h hold on the equatorial plane if we normalize the
charge distribution function fKðSÞ according to (36) and
(37). Furthermore, the general conditionP > 0 [see (22) and
(24)] has to hold, which we already discussed in Sec. IV B,
see Eq. (55) and Fig. 3. It therefore remains to investigate the
sufficient conditions (39) and (40) for the case θc ¼ π=2.
Let us first discuss the influence of the rotation parameter

a on the existence of tori in the equatorial plane. Fig. 5

(b)(a)

FIG. 4. The potential Sjθ¼θc
plotted over r for (a) θc ¼ 0 and

(b) θc ¼ π=2. Gray and black lines correspond to a ¼ 1 and a ¼
0.5 respectively. Solid lines correspond to ω ¼ 0.04 for a ¼ 0.5,
and to ω ¼ 0.21 for a ¼ 1. Dashed lines correspond to ω ¼ 0.12
for a ¼ 0.5 and to ω ¼ 0.6 for a ¼ 1. While Sjθ¼0 is independent
of ω and for a < 1 approaches a finite limit at the outer horizon,
Sjθ¼π=2 diverges either to þ∞ or −∞ at the horizon, depending
on the value of ω.

FIG. 5. Extremal points of the effective potential h for θc ¼ π=2, n ¼ 2, and three different values of a as functions of rc and ω. The
scaling parameter k from Eq. (58) is chosen such that the conditions in (25) for an extremum are satisfied, hence k changes throughout
the plot. The extremal point corresponds to a local maximum in the white region. The value of a effects the size and position of this
region. Points in the light red (light gray) area correspond to a maximum in θ-direction only (∂2

rrh > 0), while points of the blue
(medium gray) area correspond to a maximum only in r-direction (∂2

θθh > 0). Points in the dark red (dark gray) area correspond to local
minima in h. In the black area ðUtÞ2 < 0, so no solutions are possible there. ∂rS ¼ 0 and S ¼ 0 are plotted as solid and dashed black
lines respectively. They mark two borders of the area, where maxima in r-direction are present. ∂rS ¼ 0 marks also a border of the area
of maxima in θ-direction. This comes due to the fact, that ∂rS and S appear in the denominator in the inequalities (39) and (40).
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shows the two sufficient conditions (39) and (40) together
with P > 0 as functions of rc and ω for different values of
a. The white areas indicate where all conditions are
satisfied so that a maximum of the effective potential
exists and a torus can be constructed. Since the scaling
parameter k in Eq. (58) is chosen according to Eqs. (36) and
(37), the value of k changes throughout the plot. For the
Schwarzschild case a ¼ 0 the plot is symmetric in the
angular velocity ω and tori can be found for positive and
negative values of ω quite close to the central object. For
bigger a however the white area moves to even smaller
radii in the corotating case, while in the counterrotating
case it moves to bigger radii. This behavior, found for the
counterrotating case, is also seen in case of a homogeneous
electromagnetic test field [20]. For a ¼ 0.4 the white area at
positive ω, corresponding to corotating tori solutions, has
decreased in size. For a ¼ 1 the area has nearly vanished
and corotating tori solutions can only be found at extremely
small radii rc < 1.4 and very high angular velocities.
Within this setup counterrotating tori seem to be favored
for bigger values of a.
For all the white parameter areas in Fig. 5, where tori

solutions can be found, ∂rP > 0 holds, which corresponds
to a repulsive force on the charged fluid in radial direction
(see Sec. III), which implies that the inequality (57) is
satisfied for ν ¼ r. While for ω < 0 both terms in (57)
correspond to a repulsive force on the torus in r-direction,
for ω > 0 the electric part ∂rAt and the magnetic part
ω∂rAϕ have opposite signs. Depending on the value of ω as
given in (59), one of the two terms will dominate the
divergence at r ¼ rþ. The charge of the fluid or the
direction of the B field have then to be chosen such that
the dominant term at r → rþ leads to a repulsive force on
the torus. The other term, however, counteracts to the
repulsive force. This leads to the reduction of the white
parameter area in Fig. 5 for bigger values for a and ω > 0.

Figure 6 pictures the influence of the second parameter n
onto the size of the white parameter areas ðrc;ωÞ, where
tori solutions can be constructed. As one can see in Fig. 6
the white area increases for bigger n. The parameter n
influences the area of possible solutions only by its
contribution to the first sufficient condition ∂2

rrh < 0 given

in (39), where
f0K
fK
ðSÞ ¼ n

S for a fKðSÞ as given in Eq. (58).
If the prefactor of n in (39) is negative, which happens if
∂rP∂rS=S < 0, then the parameter area, where the first
sufficient condition (39) holds, will increase for bigger n.
This is also pictured in Fig. 7, where we directly compare
the development of the areas corresponding to condition

FIG. 6. Extremal points of effective potential h for θc ¼ π=2, a ¼ 0.4 and three different values of n ¼ 5, 3, 1 as a function of rc and
ω. The plot for n ¼ 2 is already presented in Fig. 5(b). For a detailed description see the caption of Fig. 5. Higher values of n lead to a
bigger white area, and therefore increase the parameter set of ðrc;ωÞ for which solutions for equatorial tori can be found.

FIG. 7. Extremal points of h for θc ¼ π=2 and a ¼ 0.4. The
value of k changes throughout the plot, to satisfy the conditions in
(25) for an extremum. Points in the colored area between the
curves correspond to a maximum in r-direction. Of the three areas
(I,II,III), where maxima can be found, area I and III grow for
bigger n, while area II shrinks for bigger n. In the black area
ðUtÞ2 < 0, so no solutions are possible there.
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(39), represented in Fig. 6 as the sum of the blue (medium
gray) and white areas, for different values of n. At the
regions I and III, that contribute to the white area in Fig. 6,
∂rP∂rS=S < 0 is satisfied and they therefore grow for
bigger values of n. The higher the changes in the charge
distribution, indicated by a bigger value of n, the bigger the
range of parameters ðrc;ωÞ, where solutions can be found.
Even though not explicitly shown here in a plot, we want to
mention, that no solutions for a bound equatorial structure
can be found for fKðSÞ ¼ const (corresponding to n ¼ 0)
for 0 ≤ a ≤ 1.
For comparison with earlier related studies of charged

equilibrium structures [1,19,20] we now introduce a new
parameter μ ¼ kðωBÞnþ1 used instead of the scaling factor
k introduced in (58). In Figs. 5 and 7 we always chose k
such that the necessary conditions (25) hold, which means
that k changes throughout the plots. In contrast, Fig. 8
shows the negative effective potential −h along the equa-
torial plane for different values of a and ω, but for constant
values of μ and exponent n. Due to the assumption of rigid
rotation the extrema of the curve have to move closer
together for bigger absolute values jωj of the angular
velocity. The same effect can be seen for changing the
rotation parameter a to higher values and negative ω.
Intuitively, this can be traced back to the frame dragging
effect, due to which the same value of ω should appear
smaller in a locally nonrotating reference frame in the case
of bigger a. The torus center (appearing in Fig. 8 as the
minimum of −h) moves toward smaller radii for an
increasing a or jωj. If a or jωj are chosen too big or small
for the remaining parameters of ðμ; n; a;ωÞ the minimum
and one maximum in Fig. 8 vanish and no bound solution
can be found for the respective set of parameters. The torus

solution might possess an inner cusp, through which the
accretion onto the central object can occur, if the inner
maximum of −h has a smaller value than the outer one. In
the opposite case an outer cusp might exist, where material
outflow away from the central object is possible. As we can
see in Fig. 8 a slight change of jωj or a to smaller values can
change the found structure from one with an inner cusp to
one with an outer cusp. It might even result in the vanishing
of the bound solution [see curve for a ¼ 0.7 in Fig. 8(a) or
curve for ω ¼ −0.1149 in Fig. 8(b)].
The plotted curves for the effective potential−h show the

same structure as in the Schwarzschild case, discussed by
Kovář et al. [1].
To make sure, that the internal magnetic field B of the

charged torus can be neglected compared to the external
magnetic test field B, the polytropic coefficient κ of the
equation of state (28) will be chosen such that j BB j < 0.05.
To estimate the magnetic field created by the fluid structure,
Eq. (34) is used. The fluid has to be diluted enough, so that
the named assumption is not violated. For the examples
presented in Fig. 9 with a dipole moment B ¼ 4.2 × 10−7

(corresponding to BSI ¼ 108 T) of the external field and a
polytropic exponent Γ ¼ 5=3, the polytropic coefficient
was set to κ ¼ 2 × 107.
We finally discuss two specific examples of tori in the

equatorial plane. To highlight the effects of the rotation
parameter a as compared to the Schwarzschild case
analyzed in [1] we choose an extremal Kerr spacetime
with a ¼ 1. Both solutions have the same set of parameters
related to the charge distribution fKðSÞ of the torus, namely
n ¼ 2 and μ ¼ kðωBÞ2 ¼ −1.929, but rotate with a differ-
ent angular velocity ω. The equipotential surfaces, energy
density and specific charge distribution are plotted for the
two cases in Fig. 9. For the first solution we chose
ω ¼ −0.11, which then possesses an outer cusp, while
the second solution with ω ¼ −0.1129 has an inner cusp.
Both structures are located at rather small radii. The
first torus is centered at rc ≈ 3.66, with a central energy
density ϵc ≈ 8.939 × 10−16 and specific charge density qc≈
6.711 × 106. The second torus has rc ¼ 3.45 [which was
used to determine the value of μ applied in both cases, using
Eqs. (37) and (58)], with ϵc ≈ 3.451 × 10−15 and qc ≈
7.457 × 107. The total charge of the tori are Q ¼ 4.78 ×
10−8 and Q ¼ 4.23 × 10−7 respectively. The specific
charge distribution decreases towards bigger radii in both
cases, meaning the fluid is more strongly charged closer to
the central object.
The same course in the charge distribution is present in the

example for rigid rotation in the Schwarzschild case.
However, the example discussed by Kovář et al. [1] is a
very tiny structurewith a diameter of d ≈ 0.02. This structure
obviously has amuch smaller central density and total electric
charge Q ∼ 10−13. The specific charge density lies in the
same order of magnitude with qc ≈ 6.2 × 106.

(a) (b)

FIG. 8. The negative effective potential −h along the equatorial
plane for n ¼ 2, μ ¼ kðωBÞnþ1 ¼ −1.929 and different values of
(a) the rotation parametera and (b) the angular velocityω. In (a)we
chose ω ¼ −0.1129, and a runs from 0.7 (dark blue) to 1 (lightest
blue) in steps of Δa ¼ 0.075. In (b) we us the extremal a ¼ 1 and
ω runs from−0.1109 (dark blue) to−0.1149 (lightest blue) in steps
of Δω ¼ −0.001. Due to rigid rotation the area of r, where a fluid
torus can exist, shrinks with a growing value of jωj. The same
behavior can be found in (a) for a shrinking value ofa. For bigger a
and jωj, ω < 0 the torus center moves to smaller radii.
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VI. POLAR CLOUDS

We will now discuss the construction of equilibrium
structures centered on the axis θ ¼ 0, π, termed polar
clouds. It was shown in [1] that such structures can not exist
in the Schwarzschild case. The rotation however induces
an electric field on the axis θ ¼ 0, π given by

Frt ¼ −
3aB
ξ2Σ

�
ðr2 − a2Þ 1

2ξ
ln
r − 1þ ξ

r − 1 − ξ
− r − a2

�
; ð61Þ

which may counteract the gravitational attraction. Note that
all other components of the electromagnetic tensor vanish
on the axis θ ¼ 0, π and, therefore, polar clouds are
symmetric with respect to the equatorial plane.

An equilibrium structure can be constructed if the
effective potential h has a local maximum, which happens
if the necessary conditions (25) and the sufficient con-
ditions (39) and (40) hold along with the general condition
P > 0, see (22). As in the case of equatorial tori discussed
in the forgoing section, for θ ¼ 0, π the necessary con-
ditions can be fulfilled by normalizing the charge distri-
bution function according to (36) and (37). The condition
P > 0 reduces for θ ¼ 0 to r > rþ, where rþ is the outer
horizon. Therefore, we now discuss the two sufficient
conditions (39) and (40). As the rotation of the central
object is crucial for the existence of polar clouds, we focus
on the influence of a.
The first sufficient condition (39), which corresponds to

a maximum in radial direction only, becomes independent

FIG. 9. Two examples A,B of equatorial tori with n ¼ 2, μ ¼ kðωBÞnþ1 ¼ −1.929 and a ¼ 1. Solution A is presented in the first row
(a,c,e), where ω ¼ −0.11. Solution B is presented in the second row (b,d,f), where ω ¼ −0.1129. The first column (a,b) shows the
effective potential in the form of −h, the second column (c,d) the energy density distribution ϵ, and third column (e,f) the specific charge
distribution q. A red shade indicates smaller values, while a yellow shade indicates bigger values of −h, ϵ and q respectively. The torus
center is marked with a small circle in (a–d). Equipotential curves of the cusp points are plotted as dashed lines in (a,b). The energy
density ϵ falls off from ϵc at the center to zero at the edge of the torus. Solution A shows an outer cusp, allowing matter to outflow from
the torus through the cusp away from the central object. The central energy density is given by ϵc ≈ 8.939 × 10−16, while the specific
charge q decreases towards bigger radii from q ≈ 6.711 × 106 at the dashed line to q ≈ 4.149 × 106 at the dash dotted line. The total
charge of the torus is Q ≈ 4.78 × 10−8 or QSI ≈ 8.197 × 1012mnAs, where mn is the mass of the central object in solar masses.
Solution B shows an inner cusp, allowing matter outflow through the cusp onto the central object. The central energy density
is ϵc ≈ 3.451 × 10−15. The specific charge q decreases towards bigger radii from q ≈ 9.470 × 107 at the dash dotted line to
q ≈ 7.457 × 107 at the dashed line. The total charge of the torus is Q ≈ 4.23 × 10−7 or QSI ≈ 7.26 × 1013mnAs.
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of ω for θc ¼ 0. It is therefore presented in Fig. 10(a) as a
function of ðrc; nÞ for different values of a. The area of rc,
satisfying the condition for a maximum in r-direction,
grows towards smaller radii for bigger values of a. In the
limit rc → ∞ the condition (39) holds for all n > −2=3,
while for rc → rþ n diverges to þ∞ for a < 1 in order to
satisfy the condition. For a ¼ 1 the first sufficient condition
is satisfied for n > −1 at rc → rþ. If a is not too close to
a ¼ 1, say below a ¼ 0.99, for n < −2=3 no maximum
exists for any value of rc.
The second sufficient condition (40), which corresponds

to a maximum in θ-direction only, is presented in Fig. 10(b)
for the parameter space ðrc;ωÞ and different values of a.
This condition is independent of the parameter n, and can
only hold for co-rotating clouds ω > 0.
An attractive force towards the rotation axis, produced

by the Lorentz-force on the rotating charged fluid
(fKðSÞ∂θS < 0 for some area 0 < θ < Δθ), is necessary
to find a local maximum of h at the poles. A local
maximum further requires a repulsive force in r-direction,
which is created on the polar axis solely by the local electric
field component, arising from At, and acting on the charged
fluid. Aϕ and its derivatives vanish on the polar axis.
This requirement determines how the torus is charged
ðfKðSÞ∂rAtjθ¼0 > 0Þ. Since ∂rAtðr; θ ¼ 0Þ < 0, fKðSÞ has
to be negative on the polar axis as well as in some area
0 < θ < β, for which Sðr; θÞ does not change its sign. An
attractive force can now only be achieved close to the polar
axis, if ∂θS ¼ ∂θAt þ ω∂θAϕ > 0. Since ∂θAt < 0 and
∂θAϕ > 0 for 0 < θ < π=2 and r > rþ, this condition

can only be satisfied in the corotating case ω > 0. This
result coincides with the one found by tro [20] for a
homogeneous magnetic test field and a central object
without a net charge (e ¼ 0 in their notation).
The area, where condition (40) holds, i.e., where maxima

in θ-direction exist, is largest for small a > 0. However,
keep in mind, that the scaling factor k in the overall charge
distribution of the fluid, given by fKðSÞ, changes through-
out the plot to satisfy the necessary condition in (25) for an

FIG. 10. The two sufficient conditions (a) (39) and (b) (40) for
θc ¼ 0. The scaling factor k changes throughout the plots to
satisfy the necessary conditions (25) at ðθc ¼ 0; rcÞ. (a) A local
maximum only in r-direction exists for parameter sets ðrc; nÞ
from the dark blue area for a ¼ 0.1. The area grows for bigger a
(indicated by lightening up the blue color) from a ¼ 0.3, 0.5, 0.7,
0.9 to a ¼ 1 (white). For the meaning of the red dotted line at
n ¼ −2=3 see the text. (b) A local maximum only in θ-direction
occurs for parameter sets ðrc;ωÞ from the white area for a ¼ 1.
The area grows for smaller a from a ¼ 0.9, 0.7, 0.5, 0.3 to a ¼
0.1 (blue color). For large values of a the allowed values of rc are
bounded from below. In the black areas in (a) and (b) the
corresponding sufficient condition (39) [for (a)] or (40) [for (b)]
are not fulfilled for any 0 ≤ a ≤ 1.

FIG. 11. Different plots of the negative effective potential −h
along the rotation axis (θ ¼ 0) for n ¼ −1=2, μ ¼ kðωBÞnþ1 ¼
−0.596 and different values of a. The effective potential h is
independent of ω for θ ¼ 0. The rotation parameter a runs from
0.2 (dark blue) to 0.4 (lightest blue) in steps of Δa ¼ 0.05. For
bigger a the torus center moves to bigger radii.

FIG. 12. Effective potential in form of −h of a polar cloud
solution for n ¼ −0.5, μ ¼ kðωBÞnþ1 ≈ −0.596, a ¼ 0.3, and
ω ¼ 0.1. A red shade indicates smaller values, while a yellow
shade indicates bigger values of −h. The center of the cloud at
rc ¼ 6 is marked with a small circle, the equipotential curve of
the cusp point is plotted as a dashed line. The solution shows an
inner cusp, allowing matter outflow through the cusp onto the
central object.
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extremal point at ðθc ¼ 0; rcÞ. According to Eqs. (36) and
(58), k diverges for ∂rS → 0, which is the case for rc → ∞
or a → 0. For small a, solutions can be found for a wide set
of parameters ðrc;ωÞ, however a strongly charged fluid is
required in this case.
Figure 11 shows the negative effective potential −h

along the rotation axis θ ¼ 0, π for different values of a, but
for constant values of μ ¼ kðωBÞn and exponent n. The
repulsive effect of the electric field component Frt, given in
(61), grows for bigger values of a, as it is the result of the
frame dragging effect. This effect manifests in the plot as
the growing maximum of −h for bigger a. The center of the
polar cloud, which corresponds to a minimum in Fig. 11,
moves toward bigger radii for an increasing a. It can be
seen in Fig. 11 that a minimum only exists for very specific

values of a, and that it vanishes and no bound solution for a
polar cloud can be found if a is not chosen appropriately for
the respective set of parameters. The polar cloud solution
might possess an inner cusp on the rotation axis, if the inner
maximum of−h is smaller than zero,−hjr¼rc < 0. An outer
cusp can not exist, since the effective potential does not
diverge at any r > rc, but approaches zero for θ ¼ 0 (see
Sec. IV B and IV C). Outflows from the polar cloud away
from the central object, might still occur at cusp points
located at θ ≠ 0.
Finally we construct a specific example of a polar cloud,

using the procedure introduced in Sec. III. The equipoten-
tial surfaces of a polar cloud with an inner cusp for a ¼ 0.3,
n ¼ −0.5, ω ¼ 0.1 and rc ¼ 6 are plotted in Fig. 12. The
corresponding energy density and specific charge distri-
bution are plotted in Fig. 13, where, like in the case of
equatorial tori, Γ ¼ 5=3, and κ ¼ 2 × 107 was used for an
external field with a dipole moment B ¼ 4.2 × 10−7.
Again, the condition j BB j < 0.05 is satisfied, so that the
magnetic field produced by the polar cloud can be neglected
compared to the external field. At the center the polar cloud
has a central energy density of ϵc ≈ 1.5832 × 10−15, and a
specific charge density of qc ≈ −1.730 × 107. The polar
cloud has a total charge of Q ≈ 9.80 × 10−7. The absolute
value of the specific charge distribution jqj increases toward
bigger radii.

VII. SUMMARY AND CONCLUSION

In this work, we studied the existence of stationary
charged fluid structures around a central object with an
electromagnetic test field, that does not contribute to the
spacetime. We assumed that both the spacetime and the
electromagnetic test field are stationary, axially symmetric,
and mirror symmetric with respect to the equatorial plane.
The fluid is assumed to move in this background without
influencing it, which implies that it has a small charge and
mass as compared to the central object and the electro-
magnetic test field. We further assume a perfect fluid with a
polytropic equation of state and zero conductivity, with
spatial motion in azimuthal direction only. To satisfy the
resulting integrability condition, we required a constant
angular velocity throughout the fluid structure, i.e., rigid
rotation, and a charge distribution in the fluid that is given
by a function of the potential of the electromagnetic test
field. In this work we focus our attention on stationary fluid
structures centered on the equatorial plane, named equa-
torial tori, and on structures centered on the axis of
symmetry, named polar clouds. The procedure described
here can then be used to construct fluid structures for any
spacetime and electromagnetic test field, that satisfy the
named conditions.
In the second part we specify the discussion to the case

of a Kerr spacetime with a dipole magnetic test field, which
is a direct generalization of the Schwarzschild case

(a) (b)

FIG. 13. (a) Energy density distribution ϵ and (b) specific
charge distribution q of a polar cloud solution (corresponding
potential shown in Fig. 12) for n ¼ −0.5, μ ¼ kðωBÞnþ1 ≈
−0.596, a ¼ 0.3, and ω ¼ 0.1. The center of the cloud at
rc ¼ 6 is marked with a small circle in (a). A red shade indicates
smaller values, while a yellow shade indicates bigger values of ϵ
and q respectively. The energy density ϵ falls off from ϵc at the
center to zero at the edge of the cloud. Through the inner cusp at
r ≈ 3.5 matter can be accreted by the central object. The polar
cloud has a central energy density of ϵc ≈ 1.5832 × 10−15. The
absolute value of the specific charge jqj increases towards bigger
radii from q ≈ −1.040 × 107 at the dash dotted line to q ≈
−1.730 × 107 at the dashed line. This behavior of the charge
distribution is opposite to the ones found for the examples of
equatorial tori shown in Fig. 9, where jqj decreases towards
bigger radii. The total charge of the polar cloud is Q ≈ 9.80 ×
10−7 or QSI ≈ 1.68 × 1014mnAs, where mn is the mass of the
central object in solar masses.
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discussed by Kovář et al. [1]. It could describe an idealized,
rather compact rotating neutron star, which produces a
dipole magnetic field, that is oriented along the rota-
tion axis.
In this scenario we then studied in detail the existence

conditions for equatorial tori and polar clouds. We con-
firmed that in the uncharged limit, meaning an uncharged
fluid or a vanishing test electromagnetic field, both types of
structures can not exist for a rigidly rotating fluid. For the
general charged case we found that the rotation of the
central object has a major impact on the region of existence
of stationary structures in parameter space. This can be
traced back to the interplay of the electromagnetic test field
and the frame dragging, which induces a timelike compo-
nent in the potential associated with an electric part of the
magnetic dipole field. In the case of equatorial tori this
causes for high spins of the central object a preference for
counter rotating tori in the equatorial plane. For polar
clouds the rotation is even more essential, as this kind of
structure cannot exist at all in the non rotating case. As
the magnetic field vanishes along the symmetry axis, the
electric field is the only part which can balance the
gravitational attraction. We found that for a small rotation
of the compact object polar clouds can exist for a wide
range of central radii rc, which seems to be counterintuitive
at first glance in view of the nonrotating limit. However, for
small values of the rotation the electric field is weak, as
expected, which needs to be compensated by an extremely
high charge of the fluid, which is physically unrealistic and
may also violate the assumptions within our model.
Furthermore, both in the case of counterrotating equatorial
tori, and polar clouds the center of solutions are found
farther away from the black hole for higher spins of the
central object.
We also discussed fluid structures which allow an

outflow toward or away from the central object, encoded
by the existence of cusps in the effective potential. Tori
and polar clouds that possess an inner or outer cusp (the

latter occurring only in the tori case) can be found by
slightly varying the set of parameters like the angular
velocity of the fluid, the spin of the central object, or a
parameter introduced by the choice of the function that is
connected to the charge distribution (corresponding to n
in the discussed case). We explicitly constructed examples
with inner and outer cusps and discussed their physical
characteristics.
An open question is the choice of the function, depend-

ing on the electromagnetic potential only, that is connected
to the charge distribution within the torus. For the simplest
approach—setting the function to constant—no solutions
for equatorial tori can be found for 0 ≤ a ≤ 1. Are there
restriction to the free choice of the function, so that the
torus solution is stable? In general it should also be
possible, to choose the function such that the total charge
of the torus vanishes. This is however not a straight forward
task. Including self-fields—let it be it gravitational or
electromagnetic—could bring the model closer to the
description of realistic accretion discs. It would also be
very interesting to consider a fluid with nonzero conduc-
tivity. However, in this case radial motion within the fluid is
to be expected, which can maybe be handled perturbatively.
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